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ABSTRACT

Context. FUV radiation strongly affects the physical and chemical state of molecular clouds, from protoplanetary disks to entire
galaxies.
Aims. The solution of the FUV radiative transfer equation can be complicated if the most relevant radiative processes such us dust scat-
tering and gas line absorption are included, and have realistic (non-uniform) properties, i.e. if optical properties are depth dependent.
Methods. We have extended the spherical harmonics method to solve for the FUV radiation field in externally or internally illumi-
nated clouds taking into account gas absorption and coherent, nonconservative and anisotropic scattering by dust grains. The new
formulation has been implemented in the Meudon PDR code and thus it will be publicly available.
Results. Our formalism allows us to consistently include: (i) varying dust populations and (ii) gas lines in the FUV radiative transfer.
The FUV penetration depth rises for increasing dust albedo and anisotropy of the scattered radiation (e.g. when grains grow towards
cloud interiors).
Conclusions. Illustrative models of illuminated clouds where only the dust populations are varied confirm earlier predictions for
the FUV penetration in diffuse clouds (AV < 1). For denser and more embedded sources (AV > 1) we show that the FUV radiation
field inside the cloud can differ by orders of magnitude depending on the grain properties and growth. Our models reveal significant
differences regarding the resulting physical and chemical structures for steep vs. flat extinction curves towards molecular clouds. In
particular, we show that the photochemical and thermal gradients can be very different depending on grain growth. Therefore, the as-
sumption of uniform dust properties and averaged extinction curves can be a crude approximation to determine the resulting scattering
properties, prevailing chemistry and atomic/molecular abundances in ISM clouds or protoplanetary disks.
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1. Introduction

Far-UV (FUV) radiation (hν < 13.6 eV) strongly affects the
physical and chemical state of dusty molecular clouds in many
evolutionary stages: from star forming regions (Lequeux et al.
1981; Stutzki et al. 1988; Bally et al. 1998) and protoplanetary
disks (Johnstone et al. 1998; Aikawa et al. 2002), to circumstel-
lar envelopes around evolved stars (Huggins & Glassgold 1982;
Habing 1996) and supernova remnants (Shull & McKee 1979;
Chevalier & Fransson 1994). Thus, the accurate knowledge of
the intensity of the FUV radiation field as a function of cloud
depth is of crucial importance in a plethora of astrophysical en-
vironments. Penetration of FUV radiation strongly depends on
dust grains properties through the scattering of photons, but it
also depends on the gas properties (chemical composition, den-
sity, etc.) through the absorption of hundreds of discret elec-
tronic lines from the most abundant species (H, H2, and CO).
This proccess is, in addition, an efficient excitation mechanism
for molecular species (Black & van Dishoeck 1987; Sternberg
& Dalgarno 1989). Gas absorption lines reach extremely large
opacities and, due to saturation, they can be very broad and fully
absorb the FUV continuum.

� Appendices A–E are only available in electronic form at
http://www.aanda.org

The so called spherical harmonics method, in which the spe-
cific intensity of the FUV radiation field is expanded into series
of Legendre polynomials, is an efficient way to solve the plane-
parallel radiative transfer equation if gas opacity is neglected
and if dust grains have uniform optical properties, e.g. the same
extinction cross-section, albedo and scattering phase function
(Flannery et al. 1980; Roberge 1983). Nevertheless, astronomi-
cal observations over the full spectral domain show a more com-
plex scenario, where dust grain populations evolve depending on
the environmental conditions from polycyclic aromatic hydro-
carbons (PAHs) and very small grains (VSGs) to bigger grains
(BGs) likely formed by accretion or coagulation (Boulanger
et al. 1988; Desert et al. 1990; Joblin et al. 1992; Draine 2003;
Dartois 2005). Also, the average extinction law (e.g., Cardelli
et al. 1989) is based on observations toward low-extinction line
of sights (AV <∼ 5), and it has been questioned by recent ob-
servations toward more embedded regions (AV ≥ 15). A better
knowledge of the extinction properties at large AV is critical.
In particular, there is evidence that the reddening curve tends
to flatten at high extinction depths (Moore et al. 2005), con-
sistent with grain growth and dust processing along the line of
sight. Therefore, the attenuation of FUV radiation will dramati-
cally depend on the (generally poorly understood) grain compo-
sition and optical properties that, of course, are likely to change
from source to source according to the interstellar (ISM) and
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circumstellar (CSM) dust life-cycle. In addition to this dust-
shielding, self-shielding through gas line absorption can result
in an efficient protection of H2 and CO, and the starting point
of a rich chemistry even in irradiated media such as protoplane-
tary disks, translucent clouds, starbursts galaxies or, more gener-
ally, photodissociation regions (PDRs; see Hollenbach & Tielens
1997, for a review).

The spherical harmonics method also has been implemented
to study the radiative transfer and dust extinction in galaxies as
a whole by associating the source function with the emissivity of
a given distribution of stars through the galaxy (di Bartolomeo
et al. 1995; Baes & Dejonghe 2001). Uniform grain properties
and the absence of gas line absorption are assumed. For unidi-
mensional problems, the spherical harmonics method is found to
be by far the most efficient way to solve for the radiative trans-
fer equation compared to Monte Carlo or ray tracing techniques
(Baes & Dejonghe 2001).

The detailed information provided by high angular resolu-
tion observations (e.g. Gerin et al. 2005; Goicoechea et al. 2006),
revealing fine differences even between similar sources, should
be followed by a sophistication in the radiative transfer mod-
eling. Inclusion of gas (discrete line absorption) and varying
grain populations (e.g. different extinction curves) as a function
of cloud depth requires a modification of the original method
(Flannery et al. 1980; Roberge 1983). In this work we present
an extension of the spherical harmonics method for a radia-
tive transfer equation with depth dependent coefficients in plane-
parallel geometry. We used this method to solve for the radiation
field in illuminated clouds at wavelengths longer than Lyman
cut-off at ∼912 Å taking into account gas absorption and scat-
tering by dust grains. The method can also include the source
function for embedded emission of photons, and therefore it can
explicitly take into account any source of internal radiation.

In Sects. 2 and 3 we present the formulation of the method
while in Sects. 4 and 5 we show several astrophysical applica-
tions to understand the role of FUV penetration for the photo-
chemistry of molecular clouds. In particular, we present a few
examples including H Lyman lines, H2 electronic transitions
within the Lyman and Werner bands and CO electronic transi-
tions together with varying dust properties. The penetration of
FUV radiation for the typical conditions prevailing in a diffuse
cloud (such us ζ Ophiuchi) and in higher extinction objects (such
as the Orion Bar or a strongly illuminated protoplanetary disk)
are discussed.

2. The equation of radiative transfer with variable
coefficients

The specific intensity of radiation, Iλ(s, µ), in plane-parallel
geometry is a solution of the radiative transfer equation:

µ
∂Iλ(s, µ)
∂s

= −[αλ(s) + σλ(s)] Iλ(s, µ)

+
σλ(s)

2

∫ +1

−1
Rλ(s, µ, µ′) Iλ(s, µ′) dµ′ + jλ(s) (1)

where the spatial scale s and the angle θ = cos−1 µ are the
independent variables and where the dependence of quantities
on wavelength λ and on s has been explicitly written. In the
most general problem, αλ(s) = αg

λ(s) + αd
λ(s) is the line-plus-

continuum absorption coefficient, σλ(s) is the dust scattering
coefficient, jλ(s) is the emission coefficient of any source of
internal radiation and Rλ(s, µ, µ′) is the angular redistribution

function (we assume that the radiation field has azimuthal sym-
metry about normal rays). In this work, the opacity is due to co-
herent (no energy redistribution in the scattered photons), non-
conservative (a fraction of photons are absorbed), anisotropic
scattering by dust grains as well as to gas line absorption, that is:

dτ = −(αλ + σλ) ds (2)

(note that τ increases toward the decreasing direction of s) and
the radiative transfer Eq. (1) gets the more familiar form

µ
∂Iλ(τ, µ)
∂τ

= Iλ(τ, µ) − ωλ(τ)2

∫ +1

−1
Rλ(τ, µ, µ′) Iλ(τ, µ′) dµ′

−S ∗λ(τ, µ) = Iλ(τ, µ) − S λ(τ, µ) (3)

where ωλ =
σλ
αλ+σλ

is a new effective albedo (the dust scattering
cross-section over the total dust+gas extinction cross-section)
which tends to the pure dust albedo for wavelengths free of lines,
but tends to 0 (true gas absorption) at the line cores. Intermediate
values are found in the line wings. S ∗λ =

jλ
αλ+σλ

is the source
function for the true emission by “embedded photon sources”.
In the following we assume that S ∗λ = 0. Thus we ignore dust
thermal emission (negligible in the FUV for ISM clouds) or any
other source of internal illumination. Hence, our source function
only corresponds to the external illumination photons scattered
by dust grains. However, inclusion of S ∗λ in our method is trivial.
The interested reader is refererred to Appendix A.

The cloud extends from τ = 0 to τ = τmax with a possibility
that τmax = ∞. Boundary conditions require Iλ(τ, µ) to match the
incident intensity at τ = 0 and τ = τmax. Note the implicit sign
convention on µ: θ = π points towards positive values of τ, that
is µ = −1 for a ray perpendicular to the cloud and penetrating
into it from τ = 0 (see Fig. 1). Thus, boundary conditions spec-
ify χ−(µ) = Iλ(0, µ) (µ < 0) and χ+(µ) = Iλ(τmax, µ) (µ > 0),
where χ±(µ) are the illuminating radiation fields reaching both
cloud surfaces (of course they can be different).

Compared to other works where the spherical harmonics
method has been applied to solve for the FUV radiation field
(e.g. Flannery et al. 1980; Roberge 1983; di Bartolomeo et al.
1995; Baes & Dejonghe 2001; Le Petit et al. 2006), the opti-
cal properties in the radiative transfer equation (e.g., effective
albedo and asymmetry parameter) are wavelength- and cloud
depth-dependent for the first time.

3. The spherical harmonics method for line
and continuum transfer

3.1. The PL approximation

In this method, the angular dependence of the radiation
field I(τ, µ) is expanded in a truncated series of Legendre poly-
nomials Pl(µ) which form a complete orthogonal set within the
range (−1, 1) in which µ varies:

I(τ, µ) =
L∑

l= 0

(2l + 1) fl(τ) Pl(µ) (4)

where the dependence on λ is no longer shown. In the following
sections we show that the mean intensity of the radiation field
at each depth point J(τ) has the simple form J(τ) = f0(τ), i.e.
the first coefficient of the expansion in Eq. (4), which is often
the only quantity needed for the integration of radiation field-
dependent physical parameters (e.g. photoionization and pho-
todissociation rates). This is one of the reasons why the method
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θ= cos µ−1

χ (µ)+

0cs
S*(µ)

smaxs
χ (µ)−

µ<0

τmaxτc0

µ>0

τ

Fig. 1. Adopted geometry and sign conventions for a cloud with embedded sources of photons S ∗(µ) and illuminated at both surfaces by χ±(µ).

is so attractive. However, a large number of expansion terms has
to be used in order to correctly sample the angular dependence
of the radiation field, we typically use L + 1 = 2M = 20 (note
that dust scattering can be highly anisotropic at the considered
wavelengths).

If the grain scattering phase function p(τ, cos Θ) only de-
pends on the angle Θ between the incident and scattered radi-
ation, R(τ, µ, µ′) can also be expanded (see e.g., Chandrasekhar
1960; Roberge 1983) as:

R(τ, µ, µ′) =
L∑

l=0

(2l + 1)σl(τ) Pl(µ) Pl(µ′) (5)

in terms of the σl(τ) coefficients of the Legendre expansion
of p(τ, cos Θ):

p(τ, cos Θ) =
L∑

l=0

(2l + 1)σl(τ) Pl(cos Θ). (6)

The standard model of scattering by interstellar grains (Henyey
& Greenstein 1941) assumes the simple scattering phase
function:

p(cos Θ) =
1 − g2

(1 + g2 − 2g cos Θ)3/2
(7)

which can be also expanded in Legendre polynomials in terms of
the “g-asymmetry parameter” (=〈cos Θ〉) i.e., the mean angle of

the scattered radiation (g = 1/2
∫ +1

−1
µ p(µ) dµ, with µ = cos Θ).

Here we adopt a τ-dependent Henyey-Greenstein phase function
(other phase functions can be used if they can also be expanded).
Therefore we write:

p(τ, cos Θ) =
L∑

l=0

(2l + 1) gl(τ) Pl(cos Θ) (8)

where gl(τ) = σl(τ) and g0(τ) = 1. Thus, the angular redistribu-
tion function R(τ, µ, µ′) has two obvious limiting cases, g(τ) = 0
(isotropic scattering) and g(τ) = ±1 with R(τ, µ, µ′) = δ(µ ∓ µ′)
(pure backward or forward scattering).

Substitution of Eqs. (4) and (5) into the transfer Eq. (3) and
using appropriate recurrence formulae leads to the finite (L + 1)
set of coupled, linear, first order differential equations in the
unknown fl(τ) coefficients, with l = 0, ..., L.

l f ′l−1(τ) + (l + 1) f ′l+1(τ) = (2l + 1) [1 − ω(τ)σl(τ)] fl(τ) (9)

where f ′ = ∂ f /∂τ. We recall that compared to Roberge (1983)
this is not a constant coefficient equation so numerical integra-
tion is necessary. In the “PL approximation” a sufficiently large

odd1 L value has to be chosen to obtain an accurate solution of
the problem. The system (9) can be written as:

f′(τ) = A−1(τ) f(τ) (10)

with:

A(τ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h−1
0

h−1
1 0 2h−1

1

2h−1
2 0

. . .

3h−1
3 (L − 1)h−1

L−2
. . . 0 Lh−1

L−1
Lh−1

L 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

where:

hl(τ) = (2l + 1) (1 − ω(τ)σl(τ)). (12)

In summary, we have to solve for a linear boundary value prob-
lem with non constant coefficients with the additional difficulty
of huge variations of the total opacity2 within small variations in
the wavelength and cloud position grids, e.g. from λ in a satu-
rated line center (τλ ∼ 107) to λ in an adjacent (line free) contin-
uum region (τλ ∼ 10). In the following, we show an extension of
the spectral method of Flannery et al. (1980) and Roberge (1983)
to solve for the FUV radiative transfer.

3.2. The eigenvalues solution

3.2.1. Numerical solution

The A−1(τ) matrix has L + 1 = 2M eigenvalues which are
real, non-zero and non-degenerate and which occur in positive-
negative pairs, see Appendix A of Roberge (1983). Using a simi-
lar notation as Roberge, let km(τ), m = ±1, · · · ,±M be the eigen-
values verifying k−m(τ) = −km(τ), and R(τ) be the matrix of
eigenvectors, that is:∑

j

A−1(τ)l j R jm(τ) = km(τ) Rlm(τ) (13)

which also verifies the Rl,−m(τ) = (−1)l Rlm(τ) relation.
The depth-dependence of the eigenvalues km(τ) and eigenvec-
tors Rlm(τ) complicates the solution of the problem compared to

1 For even values of L, A is singular (e.g. Roberge 1983).
2 We also developed the formalism to solve Eq. (10) through finite

differences (Ascher et al. 1995). For only dust continuum transfer, re-
sults are almost identical (within ∼0.1%) to those obtained with the
spherical harmonics method (which is ∼2 times faster). However, when
line absorption is included, the finite difference numerical solution al-
ways oscillate at the core of saturated lines and no optimal solution is
found.
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the (only dust) problem with uniform optical grain properties.
The computation of km(τ) and Rlm(τ) is given in Appendix C.

The R(τ) matrix of eigenvectors can still be used to define
an auxiliary set of variables y(τ) = R−1(τ) f(τ), or:

fl(τ) =
−1∑
−M

Rlm(τ) ym(τ) +
M∑
1

Rlm(τ) ym(τ) (14)

so that

f′ = A−1 R y. (15)

Therefore, in terms of the new y(τ) variables, Eq. (10) can be
rewritten as:

y′ = R−1 A−1 R y − R−1 R′ y = K y − R−1 R′ y. (16)

To write Eq. (16) we have used the fact that (R−1A−1R)lm =
kl δlm and thus K(τ) is a diagonal matrix with the km(τ) eigen-
values of A−1(τ) on its diagonal. The fact that R′(τ) � 0 adds
the last matrix term in Eq. (16) due to the depth-dependence of
the coefficients. This term is neglected in Le Petit et al. (2006).
However, R′ is not null neither when the grain optical properties
depend on the cloud depth (even if gas is neglected) nor when
gas line absorption is included (even if grain properties are uni-
form). Unfortunately, the system of Eqs. (16) is uncoupled only
if the R−1 R′ y term is null (as in Roberge 1983), otherwise more
manipulations are required to solve the problem consistently. If
we define Q = R−1R′ y = −L y, then Eq. (16) can be simply
written as:

y′m = km(τ) ym + [L y]m(τ) (17)

for m = ±1, ...,±M. In order to solve this particular problem we
turn the system of differential Eqs. (17) into an integral problem.
To do that we first introduce the following integral equation:

ym(τ) = eam(τ)

[
Cm +

∫ τ

τm

e−am(t) [L y]m(t) dt

]
(18)

where am(τ) is an arbitrary function so that am(τm) = 0. The sys-
tem of Eqs. (18) represents a general set of integral equations
that verify ym(τm) = Cm (to be found from the boundary condi-
tions). If a given function ym is a solution of the above equation,
by taking its derivative with respect to τ one gets:

y′m(τ) = a′m(τ)ym(τ) + [L y]m(τ) (19)

which means that ym as defined in Eqs. (18) is also a solution
of the original system of differential Eqs. (17) if and only if
a′m(τ) = km(τ). Therefore, am(τ) =

∫ τ
τm

km(t) dt. This demon-

stration shows that the km eigenvalues of A−1 (and no others)
are the right exponential factors that do attenuate the radiation
field, which is consistent with the original problem described by
Eqs. (10). In the present work we solve Eqs. (18) with an itera-
tive scheme2 and thus compute:

y(n+1)
m (τ)=e

∫ τ
τm

km(t) dt
[
C(n+1)

m +

∫ τ

τm

e−
∫ t

τm
km(t′) dt′ [L y(n)]m(t) dt

]
(20)

by using an appropriate (physical) initial guess for y(n)
m , where n

is the iteration step. This iterative procedure shows that the so-

lution if forced, at any step, by the exponential factor e
∫ τ
τm

km(t) dt

to follow the behavior dictated by the “true” eigenvalues of the
problem (i.e. those of the original coupling matrix A−1) that are
known before the iteration procedure is started. In Appendix B

we give details on the error bound associated with the iterative
scheme and we show that the numerical solution derived for
the FUV radiation field correctly satisfies the original system of
Eqs. (10).

At each iteration step we have to compute the integration
constants Cm by a convenient selection of τm. To ensure that only
exponentials with negative arguments appear, it is necessary to
set τm = 0 for m < 0 and τm = τmax for m > 0. In order to
have easier to read equations, we now introduce some convenient
notations:

E−m(τ) = exp

(∫ τ

0
km(t) dt

)
(m < 0)

or E−m(τ) = exp

(
−

∫ τ

0
km(t) dt

)
(m > 0). (21)

Note that E−−m(τ) = E−m(τ), and E−m(0) = 1. We also define:

E+m(τ) = exp

(∫ τmax

τ

km(t) dt

)
(m < 0)

or E+m(τ) = exp

(
−

∫ τmax

τ

km(t) dt

)
(m > 0) (22)

with E+m(τmax) = 1 and E+m(τ) × E−m(τ) = E+m(0) = E−m(τmax).
Using the above notations, we have:

ym(τ) = E−m(τ) Cm −
∫ τ

0

E−m(τ)

E−m(t)
qm(t) dt (m < 0) (23)

ym(τ) = E+m(τ) Cm +

∫ τmax

τ

E+m(τ)
E+m(t)

qm(t) dt (m > 0). (24)

Note the change of sign in the second equation due to the inver-
sion of

∫ τ
τmax

. To further simplify these expressions, we define:

D−m(τ) =
∫ τ

0

E−m(τ)

E−m(t)
qm(t) dt (m < 0) (25)

D+m(τ) =
∫ τmax

τ

E+m(τ)
E+m(t)

qm(t) dt (m > 0) (26)

which satisfy D−m(0) = 0 and D+m(τmax) = 0. Therefore, the
y(τ) variables are finally written compactly as:

ym(τ) = E−m(τ) Cm − D−m(τ) (m < 0) (27)

ym(τ) = E+m(τ) Cm + D+m(τ) (m > 0) (28)

and the original fl(τ) terms in the Legendre expansion of the
radiation field I(τ, µ) are then given by:

fl(τ) =
−1∑

m=−M

Rlm(τ)
(
Cm E−m(τ) − D−m(τ)

)

+

M∑
m=1

Rlm(τ)
(
Cm E+m(τ) + D+m(τ)

)
. (29)



J. R. Goicoechea and J. Le Bourlot: The penetration of Far-UV radiation 5

3.2.2. Boundary conditions: clouds with two sides
illumination

We consider a unidimensional plane-parallel cloud of finite size
with an external radiation field at both cloud surfaces (τ = 0 and
τ = τmax) defined by χ−(µ) and χ+(µ) respectively (see Fig. 1).
From Eq. (29) we have:

fl(0) =
−1∑

m=−M

Rlm(0) Cm +

M∑
m=1

Rlm(0)
(
Cm E+m(0) + D+m(0)

)
(30)

fl(τmax) =
−1∑

m=−M

Rlm(τmax)
(
Cm E−m(τmax) − D−m(τmax)

)

+

M∑
m=1

Rlm(τmax) Cm. (31)

At the τ = 0 side, the solution must match, at each λ, the incom-
ing radiation field with µ < 0, i.e. I(0, µ) = χ−(µ), with

I(0, µ) =
L∑

l=0

(2l + 1) fl(0) Pl(µ) (32)

or:

I(0, µ) =
−1∑

m=−M

Cm

L∑
l=0

(2l + 1) Rlm(0) Pl(µ)

+

M∑
m=1

(
Cm E+m(0)+D+m(0)

) L∑
l=0

(2l+1) Rlm(0) Pl(µ). (33)

At the τ = τmax side, the solution must match, at each λ, the
incoming radiation field with µ > 0, i.e. I(τmax, µ) = χ+(µ), with:

I(τmax, µ) =
L∑

l=0

(2l + 1) fl(τmax) Pl(µ) (34)

or:

I(τmax, µ) =
−1∑

m=−M

(
Cm E−m(τmax) − D−m(τmax)

)

×
∞∑

l=0

(2l + 1) Rlm(τmax) Pl(µ)

+

M∑
m=1

Cm

L∑
l=0

(2l + 1) Rlm(τmax) Pl(µ). (35)

Nevertheless, since the order L of the expansions is finite, the
boundary conditions I(0, µ) = χ−(µ) and I(τmax, µ) = χ+(µ) can
not be satisfied at all µ angles. In this work we use Marck’s3

conditions that require I(0, µ < 0) and I(τmax, µ > 0) to match the
incident radiation fields at L + 1 = 2M strategic angles µi given
by PL+1(µi) = 0, that is, the roots of the Legendre polynomial of
degree L + 1. Note that in these µ±i (i = ±1, ...,±M) angles, the
solution of the radiation field I(τ, µi) is “exact”.

To further simplify the boundary conditions relations, we
now define:

Tim(0, µi) =
L∑

l=0

(2l + 1) Rlm(0) Pl(µi) (µi < 0) (36)

3 See e.g., Sen & Wilson (1990) for a different choice of boundary
conditions.

Table 1. Bim coefficients for the two sides illumination boundary condi-
tions in Eq. (40).

Bim = m < 0 m > 0
µi < 0 Tim(0, µi) Tim(0, µi) E+m(0)
µi > 0 Tim(τmax, µi) E−m(τmax) Tim(τmax, µi)

Table 2. Bim coefficients for the one side illumination boundary condi-
tions in Eq. (40).

Bim = m < 0 m > 0
µi < 0 Tim(0, µi) 0
µi > 0 0 Tim(τmax, µi)

Tim(τmax, µi) =
L∑

l=0

(2l + 1) Rlm(τmax) Pl(µi) (µi > 0) (37)

which gives:

I(0, µi) =
−1∑

m=−M

Cm Tim(0, µi)

+

M∑
m=1

(
Cm E+m(0) + D+m(0)

)
Tim(0, µi) (38)

I(τmax, µi) =
−1∑

m=−M

(
Cm E−m(τmax) − D−m(τmax)

)
Tim(τmax, µi)

+

M∑
m=1

Cm Tim(τmax, µi). (39)

Therefore, the desired Cm constants at each iteration step are so-
lutions of the 2M × 2M linear system (m = 0 excluded):

M∑
m = −M

Bim Cm = Hi (40)

with the Bim coefficients as define in Table 1, and where

Hi=

⎧⎪⎪⎨⎪⎪⎩ I−(0, µi)−∑M
m=1 D+m(0) Tim(0, µi) (µi < 0)

I+(τmax, µi)+
∑−1

m=−M D−m(τmax) Tim(τmax, µi) (µi > 0).
(41)

For semi-infinite clouds (τmax =∞) with only one side illumina-
tion at τ = 0 (µi < 0), boundary conditions have to be modified
to take into account the no radiation condition at τ =∞ (µi > 0).
It is straightforward to show that the Cm constants are then so-
lutions of the same linear system shown in Eq. (40) with the
Bim coefficients now defined as in Table 2 and:

Hi =

{
I−(0, µi) (µi < 0)
0 (µi > 0). (42)

3.3. Iterative procedure

At very large optical depths (e.g. deep inside the cloud or at the
core of saturated lines) the intensity of the radiation field tends to
zero. Hence, the simplest way to initiate the iterative process is
to set Q = R−1R′ y = 0. However, this may be far from the real
solution, and more realistic guesses should be tried. In practice,
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the assumption τ → ∞ may be too crude and one can add the
effect of the external radiation perpendicular to the cloud that
penetrates deepest in the cloud, i.e. attenuated by the smallest
eigenvalue k±1 (that associated with the radiation field in the
|µ| � 1 direction). Thus, we guess a first set of ym(τ), that we
call y0

m(τ), from the linear system:

−1∑
m=−M

Rlm(τ) y0
m(τ) +

M∑
m=1

Rlm(τ) y0
m(τ) = f approx

l (τ) (43)

with

f approx
0 (τ) =

1
2

I(0,−1) exp[−k1(τ) τ]

+
1
2

I(τmax, 1) exp[k−1(τ)(τmax − τ)]. (44)

Note that only the l = 0 terms have to be considered. As noted by
Flannery et al. (1980) and Roberge (1983), the presence of dust
scattering implies that |k±1| � 1, i.e. the radiation field attenu-
ation factor at large depths is not simply e−τ but dominated by
the e−k1τ factor. This conclusion obviously applies for the present
case with the difference that k±1 is now depth-dependent and in-
cludes line absorption. This important result can modify the in-
tensity of the FUV radiation field inside optically thick clouds by
orders of magnitude depending on the dust grain optical proper-
ties. At lower optical depths (e.g., diffuse clouds), the attenuation
factor still contains an important contribution from additional
terms (k±2, k±3, ...).

Now that we have an educated guess for the ym(τ) vari-
ables, we can estimate the new term in Eq. (16) carrying the
depth-dependence of the gas and dust coefficients, i.e. the Q =
R−1 R

′
y term. Note that R−1R′ need to be evaluated only once,

so numerical cost is limited. However, special care should be
taken for the R′ derivation. Details of the R−1 inversion and
R′ derivation are given in Appendix D.

We briefly describe the iterative computation of Q: we start
by using Q0 = R−1R′Y0 and then compute a first set of C0

m from
the boundary conditions. With these first C0

m and Q0 variables we
can now use the general expression Eq. (20) to compute a new set
of ym(τ) to derive a more refined Q term, and start this proccess
again until some prescribed level of convergence in Q is reached.
Thus, if n is the iteration index, Q(n+1) is computed from Q(n+1) =
R−1 R′Y(n+1) with:

y(n+1)
m (τ) = C(n+1)

m E−m(τ) − D−(n)
m (τ) (m < 0) (45)

y(n+1)
m (τ) = C(n+1)

m E+m + D+(n)
m (τ) (m > 0). (46)

Those expressions have to be computed at each iteration by
numerical integration.

3.4. Mean intensity and FUV photon escape probability

Once we have obtained the full depth and angular description of
the intensity of the radiation field I(τ, µi) through the fl(τ) coeffi-
cients, we show here the simple form that J(τ) takes. The angular
average of the specific intensity is defined as:

J(τ) =
1
2

∫ +1

−1
I(τ, µ) dµ. (47)

From the expansion of I(τ, µ) we have:∫ +1

−1
I(τ, µ) dµ =

∑
l

(2l + 1) fl(τ)
∫ +1

−1
Pl(µ) dµ (48)

where the only no null sum corresponds to
∫ +1

−1
P0(µ) dµ = 2.

Therefore, as anticipated in Sect. 3.1, the mean intensity of the
radiation field at each wavelength and depth reduces to J(τ) =
f0(τ), that is:

J(τ)=
−1∑

m=−M

(
Cm E−m(τ) − D−m(τ)

)
+

M∑
m=1

(
Cm E+m(τ) + D+m(τ)

)
(49)

where we use the fact that R0m(τ) = 1 for all m and τ. Despite
the simplicity of this relation, in many cases of astrophysical
interest (e.g. a two sides illuminated cloud) one needs to distin-
guish the fraction of the radiation field coming from each side
of the cloud. In this case, two half sums have to be computed.
In Appendix E we give the analytic formulae to compute the
mean radiation intensity J±(τ) coming from each side. The re-
sulting J±(τ) values can be used to evaluate the escape probably
of any FUV photon emitted within the cloud, e.g. within H2 line
cascades. In particular, the probability for a photon emitted at
τ = τ′ (inside the cloud) to reach τ = 0 (or τ = τmax) is given
by the J−(τ′)/J−(0) (or J+(τ′)/J+(τmax)) intensity ratios. These
probabilities can then be further used to determine the H2 level
detailed balance. We also note that in this method the first terms
of the intensity expansion in Eq. (4) are directly related to the
moments of the radiation field, i.e. f0(τ) = J(τ), the mean inten-
sity; f1(τ) = H(τ), the Eddington flux; and f2(τ) = 3 K(τ)− J(τ)
where K(τ) is the K-moment.

From the numerical point of view, the methodology de-
scribed in the previous sections has been implemented in the
Meudon PDR code4, a photochemical model of a unidimensional
plane-parallel stationary PDR (Le Bourlot et al. 1993; Le Petit
et al. 2006, and references therein) and will be the FUV radia-
tive transfer method used in the code. In the following sections
we illustrate several of the new possibilities with some relevant
astrophysical examples.

4. Applications: comparison with previous
approaches

In this section we compare the main differences of the new exact
computation versus the line-plus-continuum approach (R′ = 0)
used by Le Petit et al. (2006) in the Meudon PDR code. Since
the previous version of the code used a single-dust albedo and
g-asymmetry parameter with no wavelength or depth depen-
dence, and the extinction curve was not related to the grain prop-
erties used in the model, here we just make the comparison by
assuming R′ = 0 in the new computation, and limit ourselves
to the uniform dust properties case. In the following examples
we explicitely include all the H, H2 and CO electronic absorp-
tion lines arising from rotational levels up to J = 6 (for H2) and
J = 1 (for CO). The FGK approximation (Federman et al. 1979)
is applied for the rest of levels. Note that the exact method al-
lows one to take into account the overlaps between H, H2 and
CO lines neglected in more crude approaches.

Apart from having a radiative transfer method to consistently
solve for the dust grain varying populations problem (Sect. 5),
the next largest difference between the new computation com-
pared to Le Petit et al. (2006) is the effect of line-wing absorption
of back-scattered radiation. At line core wavelengths, photons
penetrating into the cloud are purely absorbed by the gas (the
effective albedo equals 0). Due to saturation and opacity broad-
ening, many absorption lines become very wide deep inside the

4 Available at http://aristote.obspm.fr/MIS/
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Fig. 2. Radiative transfer models for a cloud with a total extinction of AV = 1 and a density of nH = 103 cm−3, illuminated at both sides by the mean
ISRF. Part of the resulting FUV spectra (∼912–1300 Å) close to the cloud surface is shown. The blue spectra correspond to a model with R′ = 0
in Eq. (16) (depth dependence neglected), and the red one corresponds to the new “exact” computation.

Fig. 3. Impact of the new “exact” radiative transfer computation compared to an alternative approach that assumes R′ = 0 (Le Petit et al. 2006).
Grain properties are uniform in all the cloud (MRN). Left panel: H/H2 transition. Right panel: H2 photodissociation rate as a function of cloud
depth. A cloud with a density of nH = 103 cm−3, a total extinction depth of AV = 1 and illuminated at both sides by the mean ISRF is considered.
These results show that for the case of uniform dust grain properties the error associated with R′ = 0 assumption is small.

cloud. As a consequence, the FUV radiation field is more atten-
uated than in the (only) dust continuum transfer case. At con-
tinuum wavelengths free of lines, a fraction of photons com-
ing from the external illumination sources can be absorbed by
the dust (depending on the exact dust albedo value) or be back-
scattered (depending on the exact g value) and provide an ad-
ditional contribution to the radiation field at the cloud surface
(about 10% of increase for g = 〈cos θ〉 � 0.6). At line wing
wavelengths, where dust and gas opacities are of the same order
(and the effective albedo is in between 0 and the grain albedo),
some of the back-scattered photons can again reach the surface
of the cloud while another fraction will be absorbed in the wings.
Therefore, as shown by our calculations, line wings are “numer-
ically more challenging”. The fraction of absorbed photons in
the line wings depends on the wavelength separation to the line
core and on the transition upper level life time (because it deter-
mines the resulting line profile broadening). To illustrate these
differences we consider a cloud with a constant density nH =
103 cm−3 and a total extinction depth of AV = 1, illuminated at
both sides by the mean interstellar radiation field (ISRF, χ = 1)
as defined by Draine (1978). These physical conditions resemble
those of a diffuse cloud such as parts of ζ Ophiuchi (e.g. Black
& Dalgarno 1977). An uniform grain size distribution similar
to that of Mathis et al. (1977) is assumed. Figure 2 shows part
of the resulting FUV spectra (∼912–1300 Å) close to the cloud
surface. These spectra clearly show that the effect of H2 line
wing absorption of back-scattered photons is larger in the exact
computation compared to the R′ = 0 approach (Le Petit et al.
2006). Note that this is true only for H2 lines. Atomic hydrogen
lines exhibit the opposite effect, i.e. a decrease of the line wing

absorption of back-scattered photons compared to the R′ = 0
approach. Figure 10 shows the impact of the same two, exact
and R′ = 0, computations in the resulting cloud structure (left:
H/H2 transition and right: H2 photodissociation rate). In spite of
the different line profiles predicted by each type of model, the
final cloud physical conditions remain very similar. Therefore,
we conclude that all computations made with the previous ver-
sion of the Meudon PDR code (Le Petit et al. 2006), where line
transfer was computed (assuming R′ = 0 and uniform dust prop-
erties), are consistent with the present exact calculation. The
larger effect of the H2 line-wing absorptions in the exact cal-
culation increases the attenuation of the illuminating radiation
field, which results in a H/H2 transition layer slightly shifted to
lower extinction depths. This general result obviously applies to
any FUV radiative transfer model including gas line absorption
compared to (only dust) continuum models, i.e. the contribution
of gas absorption (H2 lines mostly) decrease the photoionization
rate (of neutral carbon particularly) and the photodissociation
rate of species with thresholds close to the Lyman cut. An ad-
ventage of including gas line absorption is that predicted spectra
can be directly compared with spectral observations provided by
FUV telescopes.

5. Applications: grain growth, varying dust
populations

With the method presented in Sect. 3, we can now consistently
explore the effect of more realistic (non-uniform) dust properties
in the FUV penetration into more embedded objects e.g., dense
molecular clouds or protoplanetary disks. As a representative
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Fig. 4. Grains mixture optical parameters as a function of wavelength and cloud depth (the red curve corresponds to the illuminated cloud edge
AV = 0 and the blue curve to the center of the cloud at AV = 10) for the “MRN to BGs” (left) and “VSGs to MRN” (right) examples respectively.
The shaded region shows the spectral region taken into account in the FUV radiative transfer.

example, we present several models for a dense and strongly il-
luminated cloud (with an ionization parameter of χ/nH = 1 cm3)
with grain radii varying dust populations. From the chemical
point of view we only concentrate here on the effects that the
different FUV attenuation depths have on the classical H/H2
and C+/C/CO layered structures predicted by PDR models. In
particular, we consider a cloud with a constant density nH =
n(H) + 2 n(H2) = 105 cm−3 and a total extinction of AV = 20
which is illuminated at both sides by 105 times the ISRF. These
physical conditions resemble those of a dense PDR such as the
Orion Bar (e.g. Tielens & Hollenbach 1985) or a photoevaporat-
ing disk around a massive star (e.g. Johnstone et al. 1998). At
any depth we consider that dust grains follow a size distribution
dn = na da given by:

na(τ) =
∑

i

na,i(τ) =
∑

i

Ai(τ) nH(τ) a−βi da

ai,−(τ) < a(τ) < ai,+(τ) (50)

where a± refers to the grain radius distribution lower and upper
limits and i = 1, ..., n refers to each component of the grain mix-
ture. In Eq. (50) we have explicitly particularized for the simple
power-law case, although more complicated problems may re-
quire other prescriptions of na (e.g. such as those in Weingartner
& Draine 2001). Grain properties were taken from Laor &
Draine (1993) for silicates and graphite. With these tabulations
we compute the optical parameters of the grain mixture for each
wavelength and cloud depth. In particular, we compute the Qabs,
Qsca and Qext efficiencies and the grain albedo Qsca/Qext. We
finally use an gλ-asymmetry factor averaged over the grain
distribution as (see e.g., Wolfire & Cassinelli 1986):

gλ(τ) =

∫ a+(τ)

a−(τ)

∑
i π a2 gi(a, λ, τ) Qsca(a, λ, τ) na,i(τ) da∫ a+(τ)

a−(τ)

∑
i π a2 Qsca(a, λ, τ) na,i(τ) da

· (51)

Afterwards, the extinction curve A(λ)/AV(τ) and the absolute
dust extinction coefficient αd

λ(τ) are determined at each depth
and used to settle the total line-plus-continuum opacity (as de-
fined in Eq. (2)) and the effective albedo. The dust extinction
coefficient (cm−1) is given by αd(λ, τ) = ng πa2 Qext, where ng is
the number of dust grains (per cm3). Thus, we compute:

αd(τ) =
∫ a+(τ)

a−(τ)
π a2

⎛⎜⎜⎜⎜⎜⎝∑
i

Qi
ext(a, τ)Ai(τ) nH(τ) a−βi

⎞⎟⎟⎟⎟⎟⎠ da. (52)

The Ai(τ) grain coefficients are determined at each depth posi-
tion assuming that the gas-to-dust mass ratio has to be constant
(∼100) in the whole cloud (i.e., the number of grains is reduced
if grain sizes increase). However, in order to keep the grain mix-
ture homogeneous, the ASil/AGra ratio is kept fixed. Contribution
of discrete absorption lines, i.e. the contribution of αg

λ(τ), is in-
cluded in similar fashion as described in Le Petit et al. (2006;
Sect. 4.3). The total opacity at each depth is then given by:

dτλ =

(
1 +
αg

αd

)
A(λ)
AV

dτV =

⎛⎜⎜⎜⎜⎝1 + αg
λ

αd
λ

⎞⎟⎟⎟⎟⎠
(

Eλ−V

EB−V

1
RV
+ 1

)
dτV (53)

where all the variables are depth dependent and where we have
assumed that, in the visible band, the extinction is only produced
by dust and therefore we use dτλ =

A(λ)
AV

dτV = α
d
λ ds to relate

the spatial scale with extinction depth. Note that we compute
the extinction curve, at each cloud position, directly from the
derived grain properties.

For this “grain growth example” we consider that grain radii
increase as a function of the cloud depth according to:

ai,±(τ) = ai,±(0) + [ai,±(τc) − ai,±(0)]

(
τ

τc

)γ±
(54)

where ai,±(0) defines the grain radii at the edge of the cloud
(τ = 0) and ai,±(τc) refers to the grain radii at the center of
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Fig. 5. Resulting extinction curves as a function of wavelength (only the FUV range is shown) and cloud depth (the red curve corresponds to the
cloud edge AV = 0 and the blue curve to AV = 10) for the “MRN to BGs” (left) and “VSGs to MRN” (right) examples respectively.

Fig. 6. Dust mass absorption coefficients (per gas gr) as a function of wavelength and cloud depth (the red curve corresponds to the cloud edge
AV = 0 and the blue curve to AV = 10) for the “MRN to BGs” (left) and “VSGs to MRN” (right) examples respectively. The different grain
material Ai coefficients required to keep a constant gas-to-dust mass ratio are also shown as a function of AV in the small insets.

Fig. 7. Left: adopted grain averaged radii distribution for the “MRN to BGs” (left) and “VSGs to MRN” (right) examples respectively. Right:
resulting mean intensity of the FUV continuum (at ∼1132 Å) as a function of the cloud depth for the three different varying grain populations
discussed in the text. The ordinate shows the mean intensity normalized by the illuminating radiation field (χ = 105 in Draine’s units).

the cloud. We chose γ± = 2/3. Obviously, this is just an illus-
trative example since we do not explicitly solve for the grain nu-
cleation/growth (e.g. Salpeter 1974) nor the erosion/sputtering
problem (e.g. Barlow 1978), which depends on the particular
type of source. The crucial point here is to provide a method to
consistently solve for the FUV radiative equation if, as suggested
by observations, the grains size distribution changes toward em-
bedded objects (Moore et al. 2005) and/or if spatial fluctuations
of the gas to dust ratio do exist along the line of sight (Padoan
et al. 2006).

In the following, grains follow a power-law distribution of
sizes given by Eq. (50) with βi = 3.5 at each cloud position.
A mixture of silicates and graphite grains defined by ASil/AGra =
1.1 and with a−(AV = 0) = 5 nm, a+(AV = 0) = 250 nm and
a−(AV = 10) = 50 nm, a+(AV = 10) = 2500 nm was selected.

Therefore, the grain mixture at AV = 0 corresponds to the size
distribution proposed by Mathis et al. (1977, this size distribu-
tion is called MRN hereafter) to fit the mean galactic extinction
curve (see also Fitzpatrick & Massa 1990). At AV = 10 grains
have grown by a factor 10 and we call them Big Grains (BGs).
In the second example we only change the size distribution to
a−(AV = 0) = 1 nm, a+(AV = 0) = 50 nm and a−(AV = 10) =
5 nm, a+(AV = 10) = 250 nm. Thus, the grain mixture at AV = 0
corresponds to very small grains (VSGs). At AV = 10 grains
have grown by a factor of 5 and follow a MRN distribution again.
The third final example considers a uniform grain size distribu-
tion (MRN) in the whole cloud. The resulting optical properties,
extinction curves, dust opacities, Ai coefficients and radii distri-
butions for these examples are shown in Figs. 4–7 (left panel),
respectively.
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Fig. 8. Radiative transfer models for a cloud with a total extinction of AV = 20 and a density of nH = 105 cm−3, illuminated at both sides by
105 times the mean ISRF. Part of the resulting FUV spectra (∼912–1300 Å) at different extinction depths: AV = 0 (cloud surface), AV = 0.1,
AV = 2 and AV = 3 are shown in each box. In each panel, the red (blue) curve corresponds to the “MRN to BGs” (“VSGs to MRN”) example.

Some time ago, Sandell & Mattila (1975) emphasized that
the albedo and anisotropy of dust grain scattering have im-
portant effects on photodissociation rates for ISM molecules.
The present computation of the FUV radiation field (contin-
uum+lines) at each cloud position (see Fig. 8 for the resulting
FUV spectra at different AV) allows an explicit integration of
consistent C photoionization rates together with H2 and CO pho-
todissociation rates. Once the FUV radiation field has been de-
termined and the photo rates calculated, steady-state chemical

abundances are computed for a given network of chemical reac-
tions. Finally, we compute the thermal structure of the cloud by
solving the balance between the most important gas heating and
cooling processes (Le Bourlot et al. 1993; Le Petit et al. 2006,
and references therein).

Depending on the grain properties these examples show
FUV radiation fields that change by orders of magnitude at
large AV (Fig. 7 right panel). Note that the mean radiation
intensity at the cloud surface J(0) cannot be larger than the
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Fig. 9. Impact of the different FUV radiative transfer models on the kinetic temperature, H2 photodissociation rate, C photoionization rate and
CO photodissociation rate (left column), H/H2 transition and C+/C/CO abundances (right column). A cloud with a density of nH = 105 cm−3, a total
extinction depth of AV = 20 and illuminated at both sides by 105 times the mean ISRF is considered. Although not clearly seen in these boxes, all
physical parameters show an horizontal tangent at AV = 10, consistent with their null variation with respect to the depth position at half cloud (as
expected for a symmetrically illuminated cloud).
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Fig. 10. Same as Fig. 9 for a cloud with nH = 103 cm−3, a total extinction depth of AV = 1 and illuminated at both sides by the the mean ISRF.
Dust grains grow according to Eq. (54) with Ac

V = 1.086 τc
V = 0.5.

illuminating radiation field itself, i.e., J(0)/χ < 1. The exact ra-
tio depends on the particular dust scattering properties (∼0.53–
0.54 for these models of optically thick clouds). The influence of

the different grain distributions in the attenuation of FUV radi-
ation is obvious, the FUV penetration depth is larger when dust
scattering is more efficient, i.e., when grain albedo and scattering
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anisotropy increase (as dust grains grow toward bigger grains).
Note that the only difference between models is the change of
grain size distributions across the cloud. Therefore, the assump-
tion of uniform dust properties and averaged extinction curves
can be one of the crudest approximations made to determine
the resulting cloud physical and chemical state. Figure 9 shows
the impact of the different grain growth curves on the result-
ing cloud structure: kinetic temperature, H2 photodissociation
rate, C photoionization rate and CO photodissociation rates (left
column), H/H2 transition, and C+/C/CO abundances (right col-
umn). The different intensities of the FUV radiation field for
each dust population result in very different photoionization and
photodissociation rates which ultimately determine the prevail-
ing chemistry. This conclusion qualitatively agrees with earlier
calculations for ISM diffuse clouds (Roberge et al. 1981) and
should be extended to more embedded objects where there are
observational evidences (e.g. Moore et al. 2005) of flatter ex-
tinction curves (consistent with grain growth). The H/H2 and
C+/C layered structures in our models are different even in sim-
ilar sources (same density and illumination) if grain properties
significantly disagree, or if dust grains vary along the observed
region. Different ionization fractions, molecular ions enhance-
ments, and C+/C/CO abundances should thus be observed. In
particular, photochemistry can still be important at large AV if
anisotropic scattering of the illuminating radiation is efficient
(e.g., “MRN to BGs” model). In this case, CO photodissoci-
ation and carbon ionization still dominate the CO destruction
and C+ formation respectively deeper inside the cloud. As a re-
sult, the predicted abundance of neutral and ionized carbon at
AV = 10 is enhanced compared to standard MRN dust models
(see Fig. 9).

Secondly, the intensity of the FUV radiation field also de-
termines much of the thermal structure of the cloud through the
efficiency of the grain photoelectric effect, the dominant heating
mechanism (e.g. Draine 1978). Since FUV radiation penetrates
deepest when dust grains are bigger, the photoelectric heating
rate is kept high deeper inside the cloud. Thus, a larger fraction
of the gas is maintained warm at large extinction depths. Warmer
temperatures also affect the rates of chemical reactions with ac-
tivation energy barriers. For the smallest dust grains, FUV at-
tenuation is so high that photoelectric heating soon becomes in-
efficient and the gas is colder at large extinctions depths. Note
that since grain ionization is very large in the surface of the
cloud (due to the high illumination in the selected example), the
maximum efficiency of the photoelectric effect, i.e. the maxi-
mum temperature, is reached deeper inside the cloud where the
grain ionization has decreased. The general effects described
here must play a significant role in illuminated sources where
grain growth takes place, specially in protoplanetary disks, cir-
cumstellar envelopes around evolved stars and dense molecu-
lar clouds near H ii regions. In these cases, the FUV penetration
depth is increased if dust grains evolve toward bigger grains,
leading to larger photochemically active regions.

Conversely, molecular species such as CO will be more
abundant in irradiated regions where the smallest grains dom-
inate the extinction efficiency. Figure 10 shows the effects of
grain growth in a diffuse cloud (AV = 1), with a density of nH =
103 cm−3, and illuminated by the mean ISRF. Although the re-
sulting variations are not so large compared to optically thick
clouds, the different photoionization and photodissociation rates
also translate into different atomic and molecular abundances.

In particular, the C+/C and C+/CO abundance ratios change
up to a factor ∼10 depending on the assumed grain properties.
Note that for optically thin clouds, the mean intensity at one

surface can have a significant contribution from the other side
illumination (that increases with the scattering efficiency). As
an example, the mean intensity at AV = 0 in the “MRN to BGs”
grain model (J(0)/χ � 0.63; red curves in Fig. 10) is a factor
∼20% larger than in the “VSGs to MRN” model (blue curves).
This effect slightly modifies the dissociation and ionization rates
at the cloud surface.

In summary, as gas photodissociation and heating deter-
mine much of the chemistry in FUV irradiated gas, the resulting
source structure is severely altered by the assumed (or observed)
grain properties. Therefore, understanding dust properties and
grain variations in individual sources is a crucial step to deter-
mine the source physical and chemical state.

6. Summary and conclusions

1. An extension of the spherical harmonics method to solve for
the radiative transfer equation with depth dependent coef-
ficients in plane-parallel geometry has been presented. The
method can be used to solve for the FUV radiation field
in externally or internally illuminated clouds, taking into
account gas absorption and coherent, nonconservative and
anisotropic scattering by dust grains. Our extended formula-
tion thus allows to consistently include (i) gas lines and (ii)
varying dust populations.

2. We have shown that the penetration of FUV radiation is
heavily influenced by dust properties. According to the dust
ISM and CSM life-cycle, such properties likely change from
source to source but also they change within the same object.
The FUV penetration depth rises for increasing dust albedo
and anisotropy of the scattered radiation when grains grow at
large AV (as suggested observationally). Therefore, the mod-
eled physical and chemical state of illuminated molecular
clouds, protoplanetary disks or entire galaxies can be altered
by large factors if a more realistic treatment of the interaction
between radiation and matter is considered.

3. The new formulation has been implemented in the Meudon
PDR code and thus it will be publicly available. Particular
examples where only the dust populations are changed show
intensities of the FUV radiation field that differ by orders
of magnitude at large AV. Therefore, the resulting photo-
chemical and thermal structures of molecular clouds can be
very different depending on the assumed grain properties and
growth.
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Appendix A: Inclusion of embedded sources
of emission (S∗ � 0)

In this appendix we give the recipe to include the true emission
by “embedded sources of photons” in the method described in
Sect. 3. In this case the source function includes the scattering
of photons by dust grains plus a non null S ∗λ =

jλ
αλ+σλ

term (see
Eq. (3) and Fig. 1), where jλ(s) is the emission coefficient (line
or continuum) of any source of internal radiation.

Firstly, the angular dependence of S ∗(τ, µ) has to be also ex-
panded in a truncated series of Legendre polynomials Pl(µ) as:

S ∗(τ, µ) =
L∑

l=0

(2l + 1) sl(τ) Pl(µ) (A.1)

where the dependence with λ is omitted. The inclusion of
Eqs. (A.1) into the transfer Eq. (3) leads to an additional term
in the set of coupled, linear, first order differential equations in
the unknown fl(τ) coefficients:

l f ′l−1(τ) + (l + 1) f ′l+1(τ) = (2l + 1) [1 − ω(τ)σl(τ)] fl(τ)

−(2l + 1) sl(τ). (A.2)

Therefore, the system of Eqs. (A.2) is now non-homogeneous
and can be written as:

f′(τ) = A−1(τ) f(τ) + A−1(τ) g(τ) (A.3)

where gl(τ) = −sl(τ)/(1 −ω(τ)σl(τ)). Although the method can
be easily used for anisotropic source functions, in most practical
applications, the embedded sources of photons emit isotropically
and therefore the terms in the expansion of S ∗(τ) in Eq. (A.1)
reduce to sl(τ) = S ∗(τ) δl0, and thus, gl(τ) reduces to g0(τ) =
−S ∗(τ)/(1 − ω(τ)) with gl(τ) = 0 if l � 0. Using the same set of
auxiliary variables y(τ) = R−1(τ) f(τ), Eq. (16) is now written as:

y′ = K y − R−1 R′ y +K R−1 g. (A.4)

Note that by inserting RR−1 between A−1 and g, we have sim-
plified R−1 A−1 g as K R−1 g. This result is particularly useful5,
since it avoids computing A−1 completely. Hence, the last matrix
product, Q̃ = K R−1 g, makes the system non-homogeneous:

y′m = km(τ) ym + [L y]m(τ) + q̃m(τ). (A.5)

Equation (A.5) can also be solved with the iterative scheme
described in Sect. 3 by including the additional q̃m term, i.e.,

y(n+1)
m (τ) = e

∫ τ
τm

km(t) dt
[
C(n+1)

m

+

∫ τ

τm

e−
∫ t

τm
km(t′) dt′ (

[L y(n)]m(t) + q̃m(t)
)

dt

]
. (A.6)

It is straightforward to show that the fl(τ) terms in the Legendre
expansion of the radiation field I(τ, µ) are still given by Eq. (29).
The only change compared to the S ∗ = 0 case is that the
qm(τ) variables in the D−m(τ) and D+m(τ) integrals (Eqs. (25)
and (26)) have to be substituted by qm(τ) − q̃m(τ), that is:

D−m(τ) =
∫ τ

0

E−m(τ)
E−m(t)

(qm(t) − q̃m(t)) dt (m < 0) (A.7)

D+m(τ) =
∫ τmax

τ

E+m(τ)
E+m(t)

(qm(t) − q̃m(t)) dt (m > 0). (A.8)

5 This is true whatever the isotropy properties of the source function
are, and not only for the isotropic case.

The iterative procedure can now be initiated taking into account
that at large optical depths the intensity of the radiation field is
isotropic and tends to the ratio of the true emission to the true
absorption:

I(τ→ ∞) � S ∗(τ)
1 − ω(τ)

δl0. (A.9)

In practice, the assumption τ → ∞ may be too crude. We have
computed that by adding the effect of the external radiation that
penetrates deepest into the cloud, the iterative scheme is more
robust. Therefore, the first set of ym(τ) variables in the iterative
procedure, y0

m(τ), are computed from the linear system:

+M∑
m=−M

Rlm(τ) y0
m(τ) = f approx

l (τ)

=
s0(τ)

1 − ω(τ)
+

1
2

I(0,−1) exp[−k1(τ) τ]

+
1
2

I(τmax, 1) exp[k−1(τ)(τmax − τ)] (A.10)

where only the l = 0 terms are considered.
We have successfully applied the above method by associat-

ing S ∗ to thermal emission of dust. These kind of computations
are useful if the radiative transfer calculation is extended to the
IR domain (λ > 1 µm), where scattering of IR photons by dust
grains is still significative. In the FUV domain, S ∗ can represent
any source of internal illumination. In a future paper we plan to
include “secondary” line photons in the embedded source func-
tion. This line FUV radiation field arises from the H2 radiative
de-excitations that follow the H2 excitation by collisions with
electrons and cosmic rays (Prasad & Tarafdar 1983) and is gen-
erally poorly treated. However, it constributes to molecular pho-
todissociation deep inside molecular clouds where the contin-
uum FUV radiation field has been attenuated.

Appendix B: Numerical solution and error limits

In Sect. 3.2.1 we turn the system of differential Eqs. (17) into and
integral problem (Eqs. (18)) that we solve numerically through
an iterative scheme (Eqs. (20)). In this appendix we provide
a bound on the error associated with this procedure and we
verify that the derived solution satisfies the original system of
Eqs. (10).

Given a numerical approximation y(n)
m to the true solution ym,

we investigate if our iterative proccess converges for all λ and AV
of the wavelength and cloud depth grids. Thus, we compute:

y(n+1)
m (τ) = eam(τ)

[
C(n+1)

m +

∫ τ

τm

e−am(t) [L y(n)]m(t) dt

]

with
[
Ly(n)

]
m

(t) =
+M∑

i=−M

Lmi(t) y
(n)
i (t) (B.1)

and write the error in step n+1 as ∆(n+1)
m = ym−y(n+1)

m where m =
±1, ...,±M. Note that this is the difference between the true ym
(unknown) and our numerical approximation at step n+ 1. Since
the above equations are linear, ∆(n+1)

m reduces to:

∆(n+1)
m (τ) � eam(τ)

+M∑
i=−M

(∫ τ

τm

e−am(t) Lmi(t)∆
(n)
i (t) dt

)
(B.2)

because the boundary conditions term (Cm −C(n+1)
m ) is small and

damped almost everywhere by the exponential term (as shown
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Fig. B.1. Comparison of f and A f′ for l = 0 and λ = 914.26 Å. The
abscissa corresponds to τv for the upper scale and to τline for the lower
scale.

numerically). If we now define ∆(n),MAX
i = maxt |∆(n)

i (t)|, the
maximum error at iteration step n in the Legendre expansion of
order i (i = 0, 1, ..., L) at any depth position, then:

∆(n+1),MAX
m <

+M∑
i=−M

∆
(n),MAX
i

(∫ τ

τm

e[am(τ)−am(t)] Lmi(t) dt

)
. (B.3)

By taking the maximum error at iteration step n at any depth
position and at any Legendre order, ∆(n),MAX = maxm ∆

(n),MAX
m ,

we arrive to a severe upper limit to the error between the true
solution and the numerical approximation at step n + 1:

∆(n+1),MAX < ∆(n),MAX
+M∑

i=−M

(∫ τ

τm

e[am(τ)−am(t)] Lmi(t) dt

)

= ∆(n),MAX · A. (B.4)

Therefore, convergence is guaranteed if A < 1 as ∆(n+1),MAX <
∆(1),MAXAn. Obviously convergence occurs also for less restric-
tive conditions but this is harder to constrain. In our computa-
tions we find A < 1 for almost all wavelengths and depth po-
sitions. Only at some specific locations in the (AλV) grid (those
associated with some line wings), A can take values <10.
However, a close look at successive variations of ∆(n+1)

m − ∆(n)
m

at those locations shows that ∆(n+1)
m −∆(n)

m is effectively null after
a few iterations.

A final test to validate our numerical solution is to compute
the numerical derivative of our solution and compare f with A f′
(see Eq. (10)). Although grain properties are kept uniform, in-
clusion of gas absorption makes R′(τ) � 0 and thus L′(τ) � 0
in Eq. (17). Figure B.1 shows a typical example for a test cloud
with AV = 1 and nH = 300 cm−3, illuminated by the standard
radiation field on both sides. In particular, we compare the fl
(l = 0) component of f with A f′ at λ = 914.26 Å, a H2 line
wing with a total optical depth of 80. Hence, variations of phys-
ical conditions along the cloud are large. It can be seen that
the agreement is excellent. In a continuum “free of lines” wave-
length range, agreement is perfect, and there is nothing to show.
Hence, the derived numerical solution is a very good approxi-
mated solution to the radiative transfer problem.

Appendix C: Eigenvalues and eigenvectors
of A−1(τ)

We describe here our method to compute the eigenvalues
and eigenvectors of the A−1(τ) matrix (see Eq. (13)). Note
that A(τ) and A−1(τ) have the same eigenvectors, but k−1

m (τ) and
km(τ) eigenvalues respectively.

A first trick is to turn this diagonalization problem to a sym-
metric problem. Let us call Rm(τ) an eigenvector of A(τ) with
Rlm(τ) components and k−1

m (τ) eigenvalues. Thus, R(τ) is the ma-
trix formed by the Rm(τ) eigenvectors and we can write:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h−1
0 . . . .

h−1
1 0 2h−1

1 . . .

. 2h−1
2 0

. . . . .

. . 3h−1
3

. . . (L − 1)h−1
L−2 .

. . .
. . . 0 Lh−1

L−1
. . . . Lh−1

L 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0m

R1m
R2m
...

RL−1,m
RLm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

k−1
m (τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0m
R1m

R2m
...

RL−1,m
RLm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with hl(τ) = (2l + 1) (1 − ω(τ)σl(τ)). If we now define G(τ) as
diagonal matrix with gll(τ) = h1/2

l (τ), left-multiplication of the
previous equation by G(τ) and insertion of the identity matrix
I = G−1(τ) G(τ) between A(τ) and R(τ) gives6:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
h0h1

. . . .
1√
h0h1

0 2√
h1h2
. . .

. 2√
h1h2

0
. . . . .

. . 3√
h2h3

. . . L−1√
hL−2hL−1

.

. . .
. . . 0 L√

hL−1hL

. . . . L√
hL−1hL

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1/2
0 R0m

h1/2
1 R1m

h1/2
2 R2m
...

h1/2
L−1RL−1,m

h1/2
L RLm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

k−1
m (τ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1/2
0 R0m

h1/2
1 R1m

h1/2
2 R2m
...

h1/2
L−1RL−1,m

h1/2
L RLm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.1)

This new symmetric matrix is called Ã(τ), and R̃(τ) is the ma-
trix of its eigenvectors. The Ã(τ) matrix has the same eigen-
values k−1

m (τ) as A(τ), although the eigenvectors R(τ) and R̃(τ)
are different but related by R̃(τ) = G(τ) R(τ). These symmetric
matrixes are easier to diagonalize numerically. Eigenvectors are
computed by the recurrence relation:

R0m(τ) = 1

R1m(τ) = (1 − ω(τ))/km(τ)

6 Left-multiplication by a diagonal matrix multiplies rows by a con-
stant, and right multiplication multiplies columns.
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Rlm(τ)=
1

lkm(τ)
[
hl−1(τ) Rl−1,m(τ)−(l − 1) km(τ) Rl−2,m(τ)

]
(C.2)

where, compared to Roberge (1983), ω(τ) is a τ-dependent
effective albedo including line absorption.

Appendix D: Inverse and derivative of R(τ)

Here we show how R−1(τ) is computed. Unfortunately, A(τ) is
not a symmetric matrix, so that R−1(τ) � RT (τ). However, we
can apply the same method as above to turn R−1(τ) into R̃T (τ).
Since Ã(τ) is symmetric, the matrix formed with its eigenvectors
is orthogonal. Thus, using the same notations, we have:

R̃T (τ) R̃(τ) = J(τ) = (G(τ) R(τ))T G(τ) R(τ) (D.1)

where J(τ) is a diagonal matrix with Jll(τ) =
∥∥∥R̃l(τ)

∥∥∥2
elements.

Hence:

R−1(τ) = J−1(τ) RT (τ) G2(τ). (D.2)

The inclusion of the depth dependence in the spherical harmon-
ics method unfortunately forces to calculate the derivative of
R(τ) with respect to τ. Ideally, we could start to derivate the
Rlm(τ) recurrence relations shown in Eq. (C.2) to get:

R′0m = 0

R′1m = −
ω′km + (1 − ω)k′m

k2
m

R′lm = −
k′m
lk2

m

[
hl−1Rl−1,m − (l − 1)kmRl−2,m

]
+

1
lkm

[
h′l−1Rl−1,m + hl−1R′l−1,m

−(l − 1)
(
k′mRl−2,m + kmR′l−2,m

)]
(D.3)

with

h′l(τ) = −(2l + 1) [ω′(τ)σl(τ) + ω(τ)σ′l(τ)]. (D.4)

Unfortunately, ω′, σ′l and k′m have to be computed also numer-
ically, which is quite unstable in the most external cloud posi-
tions due to the large variations of τλ at line wing wavelengths
(where the line opacity becomes comparable to the dust opacity)
compared to deeper inside the cloud where τλ at the same wave-
length becomes saturated (the dust opacity becomes insignifi-
cant respect to the line opacity). Besides, a symmetric difference
scheme does not provide satisfactory results because ωn+1−ωn−1

τn+1−τn−1

only gives an approximation to ω′ at τ = τn−1+τn+1
2 which, in gen-

eral, is not τn. We solved this problem by derivating directly the
computed values of R(τ). To avoid irregular steps in τ, a sec-
ond order polynomial was fit to Rlm(τi−2), Rlm(τi) and Rlm(τi+2),
and the value of its analytical derivative was then used. The re-
sulting derivative R′(τ) is smooth enough to be applied in the
numerical computation.

Appendix E: Mean radiation field intensity

In Sect. 3.4 we deduced the simple form that the mean inten-
sity takes in the spherical harmonics method, i.e. J(τ) = f0(τ).
However, in some cases of astrophysical interest (e.g. a two sides
asymmetrically illuminated cloud) one needs to distinguish the
fraction of radiation field coming from each side of the cloud. In

this case, two half sums have to be computed. Here we give the
analytical expressions that we use to compute J±(τ). For radia-
tion coming from the τ = 0 side we have:

J−(τ)=
1
2

∫ 0

−1
I(τ, µ) dµ=

1
2

∑
l

(2l + 1) fl(τ)
∫ 0

−1
Pl(µ) dµ. (E.1)

And for radiation coming from the τ = τmax side we have:

J+(τ)=
1
2

∫ +1

0
I(τ, µ) dµ=

1
2

∑
l

(2l+1) fl(τ)
∫ +1

0
Pl(µ) dµ. (E.2)

If we define Ql =
∫ +1

0
Pl(µ) dµ, with:

Ql =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 l = 0
0 l even and > 0
Pl−1(0)

l+1 l odd
(E.3)

parity gives
∫ 0

−1
Pl(µ) dµ = (−1)lQl = −Ql (using Ql = 0 for

l even). Inserting Eq. (29) in Eqs. (E.1) and (E.2) we get:

J−(τ) =
1
2

−1∑
m=−M

(
Cm E−m(τ) − D−m(τ)

) ⎛⎜⎜⎜⎜⎜⎝1 − L∑
l=1

(2l + 1)Ql Rlm(τ)

⎞⎟⎟⎟⎟⎟⎠
+

1
2

M∑
m=1

(
Cm E+m(τ) + D+m(τ)

) ⎛⎜⎜⎜⎜⎜⎝1 −
L∑

l=1

(2l + 1)Ql Rlm(τ)

⎞⎟⎟⎟⎟⎟⎠ (E.4)

J+(τ) =
1
2

−1∑
m=−M

(
Cm E−m(τ) − D−m(τ)

) ⎛⎜⎜⎜⎜⎜⎝1 + L∑
l=1

(2l + 1)Ql Rl,m(τ)

⎞⎟⎟⎟⎟⎟⎠
+

1
2

M∑
m=1

(
Cm E+m(τ) + D+m(τ)

) ⎛⎜⎜⎜⎜⎜⎝1 +
L∑

l=1

(2l + 1)Ql Rlm(τ)

⎞⎟⎟⎟⎟⎟⎠ . (E.5)

Taking into account the fact that Ql = 0 if l is even, and Rl,−m =
−Rlm if l is odd, we now define (for m > 0)

Sm(τ) =
∑
l odd

(2l + 1)Ql Rl,m(τ) (E.6)

to write:

J−(τ) =
1
2

−1∑
m=−M

(
Cm E−m(τ) − D−m(τ)

)
(1 + Sm(τ))

+
1
2

M∑
m=1

(
Cm E+m(τ) + D+m(τ)

)
(1 − Sm(τ)) (E.7)

J+(τ) =
1
2

−1∑
m=−M

(
Cm E−m(τ) − D−m(τ)

)
(1 − Sm(τ))

+
1
2

M∑
m=1

(
Cm E+m(τ) + D+m(τ)

)
(1 + Sm(τ)). (E.8)

Therefore, the fraction of the mean intensity coming from each
side of the cloud can be easily determined at each depth. The
resulting J±(τ) values can then be used to evaluate the escape
probably of any FUV photon emitted within the cloud.


