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Equilibria of binary neutron stars in close circular orbits are computed numerically in a waveless
formulation: the full Einstein-relativistic-Euler system is solved on an initial hypersurface to obtain an
asymptotically flat form of the 4-metric and an extrinsic curvature whose time derivative vanishes in a
comoving frame. Two independent numerical codes are developed, and solution sequences that model
inspiraling binary neutron stars during the final several orbits are successfully computed. The binding
energy of the system near its final orbit deviates from earlier results of third post-Newtonian and of
spatially conformally flat calculations. The new solutions may serve as initial data for merger simulations
and as members of quasiequilibrium sequences to generate gravitational-wave templates, and may
improve estimates of the gravitational-wave cutoff frequency set by the last inspiral orbit.
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Introduction.—Equilibria of close binary neutron stars
in circular orbits, constructed numerically, have been
studied as a model of the final several orbits of binary
inspiral prior to merger (see [1] for a review). These
numerical solutions have been used as initial data sets for
merger simulations [2], in quasiequilibrium sequences, to
estimate gravitational waveforms [3,4], and to determine
the cutoff frequency of the inspiral waves [5].

To maintain equilibrium circular orbits in general rela-
tivity one must introduce an approximation that eliminates
the backreaction of gravitational radiation. An ansatz of
this kind is the waveless approximation proposed by
Isenberg [6]. One of his proposals was to choose a con-
formally flat spatial geometry maximally embedded in a
spacetime. As a result, the gravitational field is no longer
dynamical; field equations for the metric components be-
come elliptic equations. Wilson and Mathews later redis-
covered this waveless approximation and applied it to
numerical computations of binary inspirals [7].

Although the Isenberg-Wilson-Mathews (IWM) formu-
lation has been widely used for modeling binary neutron
star and binary black hole inspiral in the past decade [5,7–
12], the error associated with its conformally flat 3-
geometry was studied only for stationary axisymmetric
systems [13]. In models of binary neutron stars, the esti-
mated error in the orbital angular velocity, �, is several
percent [3,14], implying a comparable deviation from
circular orbits [15]. New waveless formulations, incorpo-
rating a generic form of the metric, are suitable for accurate
computation of binary compact objects [16,17]. In this
Letter, we present the first results of numerical computa-
tions for binary neutron stars modeled in one of these
formulations [17].

Formulation of the waveless spacetime.—The new for-
mulation [17] exactly solves the Einstein-Euler system
written in 3� 1 form on a spacelike hypersurface. We

follow notation [18] used in [17]. The spacetime M �
R� � is foliated by the family of spacelike hypersurfaces,
�t � ftg � �. The future-pointing normal n� to �t is
related to the timelike vector t� (the tangent @t to curves
t! �t; x�, x 2 �) by t� � �n� � ��, where � is the
lapse, and where the shift �� satisfies ��n� � 0. A spatial
metric �ab�t� defined on �t is equal to the projection tensor
��� � g�� � n�n� restricted to �t. In terms of a confor-
mal factor  and a conformally rescaled spatial metric
~�ab �  �4�ab, the metric g�� takes the form ds2 �

��2dt2 �  4 ~�ij�dx
i � �idt��dxj � �jdt�, in a chart

ft; xig. A condition to specify the conformal decomposition
is det~�ab � detfab, where fab is a flat metric.

In our waveless formulation, we impose, as coordinate
conditions, maximal slicing (K � 0) and the spatially

transverse condition D
o

b ~�ab � 0 (the Dirac gauge

[17,19] ), where D
o

b is the covariant derivative with respect
to the flat metric. We then restrict time-derivative terms in
this gauge to guarantee that all components of the field
equation are elliptic equations, and hence that all metric
components, including the spatial metric, have Coulomb-
type falloff [17]. While it is found to be sufficient to impose
the condition @t ~�ab � O�r�3� to have Coulomb-type fall-
off in the asymptotics, we impose a stronger condition:
@t ~�ab � 0. For the other quantities, we impose helical
symmetry: spacetime and fluid variables are dragged along
by the helical vector k� � t� ����. For example, the
time derivative of extrinsic curvature Kab is expressed as
@tKab � �L��Kab. The resulting field equations are
solved on a slice �0. The Hamiltonian constraint, momen-
tum constraint, spatial trace, and spatial trace-free part of
the Einstein equation are, respectively, regarded as elliptic
equations for  , �a, �, and hab :� ~�ab � fab, while the
extrinsic curvature, Kab, for this formulation is computed
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from the metric components, Kab �
1

2�L��ab �
1

3��abDc���
c�.

To compute the motion of binary neutron stars in circu-
lar orbits, the flow field is assumed to be stationary in the
rotating frame. Since any solution to the waveless formu-
lation satisfies all constraint equations, it is, in particular,
an initial data set for the Einstein-Euler system. When one
evolves such a binary neutron star solution by integrating
the Einstein-Euler system, the orbits will deviate from
exact circularity because of the radiation-reaction force.
Instead, one can construct an artificial spacetime with
circular orbits by dragging the waveless solution on �0

along the vector k� � t� ����, so that the spacetime has
helical symmetry. Although the spacetime so constructed
will not exactly satisfy Einstein’s equation, a family of
such spacetimes, associated with circular orbits of decreas-
ing separation, will model the inspiral of a binary neutron
star system during its final several orbits. Explicit forms of
all equations for the fields and the matter are found in
[17,19].

Numerical methods.—We have developed two indepen-
dent numerical schemes to compute binary neutron star
solutions. One is based on a finite difference method [10],
the other one on a spectral method implemented via the
C�� library, LORENE [20]. Detailed convergence tests and
calibration of each method will be published separately. In
this Letter, we show quantitative agreement of the two
methods for hab, which is the significant and reliable
calibration for the new numerical solutions.

In both methods, equations are written in Cartesian
coordinate components, and they are solved numerically
on spherical coordinate grids, r, �, and �. In the finite
difference method, an equally spaced grid is used from the
center of orbital motion to 5R0, where there are nr � 16,
24, and 32 grid points per R0; from 5R0 to 104R0 a
logarithmically spaced grid has 60, 90, and 120 points
(depending on the resolution). Here R0 is the geometric
radius of a neutron star along a line passing through the
center of orbit to the center of a star. Accordingly, for � and
� there are 32, 48, and 64 grid points each from 0 to �=2
[10]. For the spectral method, eight domains (a nucleus, six
shells and a compactified domain extending up to infinity)
around each star are used. In each domain, the number of
collocation points is chosen to be Nr � N� � N� � 25�
17� 16 and 33� 21� 20 [9].

Numerical solutions for binary neutron stars.—A model
of the evolutionary path of binary inspiral is given by a
sequence of equilibria along which the neutron star matter
is assumed to be isentropic; and the implied fluid flow is
assumed to conserve the baryon number, entropy, and
vorticity of each fluid element [1,21]. In the case where
the spins of component stars are negligible, the flow be-
comes irrotational; one can introduce the velocity potential
� by hu� � r��, where h is the specific enthalpy and u�

is the fluid 4-velocity. For isentropic flow, one can assume a
one-parameter equation of state, p � p���, with � the

baryon mass density. The matter is then described by two
independent variables, a thermodynamic variable such as
p=�, and the velocity potential �. In this Letter, we
assume a polytropic equation of state p � ��� with adia-
batic index � � 2, and we display results for equal-mass
binaries with the rest mass of each star to be that of a single
spherical star of compactness �M=R�1 � 0:17. (Note: the
maximum compactness of a spherical star for this equation
of state is �M=R�1 � 0:216. The compactness �M=R�1 is
defined as the ratio of graviational mass to circumferential
radius of an isolated spherical star with the same rest
mass.)

In Fig. 1, contours of the components hij computed by
the two numerical codes are shown for selected solutions.
In these solutions, the separation in coordinate distance
between the coordinate center of each neutron star is set to
a=R0 � 3:5. From these contours, one can verify qualita-
tive agreement of the results from the two independent
numerical methods. In Fig. 2, components hij along the x
axis are plotted for the same solution, where the x axis
passes through the centers of the neutron stars. Precision of
integral quantities characterizing the solutions is shown by
the finite difference (spectral) method comparisons:
�M1 � 0:03565 (0.03565), MADM=M1 � 0:98825
(0.98826), and J=M2

1 � 0:9212 (0.9165).
In [17], it is shown that the ADM mass, MADM, and the

asymptotic Komar mass, MK, are equal, MADM � MK,
under asymptotic conditions satisfied by the solutions in
the present formulation. The equality is related to a virial
relation for the equilibrium,

 

Z
xi��i r�T

�
�

�������
�g
p

d3x � 0; (1)

that we use to evaluate the accuracy of numerical solutions.
Figure 3 shows the computed value of the virial integral in
Eq. (1), normalized byMADM, along the sequence. We also
evaluated MADM and MK each defined by the surface
integral in the asymptotics, and confirmed that, for each
model, the difference of the two masses is no larger than
jMADM �MKj=MADM �0:01% for the finite difference

FIG. 1. Contours of �hxx � hyy�=2 in the xy plane, computed
by the finite difference code (left) and by the spectral code
(right). The binary separation a is given by a=R0 � 3:5.
Contours extend from �0:014 to �0:002 with step 0.001.
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method and�0:001% for the spectral method; these errors
are consistent with the numerical errors of the virial rela-
tion shown in Fig. 3.

In Fig. 4, the binding energy Eb � MADM �M1 along
the sequence is plotted and compared with that resulting
from a third post-Newtonian (3PN) calculation [22] and
IWM formulation. The waveless sequence fits the 3PN
curve well at larger separation, and reaches a configuration
with a cusp without any turning point in the binding energy
curve, in agreement with results of the IWM formulation
[9,10] (the spectral code does not yet converge for the
closest orbits—largest �M1—of Figs. 3 and 4, because
it is more sensitive to tidal deformation: higher multipoles
in the density of each star lead to a divergent iteration). The
binding energy Eb of the waveless sequences clearly de-
viates from that of the 3PN and IWM sequences at the

larger values of �M1. This suggests that the 3PN and
IWM formulations each overestimate the binding en-
ergy—in the 3PN case, by neglecting the tidal deforma-
tion, in the IWM formulation by neglecting the
contribution from hab.

Finally, to estimate the deviation of the orbit from
circularity, we evaluate the formal expression for the ex-
trinsic curvature of a solution with exact helical symmetry
(the case for which the time-evolved data have an exactly
circular orbit), K̂ab �

1
2�L�����ab. Because LkK̂ab van-

ishes for exact helical symmetry, its norm, defined on the
support V of the fluid,

 jjLkK̂abjj :�
�Z

V
�ac�bdLkK̂abLkK̂cd

����
�
p

d3x
�

1=2
; (2)

is a measure of the deviation from circularity.
Figure 5 shows that, for all separations, the values of

jjLkK̂abjj for the waveless solutions are more than an order
of magnitude smaller than those of IWM solutions. The
result supports the expectation that IWM data enforce
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FIG. 3 (color online). Virial error vs angular velocity �,
normalized by M1, twice the gravitational mass of an isolated
neutron star. Each curve labeled FD shows results of a finite
difference code with a given resolution. Curves labeled SP and
IWM show results of the spectral code and the spatially con-
formally flat approximation, respectively.
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FIG. 4 (color online). Binding energy Eb :� MADM �M1
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quence. Curves are labeled as in Fig. 3. The thin solid curve
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circularity with significantly less accuracy than the corre-
sponding waveless solutions, even for larger separation.
This may be important: even for a sudden turn-on of ra-
diation reaction a post-Newtonian analysis [15] shows ec-
centricity <1:5% at �M< 0:03 for initially circular or-
bits, and the gravitational radiation reaction should be
more gradual for our waveless data sets.

Discussion.—In second post-Newtonian theory (e.g.,
[14] ), the correction �Eb to the binding energy due to
the contribution of hab is of order M1habvavb, where the
magnitude of orbital velocity, va, may be typically v �
0:34��M1=0:04�1=3. Since hab is O�v4�, �Eb=M1 �
O�v6� � 10�3 for �M1 � 0:04. This agrees with the dif-
ference between the binding energies calculated by the
IWM and waveless formulations in Fig. 4.

The quantity dEb=d� is important for the data analysis
of gravitational waves, because it determines the evolution
of the wave’s phase, �GW � 2

R
��t�dt. In adiabatic evo-

lution, the time dependence of angular velocity ��t� is
calculated from d�=dt � j�dE=dt�GWj=�dEb=d��, where
�dE=dt�GW is the luminosity of gravitational waves. Our
present result shows that the derivative dEb=d� of wave-
less sequences is �10%–15% larger than those of IWM
and 3PN curves for �M1 * 0:035. Since �2 orbits are
maintained from �M1 � 0:035 to merger for the case
with �M=R�1 � 0:17 [3], the error in the IWM and 3PN
values of �GW would accumulate to �50% over the last
�2 orbits. The phase error leads to error during the final
orbits before merger of the computed frequency, whose
final behavior constrains the equation of state of nuclear
matter [5,23]. Waveless solutions may determine phase and
frequency with significantly greater accuracy—particu-
larly if, to overcome radial-motion error, one first calibra-
tes the frequencies of a set of quasiequililbrium sequences,
using (for example) time evolutions.

Phase error may be much larger for the final orbits of
binary black hole and black hole-neutron star inspirals. In
these cases, �M1 in the last orbit may reach or exceed 0.1
(e.g., [11,22] ). Since �Eb is of order O�v6�, the phase
error is likely to be of order unity for �M1 * 0:1.
Therefore, a template constructed from the IWM formula-
tion may cause a systematic error in the data analysis. Our
waveless approximation may improve binary black hole
and black hole-neutron star solutions for this purpose.
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[17] M. Shibata, K. Uryū, and J. L. Friedman, Phys. Rev. D 70,
044044 (2004); 70, 129901(E) (2004).

[18] Indices a� d and �� 
 are abstract, i, j concrete.
[19] S. Bonazzola, E. Gourgoulhon, P. Grandclément, and

J. Novak, Phys. Rev. D 70, 104007 (2004).
[20] http://www.lorene.obspm.fr.
[21] C. S. Kochanek, Astrophys. J. 398, 234 (1992); L. Bildsten

and C. Cutler, Astrophys. J. 400, 175 (1992).
[22] L. Blanchet, Phys. Rev. D 65, 124009 (2002).
[23] X. Zhuge, J. M. Centrella, and S. L. W. McMillan, Phys.

Rev. D 50, 6247 (1994).

PRL 97, 171101 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 OCTOBER 2006

171101-4


