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Time transfer and frequency shift to the order 1Õc4 in the field of an axisymmetric rotating body
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Within the weak-field, post-Newtonian approximation of the metric theories of gravity, we determine the
one-way time transfer up to the order 1/c4, the unperturbed term being of order 1/c, and the frequency shift up
to the order 1/c4. We adapt the method of the world function developed by Synge to the Nordvedt-Will
parametrized post-Newtonian~PPN! formalism. We get an integral expression for the world function up to the
order 1/c3 and we apply this result to the field of an isolated, axisymmetric rotating body. We give a new
procedure enabling us to calculate the influence of the mass and spin multipole moments of the body on the
time transfer and the frequency shift up to the order 1/c4. We obtain explicit formulas for the contributions of
the mass, of the quadrupole moment and of the intrinsic angular momentum. In the case where the only PPN
parameters different from zero areb and g, we deduce from these results the complete expression of the
frequency shift up to the order 1/c4. We briefly discuss the influence of the quadrupole moment and of the
rotation of the Earth on the frequency shifts in the ESA’s Atomic Clock Ensemble in Space mission.
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I. INTRODUCTION

Owing to recent progress in absolute frequency meas
ments of some optical transitions with a femtosecond lase
seems possible to achieve in the near future atomic clo
having a time-keeping accuracy of the order of 10218 in
fractional frequency@1#. Since a reduced gravity would sig
nificantly increase clock performances, it is envisaged to
stall such clocks on board artificial satellites and to comp
them with terrestrial clocks by exchange of electromagn
signals. Already, a spatial experiment such as the ES
Atomic Clock Ensemble in Space~ACES! mission @2,3# is
planned for 2006, the purpose being to obtain an accurac
order 10216 in fractional frequency.

At a level of uncertainty about 10218, a fully relativistic
treatment of time or frequency transfers must be perform
up to the order 1/c4 @23#. As far as we know, the correspond
ing calculations have not been carried out. For the time tra
fer, the main relativistic correction of order 1/c3 is the well-
known Shapiro time delay@4#. Other corrections due to th
quadrupole moment and to the intrinsic angular momen
have been studied by several authors@5#. Gravitational cor-
rections of order 1/c2 in the frequency transfers were the
retically determined and experimentally checked a long ti
ago@6#. These corrections are now commonplace in the G
bal Positioning System. The relativistic theory of the fr
quency transfers have been recently extended up to the t
of order 1/c3 @7#, justifying the results previously given in
@8# without any detail. However, it must be pointed out th
in @7#, some terms of order 1/c3 due to the quadrupole mo
ment J2 of the Earth are bounded without any explicit ca
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culation. Furthermore, the time or frequency transfers h
been calculated within the limited framework of general re
tivity, which prevents us from discussing new tests of gra
tational theories.

The present paper is a first step towards a general th
of the time and frequency transfers, including all the terms
order 1/c4, within the post-Newtonian~PN! approximation of
any metric theory of gravity. Using the Nordtvedt-Will pa
rametrized post-Newtonian~PPN! formalism @9#, we bring
the complete determination of these effects in the field of
isolated, axisymmetric rotating body, the gravitational fie
being assumed stationary. Of course, modelling a missio
the vicinity of the Earth at a level of accuracy about 10218

will require us to add the effects due to the tidal gravitation
field induced by the Sun and the Moon.

We assume that the photons ensuring the transfers fo
null geodesics. The problems that we have to tackle co
down to the following ones, relative to a couple of poin
xA5(ctA ,xA) andxB5(ctB ,xB) connected by a null geode
sic: ~i! to calculate the~coordinate! time transfertB2tA as a
function of (xA ,xB); ~ii ! to determine the vectors tangent
the null geodesic atxA andxB . Solving this second problem
is indeed indispensable to calculate the frequency shift
tweenxA andxB .

The method generally employed to study the questi
related to the propagation of light in a gravitational field
based on the solution of the null geodesic equations~see,
e.g., @5,10–13# for investigations in the linearized, weak
field limit of general relativity!. However, the theory of the
world function developed by Synge@14# presents the grea
advantage to spare the trouble of integrating the geod
equations. Once the world function is determined, it is p
sible to solve straightforwardly the two above-mention
problems. This method is particularly elegant for the statio
ary, axisymmetric field and we apply it in the present pap
©2002 The American Physical Society45-1
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We find a new procedure enabling us to determine the in
ence of the mass and spin multipole moments of the bo
Explicit calculations are given for the contributions of th
mass, of the quadrupole moment and of the intrinsic ang
momentum of the rotating body.

The paper is organized as follows. In Sec. II the relev
properties of the world functionV(xA ,xB) are recalled and
the general expression of this function in the post-Newton
limit of any metric theory is given. The corresponding e
pression of the time transfertB2tA is derived up to the orde
1/c4. In Sec. III we determine the expression ofV(xA ,xB)
and oftB2tA within the ten-parameter PN formalism of No
dtvedt and Will. Then, in Sec. IV we focus our attention
the case of an isolated, axisymmetric rotating body. We sh
that it is possible to determine the contributions of the m
and spin multipole moments by straightforward different
tions of a single function. Retaining only the terms due to
massM, to the quadrupole momentJ2 and to the intrinsic
angular momentumS of the rotating body, we obtain explici
expressions for the time transfer up to the order 1/c4 and for
the tangent vectors atxA andxB up to the order 1/c3. In Sec.
V the frequency shift is developed up to the order 1/c4 in the
case whereb andg are the only nonvanishing PPN param
eters. We find detailed expressions for the contributions oJ2
andS and we discuss the possible influence of these term
the ACES mission. We give our conclusions in Sec. VI.

In this paperG is the Newtonian gravitational consta
and c is the speed of light in a vacuum. The Lorentzi
metric of space-time is denoted byg. The signature adopte
for g is (1222). We suppose that the space-time is co
ered by one global coordinate system (xm)5(x0,x), where
x05ct, t being a time coordinate, andx5(xi), the xi being
quasi-Cartesian coordinates. We assume that the curve
equationsxi5const are timelike, which means thatg00.0
anywhere. We employ the vector notationa in order to de-
note either (a1,a2,a3)5(ai) or (a1 ,a2 ,a3)5(ai). Consider-
ing two such quantitiesa andb with, for instance,a5(ai),
we usea•b to denoteaibi if b5(bi) or aibi if b5(bi) ~the
Einstein convention on the repeated indices is used!. The
quantity uau stands for the ordinary Euclidean norm ofa.

II. THE WORLD FUNCTION AND ITS POST-NEWTONIAN
LIMIT

A. Definition and fundamental properties

Consider two pointsxA and xB in a space-time with a
given metricgmn and assume thatxA and xB are connected
by a unique geodesic pathG. Throughout this paper,l de-
notes the unique affine parameter alongG which fulfills the
boundary conditionslA50 andlB51. The so-called world
function of space-time@14# is the two-point function
V(xA ,xB) defined by

V~xA ,xB!5
1

2E0

1

gmn„x
a~l!…

dxm

dl

dxn

dl
dl, ~1!

the integral being taken alongG. It is easily seen tha
V(xA ,xB)5«@sAB#2/2, wheresAB is the geodesic distanc
betweenxA and xB and «51,0,21 for timelike, null and
02404
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spacelike geodesics, respectively. It results from definit
~1! that the world functionV(xA ,xB) is unchanged if we
perform any admissible coordinate transformation.

The utility of the world function for our purpose come
from the following properties@14#.

~i! Two pointsxA andxB are linked by a light ray if and
only if the condition

V~xA ,xB!50 ~2!

is fulfilled. Thus, V(xA ,x)50 is the equation of the ligh
coneC(xA) at xA . This fundamental property shows that
V(xA ,xB) is known, it is possible to determine the trav
time tB2tA of a photon connecting two pointsxA andxB as
a function oftA , xA andxB . It must be pointed out, howeve
that solving the equationV(ctA ,xA ,ctB ,xB)50 for tB yields
two distinct solutionstB

1 and tB
2 since the timelike curvexi

5xB
i cuts the light coneC(xA) at two pointsxB

1 andxB
2 , xB

1

being in the future ofxB
2 . In the present paper we alway

regardxA as the point of emission of the photon andxB as
the point of reception, and we are concerned only with
determination oftB

12tA as a function oftA , xA andxB . We
put

tB
12tA5T ~ tA ,xA ,xB!, ~3!

and we callT (tA ,xA ,xB) the ~coordinate! time transfer func-
tion. Of course, it is also possible to introduce another ti
transfer function givingtB

12tA as a function of the instant o
receptiontB

1 and ofxA , xB , but we do not use it here.
~ii ! The vectors (dxa/dl)A and (dxa/dl)B tangent to the

geodesicG, respectively, atxA andxB are given by

S gab

dxb

dl D
A

52
]V

]xA
a

, S gab

dxb

dl D
B

5
]V

]xB
a

. ~4!

As a consequence, ifV(xA ,xB) is explicitly known, the de-
termination of these vectors does not require the integra
of the differential equations of the geodesic. Let us note t
it can be proved that the tangent vectors~4! are null when~2!
holds.

Consider now a stationary space-time. In this case, we
exclusively coordinates (xm) such that the metric does no
depend onx0. Then, the world function is a function ofxB

0

2xA
0 , xA and xB , and Eq.~3! reduces to a relation of the

form

tB
12tA5T ~xA ,xB!. ~5!

The time transfer functionT (xA ,xB) plays a central role in
the present paper because a comparaison between Eq~2!
and ~5! immediately shows that the vectors (l m)A and (l m)B
defined by their covariant components

~ l 0!A51, ~ l i !A5c
]

]xA
i
T ~xA ,xB!, ~6!

~ l 0!B51, ~ l i !B52c
]

]xB
i
T ~xA ,xB!, ~7!
5-2
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are tangent to the ray atxA andxB , respectively. It must be
pointed out that these tangent vectors correspond to an a
parameter such thatl 051 along the ray~note that such a
parameter does not coincide withl). Generally, extracting
the time transfer formula~5! from Eq. ~2!, and then using
Eqs.~6! and ~7!, will be more straightforward than derivin
the vectors tangent atxA andxB from Eq. ~4! and then im-
posing the constraint~2!. We shall use Eqs.~6! and ~7! in
Sec. IV.

To conclude, let us emphasize that the method of
world function works as long asV(xA ,xB) is a well-defined,
single-valued function ofxA andxB . This condition is satis-
fied in any region of space-time in which any pointsxA and
xB are connected by one and only one geodesic, a fea
which excludes the existence of conjugate points. This
quirement is certainly fulfilled in experiments performed
the solar system and more generally for observations of s
belonging to our Galaxy.

B. General expression of the world function
in the post-Newtonian limit

To begin, let us assume that the metric may be written

gmn5hmn1hmn ~8!

throughout space-time, withhmn5diag(1,21,21,21). Let
G (0) be the straight line defined by the parametric equati
xa5x(0)

a (l), with

x(0)
a ~l!5~xB

a2xA
a!l1xA

a , 0<l<1. ~9!

With this definition, the parametric equations of the geode
G connectingxA andxB may be written in the form

xa~l!5x(0)
a ~l!1Xa~l!, 0<l<1, ~10!

where the quantitiesXa(l) satisfy the boundary conditions

Xa~0!50, Xa~1!50. ~11!

Inserting Eq.~8! and dxm(l)/dl5xB
m2xA

m1dXm(l)/dl in
Eq. ~1!, then developing and noting that

E
0

1

hmn~xB
m2xA

m!
dXn

dl
dl50 ~12!

by virtue of Eq.~11!, we find the rigorous formula

V~xA ,xB!5V (0)~xA ,xB!

1
1

2
~xB

m2xA
m!„xB

n 2xA
n
…E

0

1

hmn~xa~l!!dl

1
1

2E0

1Fgmn„x
a~l!…

dXm

dl

dXn

dl

12~xB
m2xA

m!hmn„x
a~l!…

dXn

dl Gdl, ~13!
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where the integrals are taken overG andV (0)(xA ,xB) is the
world function in Minkowski space-time

V (0)~xA ,xB!5
1

2
hmn~xB

m2xA
m!~xB

n 2xA
n !. ~14!

Henceforth, we shall only consider weak gravitation
fields generated by self-gravitating extended bodies wit
the slow-motion, post-Newtonian approximation. So, we
sume that the potentialshmn may be expanded as follows:

h005
1

c2
h00

(2)1
1

c4
h00

(4)1O~6!,

h0i5
1

c3
h0i

(3)1O~5!, hi j 5
1

c2
hi j

(2)1O~4!.

~15!

From these expansions and from the Euler-Lagrange e
tions satisfied by any geodesicG, namely,

d

dl S gab

dxb

dl D5
1

2
]ahmn

dxm

dl

dxn

dl
, ~16!

it results that Xm(l)5O(2) and that dxm/dl5xB
m2xA

m

1O(2). As a consequence,hmn„x
a(l)…5hmn„x(0)

a (l)…
1O(4) and the third and fourth terms in the right-hand si
~rhs! of Eq. ~13! are of order 1/c4. These features result in a
expression forV(xA ,xB) as follows:

V~xA ,xB!5V (0)~xA ,xB!1V (PN)~xA ,xB!1O~4!,
~17!

where

V (PN)~xA ,xB!5
1

2c2
~xB

02xA
0 !2E

0

1

h00
(2)~x(0)

a ~l!!dl

1
1

2c2
~xB

i 2xA
i !~xB

j 2xA
j !

3E
0

1

hi j
(2)~x(0)

a ~l!!dl1
1

c3
~xB

02xA
0 !

3~xB
i 2xA

i !E
0

1

h0i
(3)~x(0)

a ~l!!dl, ~18!

the integrals being taken over the lineG (0) defined by Eq.
~9!.

The formulas~17! and ~18! yield the general expressio
of the world function up to the order 1/c3 within the frame-
work of the 1 PN approximation. We shall see in Sec. III
that this approximation is sufficient to determine the tim
transfer functionT (tA ,xA ,xB) up to the order 1/c4. It is wor-
thy of note that the method used above would as well lea
5-3
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the expression of the world function in the linearized wea
field limit previously found by Synge@14#.

We shall put henceforthRAB5xB2xA and RAB5uRABu.
Defining the quantitiesNm5(xB

m2xA
m)/RAB , Eqs. ~14! and

~18! might be easily rewritten with these notations.

C. Time transfer at the order 1Õc4

Suppose thatxB is the point of reception of a photo
emitted atxA . Taking Eq.~17! into account, Eq.~2! may be
written in the form

V (0)~xA ,xB!1V (PN)~xA ,xB!5O~4!,

which implies the relation

tB
12tA5

1

c
RAB2

V (PN)~ctA ,xA ,ctB
1 ,xB!

cRAB
1O~4!.

~19!

Using iteratively this relation, we find for the time transf
function

T ~ tA ,xA ,xB!5
1

c
RAB2

V (PN)~ctA ,xA ,ctA1RAB ,xB!

cRAB

1O~5!. ~20!

This formula shows that the time transferT (tA ,xA ,xB) can
be explicitly calculated up to the order 1/c4 when
V (PN)(xA ,xB) is known. This fundamental result will be ex
ploited in the following sections.

The quantity V (PN)(ctA ,xA ,ctA1RAB ,xB) in Eq. ~20!
may be written in an integral form using Eq.~18!, in which
RAB and RABl1ctA are substituted forxB

02xA
0 and for

x(0)
0 (l), respectively. Hence

T ~ tA ,xA ,xB!5
1

c
RABH 12

1

2c2E0

1Fh00
(2)
„za~l!…

1hi j
(2)
„za~l!…NiNj1

2

c
h0i

(3)
„za~l!…Ni GdlJ

1O~5!, ~21!

the integrals being taken over the line defined by the pa
metric equationsxa5za(l), where

z0~l!5RABl1ctA , zi~l!5RABNil1xA
i , 0<l<1.

~22!

It must be noted that the line defined by Eq.~22! is the null
geodesic of a Minkowski metric fromxA , the direction co-
sines of which areNi5(xB

i 2xA
i )/RAB .
02404
-
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III. WORLD FUNCTION AND TIME TRANSFER WITHIN
THE NORDTVEDT-WILL PPN FORMALISM

A. Metric in the 1 PN approximation

In this section we use the Nordtvedt-Will post-Newtoni
formalism involving ten parametersb, g, j, a1 , . . . ,z4 @9#.
We introduce slightly modified notations in order to b
closed of the formalism recently proposed by Klioner a
Soffel @16# as an extension of the post-Newtonian framewo
elaborated by Damour, Soffel and Xu@17# for general rela-
tivity. In particular, we denote byv r the velocity of the cen-
ter of mass O relative to the universe rest frame@24#.

Although our method is not confined to any particul
assumption on the matter, we suppose here that each so
of the field is described by the energy-momentum tensor
perfect fluid

Tmn5rc2F11
1

c2 S P1
p

r D Gumun2pgmn,

where r is the rest mass density,P is the specific energy
density~ratio of internal energy density to rest mass densit!,
p is the pressure andum is the unit 4-velocity of the fluid. In
this section and in the following one,v is the coordinate
velocity dx/dt of an element of the fluid. We introduce th
conserved mass densityr* given by

r* 5rA2gu05rF11
1

c2 S 1

2
v213gU D1O~4!G , ~23!

whereg5det(gmn) andU is the Newtonian-like potential

U~x0,x!5GE r* ~x0,x8!

ux2x8u
d3x8. ~24!

In order to obtain a more simple form than the usual o
for the potentialsh0i , we suppose that the chosen (xm) are
related to a standard post-Newtonian gauge (x̄m) by the
transformation

x05 x̄01
1

c3
@~112j1a22z1!] tx22a2v r•“x#,

xi5 x̄i , ~25!

wherex is the superpotential defined by

x~x0,x!5
1

2
GE r* ~x0,x8!ux2x8ud3x8. ~26!

Moreover, we definer̂ by
5-4
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r̂5r* F11
1

2
~2g1122j1a31z1!

v2

c2

1~122b1j1z2!
U

c2
1~11z3!

P

c2

1~3g22j13z4!
p

r* c2
2

1

2
~a12a3!

v r
2

c2

2
1

2
~a122a3!

v r•v

c2
1O~4!G . ~27!

Then, the post-Newtonian potentials read

h0052
2

c2
w1

2b

c4
w21

2j

c4
fW1

1

c4
~z122j!fv

2
2a2

c4
v r

i v r
j ] i j x1O~6!, ~28!

h[$h0i%5
2

c3 F S g111
1

4
a1Dw1

1

4
a1wv r G1O~5!,

~29!

hi j 52
2g

c2
wd i j 1O~4!, ~30!

where

w~x0,x!5GE r̂~x0,x8!

ux2x8u
d3x8

1
1

c2
@~112j1a22z1!] ttx22a2v r•“~] tx!#,

~31!

fW~x0,x!5G2E r* ~x0,x8!r* ~x0,x9!~x2x8!

ux2x8u3

3S x82x9

ux2x9u
2

x2x9

ux82x9u
D d3x8d3x9, ~32!

fv~x0,x!5GE r* ~x0,x8!@v~x0,x8!•~x2x8!#2

ux2x8u3
d3x8,

~33!

w~x0,x!5GE r* ~x0,x8!v~x0,x8!

ux2x8u
d3x8. ~34!
02404
B. Determination of the world function
and of the time transfer

For the post-Newtonian metric given by Eqs.~28!–~34!, it
follows from Eq. ~18! that V(xA ,xB) may be written up to
the order 1/c3 in the form given by Eq.~17! with

V (PN)~xA ,xB!5Vw
(PN)~xA ,xB!1Vw

(PN)~xA ,xB!

1Vvr

(PN)~xA ,xB!, ~35!

where

Vw
(PN)~xA ,xB!52

1

c2
@~xB

02xA
0 !21gRAB

2 #

3E
0

1

w„x(0)
a ~l!…dl, ~36!

Vw
(PN)~xA ,xB!5

2

c3 S g111
1

4
a1D ~xB

02xA
0 !

3RAB•E
0

1

w„x(0)
a ~l!…dl, ~37!

Vvr

(PN)~xA ,xB!5
1

2c3
a1~xB

02xA
0 !~RAB•v r !

3E
0

1

w„x(0)
a ~l!…dl, ~38!

the integrals being calculated along the line defined by
~9!.

The corresponding time transfer function is easily o
tained by using Eq.~20! or Eq. ~21!. We get

T ~ tA ,xA ,xB!5
1

c
RAB1

1

c3
~g11!RABE

0

1

w„za~l!…dl

2
2

c4
RAB•F S g111

1

4
a1D E

0

1

w„za~l!…dl

1
1

4
a1v rE

0

1

w„za~l!…dlG1O~5!, ~39!

the integrals being evaluated along the curve defined by
~22!.

Let us emphasize that, sincew5U1O(2), w may be
replaced by the Newtonian-like potentialU in expressions
~36!–~39!.

C. Case of stationary sources

In what follows, we suppose that the gravitational field
generated by a unique stationary source. Then,] tx50 and
the potentialsw andw do not depend on time. In this cas
the integration involved in Eqs.~36!–~38! can be performed
by a method due to Buchdahl@15#. Introducing the auxiliary
5-5
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variablesyA5xA2x8 and yB5xB2x8, and replacing in Eq.
~9! the parameterl by u5l21/2, a straightforward calcu
lation yields

E
0

1

w„x(0)~l!…dl5GE r̂~x8!F~x8,xA ,xB!d3x8, ~40!

E
0

1

w„x(0)~l!…dl5GE r* ~x8!v~x8!F~x8,xA ,xB!d3x8,

~41!

where the kernel functionF(x8,xA ,xB) has the expression

F~x8,xA ,xB!5E
21/2

1/2 du

U~yB2yA!u1
1

2
~yB1yA!U .

Noting that yB2yA5RAB , which implies that uyB2yAu
5RAB , we find

F~x,xA ,xB!5
1

RAB
lnS ux2xAu1ux2xBu1RAB

ux2xAu1ux2xBu2RAB
D . ~42!

Inserting Eqs.~40!, ~41! and~42! in Eqs.~36!-~38! and in Eq.
~39! will enable one to obtain quite elegant expressions
V (PN)(xA ,xB) and forT (xA ,xB), respectively.

IV. ISOLATED, AXISYMMETRIC ROTATING BODY

Henceforth, we suppose that the light is propagating in
gravitational field of an isolated, axisymmetric rotating bod
The gravitational field is assumed to be stationary. The m
purpose of this section is to determine the influence of
mass and spin multipole moments of the rotating body on
coordinate time transfer and on the direction of light ra
From these results, it will be possible to obtain a relativis
modelling of the one-way time transfers and frequency sh
up to the order 1/c4 in a geocentric nonrotating frame.

Since we treat the case of a body located very far from
other bodies of the universe, the global coordinate sys
(xm) used until now can be considered as a local~i.e. geo-
centric! one. So, in agreement with the UAI/UGG Resoluti
B1 ~2000! @18#, we shall henceforth denote byW andW, the
quantitiesw and w, respectively-defined by Eqs.~31! and
~34!, and we shall denote byGmn the components of the
metric. However, we shall continue here with using low
case letters for the geocentric coordinates in order to av
too heavy notations.

The center of mass O of the rotating body being taken
the origin of the quasi-Cartesian coordinates (x), we choose
the axis of symmetry as thex3 axis. We assume that the bod
is slowly rotating about Ox3 with a constant angular velocit
v, so that

v~x!5v3x. ~43!

In what follows, we putr 5uxu, r A5uxAu and r B5uxAu. We
call u the angle betweenx and Ox3. We consider only the
case where all points of the segment joiningxA and xB are
02404
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outside the body. We denote byr e the radius of the smalles
sphere centered on O and containing the body~for celestial
bodies,r e is the equatorial radius!. In this section, we assum
the convergence of the multipole expansions formally
rived below at any point outside the body, even ifr ,r e .

A. Multipole developments ofW and W

According to Eqs.~31!, ~34! and ~43!, the gravitational
potentialsW andW obey the equations

“

2W524pGr̂, “

2W524pGr* v3x. ~44!

It follows from Eq. ~44! that the potentialW is a harmonic
function outside the rotating body. As a consequence,W may
be expanded in a multipole series of the form

W~x!5
GM

r F12 (
n52

`

JnS r e

r D n

Pn~cosu!G . ~45!

In this development, thePn are the Legendre polynomial
and the quantitiesM, J2, . . . ,Jn, . . . correspond to the gen
eralized Blanchet-Damour mass multipole moments in g
eral relativity @19#.

In fact, taking into account the identity

]n

]zn S 1

r D5
~21!nn!

r 11n
Pn~z/r !, z5x3,

it will be much more convenient for the computation of i
tegral ~40! to use the following expansion in a series of d
rivatives of 1/r :

W~x!5GMF1

r
2 (

n52

`
~21!n

n!
Jnr e

n ]n

]zn S 1

r D G . ~46!

According to Eq.~46!, the mass densityr̂ can be developed
in the multipole series

r̂~x!5MFd (3)~x!2 (
n52

`
~21!n

n!
Jnr e

n ]n

]zn
d (3)~x!G , ~47!

d (3)(x) being the Dirac distribution supported by the orig
O.

Now, substituting Eq.~43! into Eq. ~34! yields for the
vector potentialW

W~x!5GE r* ~x8!v3x8

ux2x8u
d3x8. ~48!

It is possible to show that this vector may be written as

W52
1

2
v3“V, ~49!

whereV is an axisymmetric function satisfying the Laplac
equation“2V50 outside the body. Consequently, we c
expandV in a series of the form
5-6
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V~x!5
GI

r F12 (
n51

`

KnS r e

r D n

Pn~cosu!G , ~50!

whereI and theKn are constants. Inserting Eq.~50! into Eq.
~49! and using the identity

~n11!Pn~z/r !1~z/r !Pn8~z/r !5Pn118 ~z/r !,

we find for W an expansion as follows:

W~x!5
GIv3x

2r 3 F12 (
n51

`

KnS r e

r D n

Pn118 ~cosu!G , ~51!

which coincides with a result previously obtained by one
us @20#. The coincidence shows thatI is the moment of in-
ertia of the body about thez axis. Thus, the quantityS5I v is
the intrinsic angular momentum of the rotating body. T
coefficientsKn are completely determined by the density d
tribution r* and by the shape of the body@20,21#. Expansion
~51! may also be written as

W~x!52
1

2
GS3“F1

r
2 (

n51

`
~21!n

n!
Knr e

n ]n

]zn S 1

r D G .

~52!

Consequently, the density of mass current can be develo
in the multipole series

r* ~x!~v3x!

52
1

2
S3“Fd (3)~x!2 (

n51

`
~21!n

n!
Knr e

n ]n

]zn
d (3)~x!G ,

~53!
in

02404
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a property which will be exploited in the following section

B. Multipole structure of the world function

The functionV (PN)(xA ,xB) is determined by Eqs.~35!–
~38! wherew andw are, respectively, replaced byW andW.
The integrals involved in the rhs of Eqs.~35!–~38! are given
by Eqs.~40! and~41!. Substituting Eq.~47! into Eq.~40! and
using the properties of the Dirac distribution, we obtain

E
0

1

W„x(0)~l!…dl5GMF12 (
n52

`
1

n!
Jnr e

n ]n

]znG
3F~x,xA ,xB!ux50 . ~54!

Similarly, substituting Eq.~53! into Eq. ~41!, we get

E
0

1

W„x(0)~l!…dl52
1

2
GS3“F12 (

n51

`
1

n!
Knr e

n ]n

]znG
3F~x,xA ,xB!ux50 . ~55!

These formulas show that the multipole expansion
V (PN)(xA ,xB) can be thoroughly calculated by straightfo
ward differentiations of the kernel functionF(x,xA ,xB)
given by Eq.~42!. They constitute the essential result of th
present paper, from which it would be possible to deduce
multipole expansions giving the time transfer and the f
quency shift betweenxA andxB up to the order 1/c4.

In order to obtain explicit formulas, we shall only reta
the contributions due toM, J2 andS in the expansion yield-
ing VW

(PN) andVW
(PN) . Then, denoting the unit vector alon

the z axis by k and noting that S5Sk, we get for
VW

(PN)(xA ,xB)
VW
(PN)~xA ,xB!52

GM

c2

~xB
02xA

0 !21gRAB
2

RAB
lnS r A1r B1RAB

r A1r B2RAB
D1

2GM

c2
J2r e

2
~xB

02xA
0 !21gRAB

2

@~r A1r B!22RAB
2 #2

~r A1r B!S k•xA

r A
1

k•xB

r B
D 2

2
GM

c2
J2r e

2
~xB

02xA
0 !21gRAB

2

~r A1r B!22RAB
2 F ~k3xA!2

r A
3

1
~k3xB!2

r B
3 G1••• ~56!
ts
and forVW
(PN)(xA ,xB)

VW
(PN)~xA ,xB!5S g111

1

4
a1D2GS

c3
~xB

02xA
0 !

3
r A1r B

r Ar B

k•~xA3xB!

~r A1r B!22RAB
2

1•••. ~57!

Finally, owing to the limit ua1u,0.02 furnished in@9#, we
shall henceforth neglect all the multipole contributions
Vvr

(PN)(xA ,xB). Thus, we get
Vvr

(PN)~xA ,xB!5a1

GM

2c3
~xB

02xA
0 !

RAB•v r

RAB

3 lnS r A1r B1RAB

r A1r B2RAB
D1•••. ~58!

In this section and in the following one, the symbol1•••

stands for the contributions of higher multipole momen
which are neglected. For the sake of brevity, when1••• is
used, we systematically omit to mention the symbolO(n)
which stands for the neglected post-Newtonian terms.
5-7
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C. Time transfer function up to the order 1Õc4

Let us substituteRAB for xB
02xA

0 into Eqs.~56!–~58! and
insert the corresponding expression ofV (PN) into Eq. ~20!.
We get an expression for the time transfer function as
lows:

T ~xA ,xB!5
1

c
RAB1TM~xA ,xB!1TJ2

~xA ,xB!1TS~xA ,xB!

1Tvr
~xA ,xB!1•••, ~59!

where

TM~xA ,xB!5~g11!
GM

c3
lnS r A1r B1RAB

r A1r B2RAB
D , ~60!

TJ2
~xA ,xB!52~g11!

GM

c3

J2r e
2RAB

~r A1r B!22RAB
2

3F 2~r A1r B!

~r A1r B!22RAB
2 S k•xA

r A
1

k•xB

r B
D 2

2
~k3xA!2

r A
3

2
~k3xB!2

r B
3 G , ~61!

TS~xA ,xB!52S g111
1

4
a1D2GS

c4

r A1r B

r Ar B

3
k•~xA3xB!

~r A1r B!22RAB
2

, ~62!

Tvr
~xA ,xB!52a1

GM

2c4

RAB•v r

RAB
lnS r A1r B1RAB

r A1r B2RAB
D .

~63!
02404
l-

The time transfer is thus explicitly determined up to the
der 1/c4. The term of order 1/c3 given by Eq.~60! is the
well-known Shapiro time delay. Equations~61! and~62! ex-
tend results previously found forg51 anda150 @5#. How-
ever, our derivation is more straightforward and yields f
mulas which are more convenient to calculate the freque
shifts. As a final remark, it is worthy of note thatTM andTJ2

are symmetric in (xA ,xB), while TS andTvr
are antisymmet-

ric in (xA ,xB).

D. Directions of light rays at xA and xB up to the order 1Õc3

In order to determine the vectors tangent to the ray pat
xA andxB , we use Eqs.~6! and ~7! whereT is replaced by
the expression given by Eq.~59!. For the sake of brevity, we
put henceforthlA5$( l i)A% and lB5$( l i)B%. We find

lA~xA ,xB!52NAB1 lM~xA ,xB!1 lJ2
~xA ,xB!

1 lS~xA ,xB!1 lvr
~xA ,xB!1•••, ~64!

lB~xA ,xB!52NAB2 lM~xB ,xA!2 lJ2
~xB ,xA!

1 lS~xB ,xA!1 lvr
~xB ,xA!1•••, ~65!

where lM , lJ2
, lS and lvr

stand for the contributions ofTM ,

TJ2
, TS andTvr

, respectively. Putting

nA5
xA

r A
, nB5

xB

r B
, NAB5

xB2xA

RAB
,

we get from Eq.~60!

lM~xA ,xB!52~g11!
2GM

c2

~r A1r B!NAB1RABnA

~r A1r B!22RAB
2

.

~66!

From Eq.~61!, we get
lJ2
~xA ,xB!5~g11!

GMJ2r e
2

c2

r A1r B

@~r A1r B!22RAB
2 #2 H NABF2~k•nA1k•nB!2

~r A1r B!213RAB
2

~r A1r B!22RAB
2

2S 12~k•nA!2

r A

1
12~k•nB!2

r B
D ~r A1r B!21RAB

2

r A1r B
G12nA

RAB

r A1r B
F ~k•nA1k•nB!2

3~r A1r B!21RAB
2

~r A1r B!22RAB
2

2
1

2
@123~k•nA!2#

3
~3r A1r B!~r A1r B!2RAB

2

r A
2

1~r A1r B!S 2~k•nA!~k•nB!

r A
2

12~k•nB!2

r B
D G

24k
RAB

r A
F ~k•nA!

~3r A1r B!~r A1r B!2RAB
2

2r A~r A1r B!
1~k•nB!G J . ~67!

From Eqs.~62! and ~63!, we derive the other contributions which are of order 1/c3

lS~xA ,xB!5S g111
1

4
a1D2GS

c3

r A1r B

r A@~r A1r B!22RAB
2 #

3H k3nB1
2r Ar Bk•~nA3nB!

~r A1r B!22RAB
2 F ~3r A1r B!~r A1r B!2RAB

2

2r A~r A1r B!
nA1nBG J , ~68!
5-8
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lvr
~xA ,xB!5a1

GM

c3 Fv r2~v r•NAB!NAB

2RAB
lnS r A1r B1RAB

r A1r B2RAB
D1~v r•NAB!

~r A1r B!NAB1RABnA

~r A1r B!22RAB
2 G .

~69!
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We note that the mass and the quadrupole moment y
contributions of order 1/c2, while the intrinsic angular mo-
mentum and the velocity relative to the universe rest fra
yield contributions of order 1/c3.

E. Sagnac terms in the time transfer function

In an experiment like ACES, recording the time of em
sion tA will be more practical than recording the time
reception tB

1 . So, it will be very convenient to form the
expression of the time transferT (xA ,xB) from xA(tA) to
xB(tB

1) in terms of the position of the receiverB at the time
of emissiontA . For any quantityQB(t) defined along the
world line of the stationB, let us putQ̃B5QB(tA). Thus we
may write x̃B, r̃ B, ṽB, ṽB5uṽBu, etc.

Now, let us introduce the instantaneous coordinate
tanceDAB5 x̃B2xA and its normDAB . Since we want to
know tB

12tA up to the order 1/c4, we can use the Taylo
expansion ofRAB

RAB5DAB1~ tB
12tA!ṽB1

1

2
~ tB

12tA!2ãB

1
1

6
~ tB

12tA!3b̃B1•••,

where aB is the acceleration ofB and bB5daB /dt. Using
iteratively this expansion together with Eq.~59!, we get

T ~xA ,xB!5T ~xA ,x̃B!1
1

c2
DAB•ṽB

1
1

2c3
DABF ~DAB•ṽB!2

DAB
2

1 ṽB
21DAB•ãBG

1
1

c4 F ~DAB•ṽB!~ ṽB
21DAB•ãB!

1
1

2
DAB

2 S ṽB•ãB1
1

3
DAB•b̃BD G

1
1

c

DAB

DAB
•ṽB@TM~xA ,x̃B!1TJ2

~xA ,x̃B!#

1
1

c2
DABṽB•@ lM~ x̃B ,xA!1 lJ2

~ x̃B ,xA!#

1•••, ~70!

whereT (xA ,x̃B) is obtained by substitutingx̃B , r̃ B andDAB ,
respectively forxB , r B andRAB into the time transfer func-
02404
ld

e

-
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tion defined by Eqs.~59!–~63!. This expression extends th
previous formula@7# to the next order 1/c4. The second, the
third and the fourth terms in Eq.~70! represent pure Sagna
terms of order 1/c2, 1/c3 and 1/c4, respectively. The fifth and
the sixth terms are contributions of the gravitational fie
mixed with the coordinate velocity of the receiving statio
Since these last two terms are of order 1/c4, they may be
calculated for the arguments (xB ,xA) ~note the order of the
arguments inlM and lJ2

).

V. FREQUENCY SHIFT IN THE FIELD OF AN
AXISYMMETRIC ROTATING BODY

A. General formulas

Consider a clockOA on A and a clockOB on B delivering,
respectively, the proper frequenciesf A and f B and suppose
that OA is sending photons toOB . The one-way
frequency transfer fromOA and OB is characterized by
the ratio f A / f B which may be written as f A / f B
5( f A /nA)(nA /nB)(nB / f B) wherenA is the proper frequency
of the photon as measured onA at the instant of emission an
nB is the proper frequency of the same photon as meas
on B at the instant of receipt. The ratiosf A /nA and f B /nB are
obtained by local measurements performed onA and B, re-
spectively @7#. So, in the present paper, we are concern
only with the theoretical determination ofnA /nB . This ratio
is given by the well-known relation

nA

nB
5

uA
m~ l m!A

uB
m~ l m!B

~71!

whereuA
m5(dxm/ds)A anduB

m5(dxm/ds)B are, respectively,
the unit 4-velocity of the clockOA and of the clockOB , and
( l m)A and (l m)B are the null tangent vectors at the point
emissionxA and at the point of receptionxB , respectively.

Let us denote byvA5(dx/dt)A and vB5(dx/dt)B the
coordinate velocities of the clocks onA andB, respectively.
Since the gravitational field is assumed to be stationary,
formula ~71! giving the frequency shift betweenxA and xB
may be written as

nA

nB
5

uA
0

uB
0

3
qA

qB
, qA511

1

c
lA•vA , qB511

1

c
lB•vB ,

~72!

where lA and lB are the quantities, respectively, defined
Eqs.~6! and ~7!.

It is possible to calculate the ratioqA /qB up to the order
1/c4 from our results in Sec. IV sincelA and lB are given up
5-9
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to the order 1/c3, respectively, by Eqs.~64! and~65!. Denot-
ing by l (n)/cn the O(n) terms inl, qA /qB may be expanded
as

qA

qB
512

1

c

NAB•~vA2vB!

12NAB•
vB

c

1
1

c3
@ l A

(2)
•vA2 l B

(2)
•vB#

1
1

c4
@ l A

(3)
•vA2 l B

(3)
•vB#1

1

c4
NAB•@~ l B

(2)
•vB!~vA

22vB!1~ l A
(2)
•vA!vB#1O~5!. ~73!

In order to be consistent with this expansion, we have
perform the calculation ofuA

0/uB
0 at the same level of ap

proximation. For a clock delivering a proper timet, 1/u0 is
the ratio of the proper timedt to the coordinate timedt. To
reach the suitable accuracy, it is therefore necessary to
into account the terms of order 1/c4 in g00. For the sake of
simplicity, we shall henceforth confine ourselves to the fu
conservative metric theories of gravity without preferred
cation effects, in which all the PPN parameters vanish exc
b and g. Since the gravitational field is assumed to be s
tionary, the chosen coordinate system is then a standard
Newtonian gauge and the metric reduces to its usual for

G00512
2

c2
W1

2b

c4
W21O~6!,

$G0i%5
2~g11!

c3
W1O~5!,

Gi j 52S 11
2g

c2
WD d i j 1O~4!, ~74!

whereW given by Eq.~31! reduces to

W~x!5U~x!1
G

c2E r* ~x8!

ux2x8u

3F S g1
1

2D v21~122b!U1P13g
p

r*
Gd3x8,

~75!
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and W is given by Eq.~48!. As a consequence, for a cloc
moving with the coordinate velocityv, the quantity 1/u0 is
given by the formula

1

u0
[

dt

dt
512

1

c2 S W1
1

2
v2D

1
1

c4 F S b2
1

2DW22S g1
1

2DWv2

2
1

8
v412~g11!W•vG1O~6!, ~76!

from which it is easily deduced that

uA
0

uB
0

511
1

c2 S WA2WB1
1

2
vA

22
1

2
vB

2 D
1

1

c4 H ~g11!~WAvA
22WBvB

2 !

1
1

2
~WA2WB!@WA2WB1vA

22vB
2

12~12b!~WA1WB!#1
3

8
vA

42
1

4
vA

2vB
22

1

8
vB

4

22~g11!~WA•vA2WB•vB!J 1O~6!. ~77!

It follows from Eqs.~73! and ~77! that the frequency shift
dn/n is given by

dn

n
[

nA

nB
215S dn

n D
c

1S dn

n D
g

, ~78!

where (dn/n)c is the special-relativistic Doppler effect
S dn

n D
c

52
1

c
NAB•~vA2vB!1

1

c2 F1

2
vA

22
1

2
vB

22@NAB•~vA2vB!#~NAB•vB!G2
1

c3 F @NAB•~vA2vB!#S 1

2
vA

22
1

2
vB

2

1~NAB•vB!2D G1
1

c4 F3

8
vA

42
1

4
vA

2vB
22

1

8
vB

42@NAB•~vA2vB!#~NAB•vB!S 1

2
vA

22
1

2
vB

21~NAB•vB!2D G1O~5!

~79!

and (dn/n)g contains all the contributions of the gravitational field, eventually mixed with kinetic terms
5-10
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S dn

n D
g

5
1

c2
~WA2WB!2

1

c3
$~WA2WB!@NAB•~vA2vB!#2 l A

(2)
•vA1 l B

(2)
•vB%1

1

c4 S ~g11!~WAvA
22WBvB

2 !1
1

2
~WA2WB!

3$WA2WB12~12b!~WA1WB!1vA
22vB

222@NAB•~vA2vB!#~NAB•vB!%1NAB•@~ l B
(2)
•vB!~vA22vB!

1~ l A
(2)
•vA!vB#1@ l A

(3)22~g11!WA#•vA2@ l B
(3)22~g11!WB#•vBD1O~5!. ~80!
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It must be emphasized that the formulas~76! and~77! are
valid within the PPN framework without adding special a
sumption, provided thatb andg are the only nonvanishing
post-Newtonian parameters. On the other hand, Eq.~80! is
valid only for stationary gravitational fields. In the case of
axisymmetric rotating body, we shall obtain an approxim
expression of the frequency shift by inserting the followi
developments in Eq.~80!, yielded by Eqs.~64!–~69!:

l A
(2)/c25 lM~xA ,xB!1 lJ2

~xA ,xB!1•••,

l A
(3)/c35 lS~xA ,xB!1•••,

l B
(2)/c252 lM~xB ,xA!2 lJ2

~xB ,xA!1•••,

l B
(3)/c35 lS~xB ,xA!1•••,

the function lS being now given by Eq.~68! written with
a150. Let us recall that the symbol1••• stands for the
contributions of the higher multipole moments which are n
glected.

B. Application in the vicinity of the Earth

In order to perform numerical estimates of the frequen
shifts in the vicinity of the Earth, we suppose now thatA is
on board the International Space Station~ISS! orbiting at the
altitudeH5400 km and thatB is a terrestrial station. It will
be the case for the ACES mission. We user B
56.373106 m and r A2r B5400 km. For the velocity of
ISS, we takevA57.73103 m/s and for the terrestrial sta
tion, we havevB<465 m/s. The other useful paramete
concerning the Earth are as follows:GM53.986
31014 m3/s2, r e56.3783106 m, J251.08331023; for n
>3, the multipole momentsJn are in the order of 1026. With
these values, we getWB /c2'GM/c2r B56.95310210 and
WA /c2'GM/c2r A56.54310210. From these data, it is eas
to deduce the following upper bounds:uNAB•vA /cu<2.6
31025 for the satellite, uNAB•vB /cu<1.631026 for the
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ground station anduNAB•(vA2vB)/cu<2.7631025 for the
first-order Doppler term.

Our purpose is to obtain correct estimates of the effect
Eq. ~80! which are greater than or equal to 10218 for an
axisymmetric model of the Earth. At this level of approxim
tion, it is not sufficient to take into account theJ2 terms in
(WA2WB)/c2. First, the higher-multipole momentsJ3 ,
J4 , . . . yield a contribution of order 10215 in WA /c2. Sec-
ond, owing to the irregularities in the distribution of mass
the expansion of the geopotential in a series of spher
harmonics is probably not convergent at the surface of
Earth. For these reasons, we do not expand (WA2WB)/c2 in
Eq. ~80!.

However, for the higher-order terms in Eq.~80!, we can
apply the explicit formulas obtained in the previous sectio
Indeed, since the difference between the geoid and the re
ence ellipsoid is less than 100 m,WB /c2 may be written as
@22#

1

c2
WB5

GM

c2r B

1
GMre

2J2

2c2r B
3 ~123 cos2u!1

1

c2
nWB ,

where the residual termnWB /c2 is such thatunWB /c2u
<10214. At a level of experimental uncertainty about 10218,
this inequality allows us to retain only the contributions d
to M, J2 and S in the terms of orders 1/c3 and 1/c4. As a
consequence, the formula~80! reduces to

S dn

n D
g

5
1

c2
~WA2WB!1

1

c3 S dn

n D
M

(3)

1
1

c3 S dn

n D
J2

(3)

1•••

1
1

c4 S dn

n D
M

(4)

1
1

c4 S dn

n D
S

(4)

1•••, ~81!

where the different terms involved in the rhs are separa
made explicit and discussed in what follows.

Using the identity (r A1r B)22RAB
2 52r Ar B(11nA•nB), it

may be seen that (dn/n)M
(3) is given by
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S dn

n D
M

(3)

52
GM~r A1r B!

r Ar B
F S g11

11nA•nB
2

r A2r B

r A1r B
D

3@NAB•~vA2vB!#1~g11!

3
RAB

r A1r B

nA•vA1nB•vB

11nA•nB
G . ~82!

The contribution of this third-order term is bounded by
310214 for g51, in accordance with a previous analys
@7#.
02404
C. Influence of the quadrupole moment at the order 1Õc3

Defining the quantityKAB by

KAB5
~r A2r B!2

r Ar B
,

it is easily deduced from Eqs.~67! and ~80! that the term
(dn/n)J2

(3) in Eq. ~81! is given by
in
lar

ter
the
S dn

n D
J2

(3)

5
GM

2r e
J2@NAB•~vA2vB!#F S r e

r A
D 3

@3~k•nA!221#2S r e

r B
D 3

@3~k•nB!221#G
1

g11

2

GM J2r e
2~r A1r B!

r A
2r B

2

1

~11nA•nB!2 H @NAB•~vA2vB!#F ~k•nA1k•nB!2
523nA•nB12KAB

11nA•nB

2S 12
r A~k•nB!21r B~k•nA!2

r A1r B
D ~32nA•nB1KAB!G1

RAB

r A1r B
~nA•vA1nB•vB!~k•nA

1k•nB!2
72nA•nB12KAB

11nA•nB
2

RAB

r A
~nA•vA!@123~k•nA!2#

r A1r B~21nA•nB!

r A1r B
2

RAB

r B
~nB•vB!@1

23~k•nB!2#
r A~21nA•nB!1r B

r A1r B
1RABF2S nA•vA

r A
1

nB•vB

r B
D ~k•nA!~k•nB!2~nA•vA!

12~k•nB!2

r B

2~nB•vB!
12~k•nA!2

r A
G22

RAB

r A
~k•vA!Fk•nA

r A1r B~21nA•nB!

r A1r B
1k•nBG

22
RAB

r B
~k•vB!Fk•nA1k•nB

r A~21nA•nB!1r B

r A1r B
G J . ~83!

One hasuvA /cu52.631025, uvB /cu<1.631026 andKAB53.7731023. A crude estimate can be obtained by neglecting
Eq. ~83! the terms involving the scalar productsnB•vB and k•vB . Since the orbit of the ISS is almost circular, the sca
productnA•vA can also be neglected. On these assumptions, we find, forg51,

U 1

c3 S dn

n D
J2

(3)U<1.3310216. ~84!

As a consequence, it will perhaps be necessary to take into account theO(3) contributions ofJ2 in the ACES mission. This
conclusion is to be compared with the order of magnitude given in@7# without a detailed calculation. Of course, a bet
estimate might be found if the inclinationi 551.6 deg of the orbit with respect to the terrestrial equatorial plane and
latitudep/22uB of the ground station were taken into account.

D. Frequency shifts of order 1Õc4

The term (dn/n)M
(4) in Eq. ~81! is given by

S dn

n D
M

(4)

5~g11!S GM

r A
vA

22
GM

r B
vB

2 D2
GM~r A2r B!

2 r Ar B
~vA

22vB
2 !1

1

2 S GM

r Ar B
D 2

@~r A2r B!212~b21!~r A
22r B

2 !#

2
GM~r A1r B!

r Ar B
F S 2~g11!

11nA•nB
2

r A2r B

r A1r B
D @NAB•~vA2vB!#~NAB•vB!1

g11

11nA•nB

RAB

r A1r B
$~nA•vA!~NAB•vB!

2@NAB•~vA22vB!#~nB•vB!%G . ~85!
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The dominant term (g11)GMvA
2/r A in Eq. ~85! induces a correction to the frequency shift which amounts to 10218. So, it

will certainly be necessary to take this correction into account in experiments performed in the foreseeable future.
The terms (dn/n)S

(4) is the contribution of the intrinsic angular momentum to the frequency shift. Substituting Eqs.~51! and
~68! into Eq. ~80!, it may be seen that

S dn

n D
S

(4)

5~FS!A2~FS!B , ~86!

where

~FS!A5~g11!
GS

r A
2 S 11

r A

r B
DvA•H k3nB

11nA•nB
2

r B

r A1r B
k3nA1

k•~nA3nB!

~11nA•nB!2 F r A1r B~21nA•nB!

r A1r B
nA1nBG J , ~87!

~FS!B5~g11!
GS

r B
2 S 11

r B

r A
DvB•H k3nA

11nA•nB
2

r A

r A1r B
k3nB2

k•~nA3nB!

~11nA•nB!2 FnA1
r A~21nA•nB!1r B

r A1r B
nBG J .

~88!
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In order to make easier the discussion, it is useful to
troduce the anglec betweenxA and xB and the anglei p
between the plane of the photon path and the equato
plane. These angles are defined by

cosc5nA•nB , 0<c,p,

k•~nA3nB!5sinc cosi p , 0< i p,p.

With these definitions, it is easily seen that

k•~nA3nB!

11nA•nB
5cosi ptan

c

2
.

Let us apply our formulas to ISS. Due to the inequal
vB /vA<631022, the term (FS)B in Eq. ~86! may be ne-
glected. From Eq.~87!, it is easily deduced that

u~FS!Au<~g11!
GS

r A
2 S 11

r A

r B
D213utanc/2u

u11coscu vA .

Assuming 0<c<p/2, we have (213utanc/2u)/u11coscu
<5. Inserting this inequality in the previous one and taki
for the EarthGS/c3r A

253.15310216, we find

U 1

c4 S dn

n D
S

(4)U<~g11!310219. ~89!

Thus, we get an upper bound which is slightly greater th
the one estimated by retaining only the termh0iv

i /c in Eq.
~77!. However, our formula confirms that the intrinsic ang
lar momentum of the Earth will not affect the ACES expe
ment.
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VI. CONCLUSION

In this paper, we have shown that the world functi
V(xA ,xB) constitutes a powerful tool for determining th
~coordinate! time transfer and the frequency shift in a we
gravitational field. Our main results are established with
the Nordtvedt-Will PPN formalism. We have found the ge
eral expression ofV(xA ,xB) up to the order 1/c3. This result
yields the expression of the time transfer functi
T (tA ,xA ,xB) at the order 1/c4. We point out thatg anda1

are the only post-Newtonian parameters involved in the
pressions of the world function and of the time transfer fun
tion.

We have treated in detail the case of an isolated, axis
metric rotating body, assuming that the gravitational field
stationary and that the body is moving with a constant
locity v r relative to the universe rest frame. We have give
systematic procedure for calculating the terms due to
multipole moments in the world functionV(xA ,xB) and in
the time transfer functionT (xA ,xB). These terms are ob
tained by straightforward differentiations of a kernel fun
tion. We have explicitly derived the contributions due to t
massM, to the quadrupole momentJ2 and to the intrinsic
angular momentumS of the rotating body.

Restricting our attention to the case where onlyb andg
are different from zero, we have then determined the gen
expression of the frequency shift up to the order 1/c4. We
have obtained the contributions ofJ2 at the order 1/c3. Our
method would give as well the quadrupole contribution at
order 1/c4 in case of necessity. We have found the compl
evaluation of the effect of the intrinsic angular momentumS,
which is of order 1/c4. It is noteworthy that our formulas
contain terms which have not been taking into account u
now.

Within the limits of our model, the formulas that we hav
established yield all the gravitational corrections to the f
5-13
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quency shifts up to 10218 in the vicinity of the Earth. We
have applied our results to the ACES mission. We ha
found that the influence of the quadrupole moment at
order 1/c3 is in the region of 10216. For the effect of the
intrinsic angular momentum, we have obtained an up
bound which is greater than the currently accepted estim
um

on

re
9

s
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but which remains three orders of magnitude less than
expected accuracy in an experiment like ACES. Finally
must be noted that our results could be applied to the t
way time/frequency transfers. In particular, theO(3) contri-
butions ofJ2 to the two-way frequency transfers would pro
ably deserve to be carefully calculated.
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