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Within the weak-field, post-Newtonian approximation of the metric theories of gravity, we determine the
one-way time transfer up to the ordec4,/the unperturbed term being of ordec 1and the frequency shift up
to the order 1¢*. We adapt the method of the world function developed by Synge to the Nordvedt-Will
parametrized post-NewtonidRPN formalism. We get an integral expression for the world function up to the
order 1£2 and we apply this result to the field of an isolated, axisymmetric rotating body. We give a new
procedure enabling us to calculate the influence of the mass and spin multipole moments of the body on the
time transfer and the frequency shift up to the ordef IWe obtain explicit formulas for the contributions of
the mass, of the quadrupole moment and of the intrinsic angular momentum. In the case where the only PPN
parameters different from zero a@ and y, we deduce from these results the complete expression of the
frequency shift up to the orderd. We briefly discuss the influence of the quadrupole moment and of the
rotation of the Earth on the frequency shifts in the ESA's Atomic Clock Ensemble in Space mission.
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I. INTRODUCTION culation. Furthermore, the time or frequency transfers have
been calculated within the limited framework of general rela-
Owing to recent progress in absolute frequency measureivity, which prevents us from discussing new tests of gravi-
ments of some optical transitions with a femtosecond laser, itational theories.
seems possible to achieve in the near future atomic clocks The present paper is a first step towards a general theory
having a time-keeping accuracy of the order of 3in  of the time and frequency transfers, including all the terms of
fractional frequency1]. Since a reduced gravity would sig- order 1£#, within the post-NewtoniafPN) approximation of
nificantly increase clock performances, it is envisaged to inany metric theory of gravity. Using the Nordtvedt-Will pa-
stall such clocks on board artificial satellites and to compargeametrized post-Newtonia(PPN formalism[9], we bring
them with terrestrial clocks by exchange of electromagneti¢che complete determination of these effects in the field of an
signals. Already, a spatial experiment such as the ESA$solated, axisymmetric rotating body, the gravitational field
Atomic Clock Ensemble in SpadCES) mission[2,3] is  being assumed stationary. Of course, modelling a mission in
planned for 2006, the purpose being to obtain an accuracy afe vicinity of the Earth at a level of accuracy about 19
order 10 6 in fractional frequency. will require us to add the effects due to the tidal gravitational
At a level of uncertainty about 188 a fully relativistic  field induced by the Sun and the Moon.
treatment of time or frequency transfers must be performed We assume that the photons ensuring the transfers follow
up to the order 1* [23]. As far as we know, the correspond- null geodesics. The problems that we have to tackle come
ing calculations have not been carried out. For the time transdown to the following ones, relative to a couple of points
fer, the main relativistic correction of orderc#/is the well-  x,=(cta,x,) andxg=(ctg,Xs) connected by a null geode-
known Shapiro time delaj4]. Other corrections due to the sic: (i) to calculate thécoordinatg time transfertg—t, as a
quadrupole moment and to the intrinsic angular momentunfunction of (x,,Xg); (i) to determine the vectors tangent to
have been studied by several auth@$ Gravitational cor-  the null geodesic at, andxg . Solving this second problem
rections of order 2” in the frequency transfers were theo- is indeed indispensable to calculate the frequency shift be-
retically determined and experimentally checked a long timaweenx, andxg .
ago[6]. These corrections are now commonplace in the Glo- The method generally employed to study the questions
bal Positioning System. The relativistic theory of the fre-related to the propagation of light in a gravitational field is
quency transfers have been recently extended up to the termaased on the solution of the null geodesic equatimes,
of order 1¢3 [7], justifying the results previously given in e.g., [5,10-13 for investigations in the linearized, weak-
[8] without any detail. However, it must be pointed out that, field limit of general relativity. However, the theory of the
in [7], some terms of order &7 due to the quadrupole mo- world function developed by Syndd4] presents the great
mentJ, of the Earth are bounded without any explicit cal- advantage to spare the trouble of integrating the geodesic
equations. Once the world function is determined, it is pos-
sible to solve straightforwardly the two above-mentioned
*Electronic address: linet@celfi.phys.univ-tours.fr problems. This method is particularly elegant for the station-
"Electronic address: Pierre.Teyssandier@obspm.fr ary, axisymmetric field and we apply it in the present paper.
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We find a new procedure enabling us to determine the influspacelike geodesics, respectively. It results from definition
ence of the mass and spin multipole moments of the body1) that the world function()(x,,Xg) is unchanged if we
Explicit calculations are given for the contributions of the perform any admissible coordinate transformation.
mass, of the quadrupole moment and of the intrinsic angular The utility of the world function for our purpose comes
momentum of the rotating body. from the following propertie$14].

The paper is organized as follows. In Sec. Il the relevant (i) Two pointsx, andxg are linked by a light ray if and
properties of the world functiof) (x,,Xg) are recalled and only if the condition
the general expression of this function in the post-Newtonian _
imi : o : Q(Xa,Xg)=0 2
imit of any metric theory is given. The corresponding ex-

prefsion of the time transfeg—t, is derived up to the order g fyjfilled. Thus, Q(x,,x)=0 is the equation of the light
1/c”. In Sec. Ill we determine the expression@{xa.Xs)  coneC(x,) atx,. This fundamental property shows that if
and oftg—t, within the ten-parameter PN formalism of Nor- )y . x.) is known, it is possible to determine the travel
dtvedt and Will. Then, in Sec. IV we focus our attention ONtime tz—t, of a photon connecting two poinis, andxg as
the case of an isolated, axisymmetric rotating body. We show, f,nction oft, X, andxg . It must be pointed out, however,

that it is possible to determine the contributions of the masgy, 4 solving the equatiof(Ct, , X ,Ctg ,xg) =0 for tg yields
and spin multipole moments by straightforward differentia-y,, gistinct solutiong;; andts since the timelike curve
tions of a single function. Retaining only the terms due to the

| ; ; + - +
massM, to the quadrupole momewd, and to the intrinsic be)i(r? Clijrt]st:;e ft?:rteczgf(xfr)] ?;;W?epscggtsxz ir:dvil(g ,aﬁza S
angular momenturs of the rotating body, we obtain explicit gd th . th' the p t th phpt y
expressions for the time transfer up to the ordef &nd for regarcx, as the point of emission of the photon angas
the tangent vectors aj, andxg up to the order £2. In Sec. the p°'!’“ O_f recegnon, and we are concerned only with the
V the frequency shift is developed up to the order’ih the ~ G€termination otg —t, as a function of,, x, andxg. We

case whergB and vy are the only nonvanishing PPN param- put

eters. We find detailed expressions for the contribution, of tg —ta=7(ta,Xa Xg), 3
andS and we discuss the possible influence of these terms in

the ACES mission. We give our conclusions in Sec. VI. and we call7(t5,Xa ,Xg) the (coordinate time transfer func-

In this paperG is the Newtonian gravitational constant tion. Of course, it is also possible to introduce another time
and c is the speed of light in a vacuum. The Lorentziantransfer function givindg —t as a function of the instant of
metric of space-time is denoted lgy The signature adopted receptiont; and ofx,, Xg, but we do not use it here.
for g is (+ ———). We suppose that the space-time is cov- (ii) The vectors §x*/d\), and @x%/d\)g tangent to the
ered by one global coordinate systemt‘\=(x%x), where  geodesid’, respectively, ak, andxg are given by
x%=ct, t being a time coordinate, and=(x'), thex' being
quasi-Cartesian coordinates. We assume that the curves of dxB
equationsx'=const are timelike, which means thgg;>0 (
anywhere. We employ the vector notatiarin order to de-
note either &*,a%,a% =(a') or (a;,a,,as) =(a;). Consider-
ing two such quantities andb with, for instancea=(a'),
we usea- b to denotea'b' if b=(b') or a'b; if b=(b;) (the
Einstein convention on the repeated indices is usé&tie
quantity |a| stands for the ordinary Euclidean norm af

aQ ( dxﬂ) 00 @

e v | = T
Bd)\ A axx

As a consequence, (xa,Xg) is explicitly known, the de-
termination of these vectors does not require the integration
of the differential equations of the geodesic. Let us note that
it can be proved that the tangent vect@tsare null when(2)

holds.
Consider now a stationary space-time. In this case, we use
Il. THE WORLD FUNCTION AND ITS POST-NEWTONIAN exclusively coordinatesx(*) such that the metric does not
LIMIT depend orx°. Then, the world function is a function of
o .
A. Definition and fundamental properties —Xa, Xa andxg, and Eq.(3) reduces to a relation of the
form

Consider two pointx, and xg in a space-time with a N
given metricg,,, and assume that, andxg are connected tg —ta=7(Xa ,Xg)- 5
by a unique geodesic paih. Throughout this papen de- ] ) )
notes the unique affine parameter aldhgvhich fulfills the ~ The time transfer functiof(xa ,xg) plays a central role in
boundary conditiona ,=0 and\g=1. The so-called world the present paper because a comparaison betweenZgs.
function of space-time[14] is the two-point function @and(5) immediately shows that the vectors*f, and (*)g

Q(xa,%g) defined by defined by their covariant components
11 N dx* dx” d
Q(XAaXB):Efo 9 X)) - g 9N 1) (lo)a=1, (|i)A=C;iAT(XA,XB), (6)
the integral being taken alonfj. It is easily seen that P
Q(xa,Xg) =£[Sap]?/2, Wheres,g is the geodesic distance (lo)g=1, (I)g=—Cc—7(Xa,Xa), (7)
betweenx, and xg and ¢=1,0,—1 for timelike, null and IXp

024045-2



TIME TRANSFER AND FREQUENCY SHIFT TO TH . .. PHYSICAL REVIEW D 66, 024045 (2002

are tangent to the ray af, andxg, respectively. It must be where the integrals are taken oderand Q(?(x, ,xg) is the
pointed out that these tangent vectors correspond to an affireorld function in Minkowski space-time

parameter such thdg=1 along the ray(note that such a

parameter does not coincide wiN). Generally, extracting ) 1 .

the time transfer formuld5) from Eq. (2), and then using QX Xg) = EnMV(Xg_XlAL)(XB_XA)' (14)
Egs.(6) and(7), will be more straightforward than deriving

the vectors tangent ad, andxg from Eq. (4) and then im- Henceforth, we shall only consider weak gravitational

posing the constraink2). We shall use Eqsi6) and (7) in {45 generated by self-gravitating extended bodies within
Sec. IV. the slow-motion, post-Newtonian approximation. So, we as-

To conclude, let us emphasize that the method of the o that the potentials. . mav be expanded as follows:
world function works as long a8 (x, ,Xg) is a well-defined, P wy MY P '

single-valued function oX, andxg. This condition is satis- 1 1

fied in any region of space-time in which any p0|_m§and hoo= _ZhE)%)+_4hE)%)+ 0(6),
Xg are connected by one and only one geodesic, a feature c c

which excludes the existence of conjugate points. This re-

quirement is certainly fulfilled in experiments performed in 1 1
the solar system and more generally for observations of stars hoi= —h)+0(5), hij :_hi(j2)+ 0(4).
belonging to our Galaxy. c? c?

(15

B. General expression of the world function

in the post-Newtonian limit From these expansions and from the Euler-Lagrange equa-

_ _ _ tions satisfied by any geodedic namely,
To begin, let us assume that the metric may be written as
1 dx* dx”

d dx?
=1,.,+Th,, 8 == = =
9ur= My w ) ( Zaahw an dn’

dn | 9e87ax

(16)

throughout space-time, withy,,=diag(1,-1,—1,—1). Let
I 0y be the straight line defined by the parametric equationd results that X*(\)=0(2) and that dx*/d\ = x§ — x4

X*=X(0)(\), with +0(2). As a c_onsequence,hw(x“(_)\))= hM(xg’O)()\)) _
+0(4) and the third and fourth terms in the right-hand side
xfo)()\)= (Xg—=XA)A+Xa, O=\=<L 9 (rh9) of Eq. (13) are of order 1¢*. These features result in an

expression fo) (x4 ,xg) as follows:
With this definition, the parametric equations of the geodesic

' connectingx, andxg may be written in the form Q (X, %) =QO(x5 ,xg) + QPN (x4 ,x5) +O(4), -
1
X*(N)=x{(N\)+X*(\), 0=A<1, (10)
where
where the quantitieX“(\) satisfy the boundary conditions
1 1
X*(0)=0, X*(1)=0. (1) QEV 0 xp) = o (X5 xR)* fo hE5 (X (o) (M) dx
Inserting Eq.(8) and dx*(\)/d\=xg—xa+dX*(N)/d\ in 1
Eq. (1), then developing and noting that + _Z(Xis_xiA)(XJé_XL)

1 dX”
| mot-xpGan-o 12 : !
o dx xfo hff’(xgo)(x))dmg(xg—xg)

by virtue of Eq.(11), we find the rigorous formula

1
P (3)/
Q(Xp,%8) = Q2O (x4, Xg) x(Xg XA)fo e (Xioy(M))dk, - (18)

1 1 . . . )
+ E(XE—XK)(XE—X,K)L h,,,(x“(0))d 'Eg)e integrals being taken over the liligy, defined by Eq.
, The formulas(17) and (18) yield the general expression
+ Efl 9 (Xa()\))dﬁ dXx of the world function up to the order d¥ within the frame-
2)o|TH drn dh work of the 1 PN approximation. We shall see in Sec. IlIC

that this approximation is sufficient to determine the time
d) (13) transfer functiorZ (t, , X, ,Xg) Up to the order 1. It is wor-
' thy of note that the method used above would as well lead to

14

d
F20E XN X))
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the expression of the world function in the linearized weak- Ill. WORLD FUNCTION AND TIME TRANSFER WITHIN

field limit previously found by Syng€14].

We shall put hencefortiRyg=Xg—Xs and Rag=|Ragl.
Defining the quantitiedN*=(x§—Xx4)/Rag, EQs.(14) and
(18) might be easily rewritten with these notations.

C. Time transfer at the order 1/c*

Suppose thakg is the point of reception of a photon
emitted atx, . Taking Eq.(17) into account, Eq(2) may be
written in the form

QO (xa ,xp) +QPV(x4,x5)=0(4),
which implies the relation

. 1 QPN(cty,xa,Ct5 ,Xp)
tB_tA:ERAB_ CRag

+0(4).
(19

THE NORDTVEDT-WILL PPN FORMALISM
A. Metric in the 1 PN approximation

In this section we use the Nordtvedt-Will post-Newtonian
formalism involving ten parametegs, vy, &, a4, ...,{4 [9].

We introduce slightly modified notations in order to be
closed of the formalism recently proposed by Klioner and
Soffel[16] as an extension of the post-Newtonian framework
elaborated by Damour, Soffel and X47] for general rela-
tivity. In particular, we denote by, the velocity of the cen-
ter of mass O relative to the universe rest fra4).

Although our method is not confined to any particular
assumption on the matter, we suppose here that each source
of the field is described by the energy-momentum tensor of a
perfect fluid

1 1
+ —
C2

THY=pc? utu’—pgt?,

m+ >
p

where p is the rest mass density] is the specific energy

Using iteratively this relation, we find for the time transfer density(ratio of internal energy density to rest mass density

function

1 QPN(Cta,Xa,Ctat+ Rap,Xg)
T(tAvaIXB)z ERAB_ CRAB

+0O(5). (20

This formula shows that the time transféft, ,X,,Xg) can
be explicitly calculated up to the order ct/ when
QPN (x,,xg) is known. This fundamental result will be ex-
ploited in the following sections.

The quantity QPN (cta,X,,Cta+Rag,Xg) in Eq. (20)
may be written in an integral form using E@.8), in which
Rag and Rag\+ct, are substituted forx3—x2 and for
x?o)(h), respectively. Hence

1 1 (1
T(ta . Xa Xp) = ERAB[ 1- 2_(:210 [h(()%)(za(K))
o2 _
+h$%z%x)»wNL+Ehﬁ%z«x»wﬂde

+0(5), (21

the integrals being taken over the line defined by the para-

metric equationx“=z%(\), where

Oos\=<1.
(22)

Zo()\):RAB)\+CtA, Zi()\):RABNi)\+XiA,

It must be noted that the line defined by E&2) is the null
geodesic of a Minkowski metric from,, the direction co-
sines of which aréN'=(xg—X4)/Rag-

p is the pressure anat is the unit 4-velocity of the fluid. In
this section and in the following onea, is the coordinate
velocity dx/dt of an element of the fluid. We introduce the
conserved mass density given by

12+3U
2 Y

p*=p\-gu’=p

1+i2 +0(4)|, (23
C

whereg=det(g,,) andU is the Newtonian-like potential

* XO,X,
L)d3x’ .

(29)
|x=X'|

U(xo,x)zGJ

In order to obtain a more simple form than the usual one
for the potentialshy;, we suppose that the chosext*] are

related to a standard post-Newtonian gau&%‘)(by the
transformation

1
x0=x%+ —[(1+2&+a—{1)dix—2az0,- V],
Cc

X=X, (25)

wherey is the superpotential defined by
1
xu9m=§eprwaw—ww%h (26)

Moreover, we defing by
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2

- 1 v
p=p*| 1+ 5(2y+1-2¢+ag+ )
2 c2

u II
+(1-28+ §+§2)?+(1+ 53)@

2
Ur

p 1
+(3y—2&+ 3(4)@‘ 5(“1—03)?

UV

f'z +0O(4)|. (27)

l( 2a3)
— Al —<4a
2 1 3 c

Then, the post-Newtonian potentials read

2 2B, 2 1
hoo= — W+ — W+ —dw+ —({1—28) ¢,
c c c C
2&2 i ]
=L vl +0(6), 28
2 1 1
hE{hOI}:_S y+l+—a’l W+—Cller +O(5),
c 4 4
(29
2y
hij:_?W5ij+o(4)! (30)
where
0(x0,x’
W(xo,x)=Gf pl )d3x’
Ix—x']

1
+ g[(1+2§+ ay— 1) dux—2a0,- V(dix) ],

(31)
p* (X%, x") p* (x°,X") (x—x")
¢W(X01X):sz
Ix—x'|3
X(X XX )d3x’d3x”, (32
|X_XH| |X/_XH
* (0 7/ 0 yry. _v'\12
¢v(x°,x)=6fp O X[ (X7.x") - (x=x')] .
Ix—x'|3
(33
* (0 7 0
W(xo,x)szp (XKD oy (34)
X=X

PHYSICAL REVIEW D 66, 024045 (2002

B. Determination of the world function
and of the time transfer

For the post-Newtonian metric given by E488)—(34), it
follows from Eq.(18) that Q(xa,Xg) may be written up to
the order 1¢2 in the form given by Eq(17) with

QPN(x4,x5) = AV (xp,xg) + QN (Xp , Xp)

+Q "V (xa xg), (35)

where

1
QM (X , xp) = — ;[(xg—xi{)% yR3g]

1
xfo W(X(oy(N))dA, (36)
(PN) 2 1 0_,0
Qy (XA,XB):E ’Y+1+Za1 (Xg—Xa)

1
X Rag: fo W(X(oy(\))dN, (37)

1
QS;’:N)(XA Xg) = 2_C3a1(Xg_X9\)(RAB‘ vy)

1
X fo W(X(g)(N))dA, (39

the integrals being calculated along the line defined by Eq.

9).

The corresponding time transfer function is easily ob-

tained by using Eq(20) or Eq.(21). We get

1 1 1
T(ta ,Xp . Xg)= c RAB"‘E( Y+ 1)RABJ’O w(z“(\))dA

1 1
y+1+ Zoq) f wW(z*(N\))dN

- _RAB :
c* 0

1 1
+—a1vrf w(z*(\))dN |+ 0O(5), (39

4 0

the integrals being evaluated along the curve defined by Eg.

(22).

Let us emphasize that, since=U+0O(2), w may be
replaced by the Newtonian-like potentidl in expressions
(36)—(39).

C. Case of stationary sources

In what follows, we suppose that the gravitational field is
generated by a unique stationary source. Thigp=0 and
the potentialsv andw do not depend on time. In this case,
the integration involved in Eq$36)—(38) can be performed
by a method due to BuchdaHl5]. Introducing the auxiliary
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variablesy,=x,—x' andyg=xg—X’, and replacing in Eq. outside the body. We denote by the radius of the smallest
(9) the parametek by u=\—1/2, a straightforward calcu- sphere centered on O and containing the b@dy celestial
lation yields bodies . is the equatorial radiysin this section, we assume
the convergence of the multipole expansions formally de-
1 A . . ; )
j W(X(o)()\))d)\=GJ X V(X' Xa X)X (40) rived below at any point outside the body, evem4fr..
0
A. Multipole developments of W and W

1 . . .

f W(x(o)()\))d)\sz p* (X )o (X' )F (X' Xa ,X5) d3X', Accprdmg to Eqgs.(31), (34) anq (43), the gravitational
0 potentialswW and W obey the equations
(41) A
, , V2W=—47Gp, V?W=-47Gp*wXx. (44)
where the kernel functioft (x’,x,,Xg) has the expression
It follows from Eq. (44) that the potentialV is a harmonic
F(X Xp Xg) = F’Z du function outside the rotating body. As a consequel¢epay
AT be expanded in a multipole series of the form

1
(Yg—Yya)U+ §(VB+YA)

n

GM - le
W(x)zT[l—Zz Jn(T Pa(cos®)|. (49

Noting that ys—ya=Rag, Which implies that |yg—ya|
=Rag, We find
In this development, th®, are the Legendre polynomials

F (XX Xe) = iln |X—Xa| +[X—Xg| + Rag 42 and the quantitie®, J,, ... J,, ... correspond to the gen-
(XXa,Xg) = Rag | |X—Xal+|x—Xg|—Rag/" eralized Blanchet-Damour mass multipole moments in gen-
eral relativity[19].

Inserting Eqs(40), (41) and(42) in Egs.(36)-(38) and in Eq. In fact, taking into account the identity

(39 will enable one to obtain quite elegant expressions for

QPN(x, ,xg) and forT(x,,Xg), respectively. (1) (=1)"n!
—|=]= Pa(z/r), z=x5,
&Zn r rl+n

IV. ISOLATED, AXISYMMETRIC ROTATING BODY

ét will be much more convenient for the computation of in-
tegral (40) to use the following expansion in a series of de-

5, C0 3]
0z

r p=2 n! n\r

Henceforth, we suppose that the light is propagating in th
gravitational field of an isolated, axisymmetric rotating body. 2’ ¢
The gravitational field is assumed to be stationary. The maifiVatives of 1f:
purpose of this section is to determine the influence of the
mass and spin multipole moments of the rotating body on the W(x)=GM
coordinate time transfer and on the direction of light rays.

From these results, it will be possible to obtain a relativistic
modelling of the one-way time transfers and frequency shiftsaccording to Eq.(46), the mass density can be developed
up to the order " in a geocentric nonrotating frame. in the multipole series

Since we treat the case of a body located very far from the

(46)

other bodies of the universe, the global coordinate system “o(—1)" on
(x*) used until now can be considered as a logal. geo- p(x)=M| 8900~ e 00|, (47)
centrig one. So, in agreement with the UAI/UGG Resolution n=2 ’ 9z

B1 (2000 [18], we shall henceforth denote By andW, the
guantitiesw and w, respectively-defined by Eq$31) and
(34), and we shall denote b, , the components of the
metric. However, we shall continue here with using lower
case letters for the geocentric coordinates in order to avoi
too heavy notations.

The center of mass O of the rotating body being taken as W(x)=GJ
the origin of the quasi-Cartesian coordinat&}y, (ve choose
the axis of symmetry as the€ axis. We assume that the body ) . )
is slowly rotating about & with a constant angular velocity It is possible to show that this vector may be written as
, so that

5®)(x) being the Dirac distribution supported by the origin

.Now, substituting Eq(43) into Eq. (34) yields for the
gector potentialWV

*(X )X X’
%Cﬁx'_ (48)
[x=x'|

1
v(X)=wXX. (43) W=— F@X vV, (49)

In what follows, we putr =|x|, ra=|xa] andrg=|xs|. We  whereV is an axisymmetric function satisfying the Laplace

call 6 the angle betweer and O3. We consider only the equationV2?V=0 outside the body. Consequently, we can
case where all points of the segment joinixgandxg are  expandV in a series of the form
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o

1—21 Kn(%) P, (cosf) |, (50)

Gl
V(X)Z T

wherel and theK, are constants. Inserting EO) into Eq.

(49) and using the identity
(n+1)P,(z/r)+(2r)P(2Ir) =P, (2/1),
we find for W an expansion as follows:

n
P/ 1(cos#)

GlwXXx
2r3

W(x)= , (51

- r
1- >, Kn(—e
n=1 r

which coincides with a result previously obtained by one of
us[20]. The coincidence shows thhatis the moment of in-

ertia of the body about theaxis. Thus, the quantit$=1w is

the intrinsic angular momentum of the rotating body. The
coefficientsK,, are completely determined by the density dis-
tribution p* and by the shape of the bofi30,21]. Expansion

(51) may also be written as

[’

S ﬂKnrgﬁ_(z)]_

ra=1 nl gz"\ I

W(x)=—%GS><V
(52
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a property which will be exploited in the following section.

B. Multipole structure of the world function

The functionQ (PN (x, ,xg) is determined by Eqg35)—
(38) wherew andw are, respectively, replaced by andW.
The integrals involved in the rhs of Eq85)—(38) are given
by Eqgs.(40) and(41). Substituting Eq(47) into Eq.(40) and
using the properties of the Dirac distribution, we obtain

1 "
1- —J rh—
nZZ nt =" egzn

0

X F(X,Xa Xg)|x=0- (54

Similarly, substituting Eq(53) into Eqg. (41), we get

1 "
1-2 —Knrg—}
iz

n=1 n!

1 1
f W(X(O)()\))d)\:_EGSXV
0

X F(X,Xp 1 Xg)|x=0- (55

These formulas show that the multipole expansion of
QPN (x,,xg) can be thoroughly calculated by straightfor-
ward differentiations of the kernel functiofr(X,Xa,Xg)

given by Eq.(42). They constitute the essential result of the

Consequently, the density of mass current can be developgfesent paper, from which it would be possible to deduce the

in the multipole series

p* (X)(@XX)

30— 2,

=1 Nl

(—p" "
— )
K“reazné (x)

= 1s><v
2

multipole expansions giving the time transfer and the fre-
quency shift betweer, andxg up to the order b*.

In order to obtain explicit formulas, we shall only retain
the contributions due tM, J, andS in the expansion yield-
ing QY and QN . Then, denoting the unit vector along
the z axis by k and noting thatS=Sk, we get for

(53 OF"(xa.xe)
|
QY (s x )__GM (xa—x2)2+ yR3g rA+rB+RAB)+ZGM rz(xg—x2)2+7Rf\B(r ' )(k.xA+k.xB)2
WoTANTE c? Ras ratrs—Ras 2 P (ratrp)2-Reg2 N P ra 1
GM  ,(Xg—Xa)+ YRag| (kxxa)?  (kXXg)?
T2 e 2_ 2 3 3 (56)
c (ratre)*—Rag 'a s
|
and forQ{y" (x ,xg) QPN ) GM( o O)RAB'Ur
Xp,Xg) = a;—— (Xg—X
o, KaXe) = a1 5 g Xa) T
2G
QFV(xaxg)=| y+1+ 1% — 0G—xR) ratrg+Rag
c A B AR (58)
ratres—Rap
Fatr k- (XaX X
A B (A B) +o.n (57)

r‘ArB (I’A+ I’B)Z—RiB

Finally, owing to the limit|a;|<0.02 furnished in9], we

In this section and in the following one, the symbbl - -
stands for the contributions of higher multipole moments

which are neglected. For the sake of brevity, whien. - is

shall henceforth neglect all the multipole contributions inused, we systematically omit to mention the symbxin)

QS,F:N)(XA,XB). Thus, we get

which stands for the neglected post-Newtonian terms.
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C. Time transfer function up to the order 1/c* The time transfer is thus explicitly determined up to the or-

: : der 1t*. The term of order 1 given by Eq.(60) is the
Let us substitutdRsg for x3—x3 into Egs.(56)—(58) and : e . -
insert the corresponding expression®f"N) into Eq. (20). well-known Shapiro time delay. Equatiofl) and (62) ex

: X ! tend results previously found for=1 anda;=0 [5]. How-
Yc:/vevsget an expression for the time transfer function as folg, /e, "or derivation is more straightforward and yields for-

mulas which are more convenient to calculate the frequency

1 shifts. As a final remark, it is worthy of note thzy and7;,
T(Xp,Xg) = ERAB+ T (Xa,Xg) + TJZ(xA ,Xg) +7g(Xa 1 Xp) are symmetric in X, ,Xg), while 7g and Q;r are antisymmet-

ric in (X ,Xg)-
+ 7, (Xa . Xg) + - -, (59
' D. Directions of light rays at x, and xg up to the order 1/c®

where In order to determine the vectors tangent to the ray path at
Fatra+ RAB) X andXxg, we use Eqs(6) and (7) whereT is repIaC(_ad by
—— |, (600 the expression given by E¢9). For the sake of brevity, we
FatTe=Ras put henceforti,={(1) 2} andlg=1{(I;)g}. We find

GM
TM(XAaXB):(')’"'l)?m

GM  Jr2Rap

Ty, (Xa Xe) = — (y+ ;|_)?m Ia(Xa %) = = NagtIn(Xa . Xp) +15,(Xa  Xg)
AR AB +ls(Xa  Xg) 1y (Xa,Xg)+--+, (64
2(ra+r k-xa k-xg\|?2
(T B)Z . B) le(Xa Xg) = —Nag—Iu(Xg,Xa) = 15,(Xg,Xa)
(ratre)®~Rag! A Ts

+1s(Xg ,Xa) 1y (Xg,Xa) + - - -, (65)
- (kXxA)Z_ (kX xg)? '

: (61)  wherely, 1, Is andl, stand for the contributions dfy, ,

3 3

r r

A . 7;,, Ts andZ, , respectively. Putting

1 2GSrp+rg
Trs(XA,XB):_ 7+1+—011 I _XA _XB _XB_XA
4 c* rals Na=—, Ng=—, Nag= R )
F'A s AB
K- (XaX Xg) 62 we get from Eq.(60)
(rA+rB)2_RAB, 2GM (ra+rg)Nag+ Ragna
Im(Xa,Xg)=—(y+1)— > >
T ( ) GM RAB'vr I’A+rB+RAB c (rA+rB) _RAB
Xa,Xg)=—a;—— )
v TAITE '2c* Rag ratrg—Rag (66)
(63 From Eq.(61), we get
|

GMerz rA-H‘B (rA+I’B)2+3RiB 1_(knA)2

13,(Xa , Xg) = (y+1) —— & 5~ Nag| 2(k-na+k-ng)? > =2 ;
c [(ratrg)“—Ragl (ratre)“—Rag A
1—(k-ng)?\ (ra+rg)?+Rig Rag 3(ra+rg)®+Rig 1
+ nA (k'nA+k'nB)2 2 __[1_3(knA)2]
s ratre atrs (ra+rg)>—Rig 2

X(3rA+ re)(ra+rg)—Rag

2(k-np)(k-n 1—(k-ng)?
. rarry 2 ,?( 8 (r 5) ”
ra A B
Rag \(3rA+rB)(rA+rB)_R,2AB
e [ e e +(k-ng) ] 67)

From Eqs.(62) and(63), we derive the other contributions which are of ordes®1/

1 )ZGS rat+rg

lS(XA'XB): 'y+ 1+—al
4 ¢ ral(ra+re)?—Rigl

(3ra+re)(ratre)—Rag
2rp(ra+rg)

2r argk- (NaXng)
X[k ng+ na+ng

Y
(ratre)“—Rag

] : (68)
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GM

ratrg+Rag
|v,(XAaXB):a1_C3

ratrg—Ras

(ratrg)Nag+Ragna
2
(ra+tre)®>—Rig

v, —(v,-Nag)Nap
2Rpg

(v;-Nap

(69

We note that the mass and the quadrupole moment yieltdon defined by Eqs(59)—(63). This expression extends the
contributions of order £#, while the intrinsic angular mo- previous formulg7] to the next order /. The second, the
mentum and the velocity relative to the universe rest framehird and the fourth terms in Eq470) represent pure Sagnac

yield contributions of order &f. terms of order 1%, 1/c® and 1t*, respectively. The fifth and
the sixth terms are contributions of the gravitational field
E. Sagnac terms in the time transfer function mixed with the coordinate velocity of the receiving station.

Since these last two terms are of ordec*l/they may be
calculated for the argumentgd,x,) (note the order of the
arguments irly, andIJZ).

In an experiment like ACES, recording the time of emis-
sion t, will be more practical than recording the time of
receptionty . So, it will be very convenient to form the
expression of the time transfef(x,,xg) from x,(tp) to

xg(tg) in terms of the position of the receiverat the time V. FREQUENCY SHIFT IN THE FIELD OF AN
of emissiont,. For any quantityQg(t) defined along the AXISYMMETRIC ROTATING BODY
world line of the statiorB, let us put@BZQB(tA). Thus we A. General formulas

may writeXg, s, vg, vg=|vg|, etc. _ _ Consider a clock), on A and a clockOg on B delivering,
Now, Iet~us introduce the instantaneous coordinate d'sfespectively, the proper frequenciég and fz and suppose

tance Dag=Xg—Xa and its normD,g. Since we want to  that O, is sending photons to®g. The one-way

know t§ —t, up to the order B, we can use the Taylor frequency transfer from®, and Og is characterized by

expansion oR,p the ratio fpo/fg which may be written asf,/fg
=(falva)(valvg)(vg/fg) Wherev, is the proper frequency
Rap=Dpag+ (12—t Yos+ E(t*—t )ZéB of the photon as measured Arat the instant of emission and
ABTTABTAB TATB T B A vg is the proper frequency of the same photon as measured

1 on B at the instant of receipt. The ratibg/v, andfg/vg are
+ ot —t)%bg+ - -, obtained by local measurements performedAoand B, re-

6 spectively[7]. So, in the present paper, we are concerned
only with the theoretical determination of,/vg. This ratio

where ag is the acceleration oB and bg=dag/dt. Using is given by the well-known relation

iteratively this expansion together with E&9), we get

E_ UK(I/,L)A

~ 1~ (72)
T(XAuXB):T(XA:XB)+?DAB'UB ve  uf(l,)g
1 (Dpg-0g)? ~ _ whereuiy = (dx*/ds) , andug = (dx*/ds)g are, respectively,
+ F AB D2 +vgtDap-ap the unit 4-velocity of the clock), and of the clockOg, and
c AB

(I,)a and (,)g are the null tangent vectors at the point of
emissionx, and at the point of receptioxy, respectively.
(DAB';B)(;ZB_I' Dag- 3g) Let_ us denote_z_byuA=(dx/dt)A and vB=(dx/dt)B_ the
coordinate velocities of the clocks @nandB, respectively.
Since the gravitational field is assumed to be stationary, the
T }DiB(;B"éB'}_ %DAB'EB” formula (71) giving the frequency shift betweexy and xg

+ —
C4

2 may be written as

1 Dag ~ - -
oD vel v (Xa,Xg) +75,(Xa ,Xp)]

AB va W g 1 1
Ao AR ga=1+ Zlava, Q=1+ -lgv

1 5 ~ 5 Vg ug qB ’ A c A VA, B c B B
+ ?DABUB'[IM(XB Xa) T13,(Xg 1 Xa) ] (72
+--, (700  wherel, andlg are the quantities, respectively, defined by

~ o Eqgs.(6) and (7).
where7 (X ,Xg) is obtained by substitutingg , rg andDag, It is possible to calculate the ratmp, /qg up to the order

respectively forxg, rg andR,g into the time transfer func-  1/c* from our results in Sec. IV sindg andlg are given up
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to the order 1¢3, respectively, by Eqg64) and(65). Denot- andW is given by Eq.(48). As a consequence, for a clock
ing by | (M/c" the O(n) terms inl, qa/qs May be expanded moving with the coordinate velocity, the quantity ° is
as given by the formula

1 Nag-(va—v 1
Ga_y 1Nelamve) 10 @,

Qg ¢ vg 3 AB 1 dr 1 1
1-N =1 .2
AB" o L0 dt 1 C2(W+2v )
+i[|(3), 1. ]+iN _[(|(2), ) 1 1 1
AL A o~ lp "Us o4 ABLilB Up)(la +§ ,3_5 W2 — 7+§ Wy 2
—2vg)+ (1P vp)vE] +O(5). (73)

. o . Sy 2(y+HW-v
In order to be consistent with this expansion, we have to 8

perform the calculation ofi%/u at the same level of ap-

proximation. For a clock delivering a proper time 1/u® is

the ratio of the proper timer to the coordinate timet. To ~ from which it is easily deduced that

reach the suitable accuracy, it is therefore necessary to take

into account the terms of orderct/in goy. For the sake of

simplicity, we shall henceforth confine ourselves to the fully UA

conservative metric theories of gravity without preferred lo- =1+

cation effects, in which all the PPN parameters vanish except ug c?

B andy. Since the gravitational field is assumed to be sta-

tionary, the chosen coordinate system is then a standard post-

Newtonian gauge and the metric reduces to its usual form

+0O(6), (76)

L2 1o
WA WB+2UA 2

+ 1 (Y 1) (Wavi—Wev)

2 2 1
Goozl__2W+_fW2+O(6), +§(WA—WB)[WA—WB+vi—U§
C C
34 22 14
+1) +2(1_,8)(WA+WB)]+§UA_ZvAvB gls
{G OI}_ ———W+0(5),
) —2(y+1)(Wa-va—Wg-vg) | +0O(6). (77)
Gij:_ 1+_‘2)/W)5”+O(4), (74)
Cc

It follows from Egs.(73) and (77) that the frequency shift

whereW given by Eq.(31) reduces to svlv is given by

p()

W(x)= U(x)+—
- el

v2+(1—23)u+n+3y% d3x’,
p

1
Yty

(75  where (6vlv), is the special-relativistic Doppler effect

2 2

1
[NAB (va—vp)]

ov 1 1 )
> C:_ENAB'(UA_UB)"_? VAT EUB_[NAB'(UA_UB)](NAB'vB) UA v
+(N 2|y L2 Lo La - N 12—12+N 211+0(5
AB UB) 4| gUA™ 4UAUBT gUs [Nag-(va—vg)](Nag-vs) VAT 5UB (Nag-vg) (5)
c
(79

and (6v/v)4 contains all the contributions of the gravitational field, eventually mixed with kinetic terms
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ov

1 1 (2) (2) 1
— ZE(WA_WB)_g{(WA_WB)[NAB'(vA_UB)]_IA optly 'UB}+§

1
. (7+1)(Wavi—Wgvg) + 5 (Wa— W)
g

X{Wp—Wg+ 2(1_:8)(WA+WB)+U,2L\_UZB_Z[NAB' (va—vg)[(Nag-vg)} + Npg-[(I EZ)'UB)(UA_ZUB)

+(12 v )oel + 1= 2(y+ DWal va—[1§—2(y+1)Wg] - vg | + O(5). (80)

It must be emphasized that the formul@§) and(77) are  ground station andNg- (va—v)/c|<2.76x10°° for the
valid within the PPN framework without adding special as-first-order Doppler term.
sumption, provided tha8 and y are the only nonvanishing  Our purpose is to obtain correct estimates of the effects in
post-Newtonian parameters. On the other hand, (B0). is Eq. (80) which are greater than or equal to 8 for an
valid only for stationary gravitational fields. In the case of aNaxisymmetric model of the Earth. At this level of approxima-
axisymmetric rotating body, we shall obtain an approximatg;q, “it is not sufficient to take into account tde terms in
expression of t_he frequenpy shift by inserting the following (Wo—Wg)/c2. First, the higher-multipole moments,
developments in E¢80), yielded by Eqs(64)—(69): J4, ... yield a contribution of order 10 in W,/c?. Sec-

ond, owing to the irregularities in the distribution of masses,
the expansion of the geopotential in a series of spherical

IE)/czle(xA,xB)JrIJz(xA,xB)+ cee harmonics is probably not convergent at the surface of the
Earth. For these reasons, we do not expahig € Wg)/c? in
Eq. (80).
However, for the higher-order terms in E®0), we can
|,(’-\3)/C3=IS(XA1XB)+ Ty apply the explicit formulas obtained in the previous section.

Indeed, since the difference between the geoid and the refer-
ence ellipsoid is less than 100 M/g/c? may be written as

22
|g)/czz_|M(XB,XA)_|32(XB,XA)+'", [22]

Lw, GM+GMr§JZ(1 3 co80)+ =AW
“Wg=——+—>-"(1-3co = :
1B =1g(xg Xa) + - - -, 2 ° gy 20 20

the functionlg being now given by Eq(68) written with . .
a;=0. Let us recall that the symbot - - - stands for the ‘Where the residual termi\Wg /c? is such that| AWg /c’

_14 . .
contributions of the higher multipole moments which are ne-=10 " At 2 level of experimental uncertainty a_bou_t‘_‘ﬂé,
glected. this inequality allows us to retain only the contributions due
to M, J, and S in the terms of orders &? and 1£*. As a

consequence, the formu(80) reduces to
B. Application in the vicinity of the Earth

In order to perform numerical estimates of the frequency
shifts in the vicinity of the Earth, we suppose now tlais

on board the International Space Statit®S) orbiting at the ov)\ 1 1/6v\® 1/[60\®
altitudeH=400 km and thaB is a terrestrial station. It will v :g(WA_WBHg " Sl +

be the case for the ACES mission. We usg K I2
=6.37<10° m andr,—rg=400 km. For the velocity of 1/60\@® 1[50\ @®

ISS, we takev,=7.7X10° m/s and for the terrestrial sta- + _(_) _<_ +... (81)
tion, we havevg=465 m/s. The other useful parameters ct\ v ct\ Vg

concerning the Earth are as followsGM=23.986

X 10" m¥/s?, r,=6.378<10° m, J,=1.083x 10 3; for n

=3, the multipole moment3,, are in the order of 10°. With

these values, we galg/c?~GM/c?rg=6.95<10"1° and  where the different terms involved in the rhs are separately
W, /c2~GM/c?r ,=6.54x 10" 1°. From these data, it is easy made explicit and discussed in what follows.

to deduce the following upper boundfNag-va/c|<2.6 Using the identity (A+rB)2—R2AB=2rArB(1+nA-nB), it
x10°° for the satellite,|Npog-vg/c|<1.6x10°° for the  may be seen thatp/v){> is given by

024045-11



BERNARD LINET AND PIERRE TEYSSANDIER PHYSICAL REVIEW D56, 024045 (2002

(5v)(3)_ GM(ra+rg)

( y+1 Fa— rB) C. Influence of the quadrupole moment at the order ic?
v

" Alg 1+nang ratrs Defining the quantity 5 by

X[Nag: (va—vg)]+(y+1)
RAB nA'UA+nB'UB
ratrg  1+npa-ng

2
_(ra—rg)
ABT T

(82

The contribution of this third-order term is bounded by 5

X 10" for y=1, in accordance with a previous analysisit is easily deduced from Eq$67) and (80) that the term

[7]. (51//1/)J2 in Eq. (82) is given by

ov\® GM re|® ) re|® )

—] =5;=JANag- (va—vp)]|| —| [3(k-na)*=1]—| —] [3(k-ng)*—1]

v/, 2re ra s

2
y+1 GM Jr2(rp+rp) 1 ( 5—3n,-Ng+ 2K ap
Nag-(vpa—v k-na+k-ng)?
> 212 (L4 ng)? [Nag-(wa—wg)]| (k-np B) T+nang
ra(k-ng)?+rg(k-na)? Ras
_(1_ rA+rB (3_nA'nB+KAB) +m(nA~vA+nB-vB)(k-nA

7—I’IA~nB+2KAB RAB I’A+I’B(2+nA'I’IB) RAB

+K-ng) T+n,ng A (Na-va)[1-3(k-np)7] Atrs s (ng-vp)[1
ra(2+na-ng)+rg Na-Ua Ng-Ug 1—(k-ng)?
—3(k-ng)?] —— +Rpg 2| ——+ —— (k'nA)(k'nB)_(nA'vA)r—
A B A B B
1-(k-ny?l R ra+rg(2+n,-ng)
—(nB-vB)¥ —2- 28 (kv ) k- np s(2+ NN +k-ng
Fa Fa Fatrg

ra(2+na-ng)+rg
ra+rg

R
_Zﬂ(ka)
s

k-na+k-ng . (83

One hagua/c|=2.6xX10°, |vg/c|<1.6x10 ® andK,g=3.77x10 3. A crude estimate can be obtained by neglecting in
Eq. (83) the terms involving the scalar produaig-vg andk-vg. Since the orbit of the ISS is almost circular, the scalar
productn,-va can also be neglected. On these assumptions, we find;=dr,

1 (3)

C3

ov

14

<1.3x10 16 (84)

J2

As a consequence, it will perhaps be necessary to take into accou@{ &)econtributions of], in the ACES mission. This
conclusion is to be compared with the order of magnitude givef¥jrwithout a detailed calculation. Of course, a better
estimate might be found if the inclination=51.6 deg of the orbit with respect to the terrestrial equatorial plane and the
latitude 7/2— 6g of the ground station were taken into account.

D. Frequency shifts of order Zc*
The term ©v/v){? in Eq. (81) is given by

Sv\ @ GM GM GM(rp—rg) GM\?
il SV o 2V o) _ZVVA B2 2y, S 2" 2 _ 2_ .2
( V)M (7"‘1)( VA s UB) TR Ua UB)+2 rArB) [(ra—re)"+2(B—=1)(ra—rg)]
GM(rA+rB) 2('y+1) rA_rB ’y+l RAB
— — . — . + . .
R 1+nang Tatrg [Nag:(va—vg)](Nap-vB) 1+ns Ng rA+rB{(nA va)(Nap-UB)

—[Nag- (va—2vg)](Ng-vE)}|- (85
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The dominant term¢+1)G Mv,ﬁ/rA in Eq. (85) induces a correction to the frequency shift which amounts 04 ®Bo, it
will certainly be necessary to take this correction into account in experiments performed in the foreseeable future.

The terms ¢v/v) (54) is the contribution of the intrinsic angular momentum to the frequency shift. Substituting®ysnd
(68) into Eq. (80), it may be seen that

Sv\ 4
(_) =(F)a—(F9)s> (86)
Vs
where
GS ra kX ng e K-(NnpaXng) [ra+rg(2+na-ng)
(Fha=(y+1)—| 1+ —|va- — kKX np+ Na+ngl, (87
SIA Y ri s A 1+nA‘nB ratrg A (1—|—nA.nB)2 ratrg A B
GS s kX ny A k-(naXng) ra(2+na-ng)+rg }
Fog=(y+1 —(l+—v~ - kXng— n n
( S)B (y ) ré I'a B [1+nA'nB I‘A+I’B B (1+nA'nB)2 A rA-H‘B B
(88)
I
In order to make easier the discussion, it is useful to in- VI. CONCLUSION

troduce the angle) betweenx, and xg and the angle ,
between the plane of the photon path and the equatori%
plane. These angles are defined by (

In this paper, we have shown that the world function
Xa,Xg) constitutes a powerful tool for determining the
(coordinatg time transfer and the frequency shift in a weak
gravitational field. Our main results are established within
the Nordtvedt-Will PPN formalism. We have found the gen-
eral expression of) (X, ,Xg) up to the order 2. This result

yields the expression of the time transfer function
T(ta,Xa,Xg) at the order 1*. We point out thaty and a,

cosy=np-ng, O=y<m,

k-(naXng)=sinygcod,, O<i,<m.

With these definitions, it is easily seen that are the only post-Newtonian parameters involved in the ex-
pressions of the world function and of the time transfer func-
k-(naXng) Y tion.
—————— =CO0si ytans. : ; ; ;
1+np-ng P2 We have treated in detail the case of an isolated, axisym-

metric rotating body, assuming that the gravitational field is

Let us apply our formulas to ISS. Due to the inequality Stationary and that the body is moving with a constant ve-
velva<6X10"2, the term (Fs)g in Eq. (86) may be ne- locity v, relative to the universe rest frame. We have given a

glected. From Eq(87), it is easily deduced that systematic procedure for calculating the terms due to the
multipole moments in the world functiof(x,,Xg) and in
GS Fa| 2+ 3tany/2) the time transfer functior/ (x,,Xg). These terms are ob-
[(Fo)al=(y+ 1)—2<1+ — | ———7Ua- tained by straightforward differentiations of a kernel func-
r rg) |1+cosy|

A tion. We have explicitly derived the contributions due to the
massM, to the quadrupole momemdt, and to the intrinsic
Assuming G<y=<m/2, we have (2 3|tany/2|)/|1+cosy{  angular momentun$ of the rotating body.

<b5. Inserting this inequality in the previous one and taking Restricting our attention to the case where oglyand y

for the EarthG ¥cr4=3.15x 106, we find are different from zero, we have then determined the general

expression of the frequency shift up to the ordes*1Me

1/ 60\ @ have obtained the contributions 8§ at the order 1. Our
- ( —) <(y+1)x10° % (89 method would give as well the quadrupole contribution at the
ct\ Vs order 1£% in case of necessity. We have found the complete

evaluation of the effect of the intrinsic angular momentgm
Thus, we get an upper bound which is slightly greater tharwhich is of order 1¢*. 1t is noteworthy that our formulas
the one estimated by retaining only the tehgv'/c in Eq.  contain terms which have not been taking into account until
(77). However, our formula confirms that the intrinsic angu- now.
lar momentum of the Earth will not affect the ACES experi-  Within the limits of our model, the formulas that we have
ment. established yield all the gravitational corrections to the fre-
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quency shifts up to 10'® in the vicinity of the Earth. We but which remains three orders of magnitude less than the
have applied our results to the ACES mission. We haveexpected accuracy in an experiment like ACES. Finally, it
found that the influence of the quadrupole moment at thenust be noted that our results could be applied to the two-
order 1¢£% is in the region of 106 For the effect of the way time/frequency transfers. In particular, 19¢3) contri-
intrinsic angular momentum, we have obtained an uppebutions ofJ, to the two-way frequency transfers would prob-
bound which is greater than the currently accepted estimatably deserve to be carefully calculated.
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