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ABSTRACT

Context. The Galilean satellites Europa, Ganymede, and Callisto are thought to harbor a subsurface ocean beneath an ice shell but
its properties, such as the depth beneath the surface, have not been well constrained. Future geodetic observations with, for example,
space missions like the Europa Jupiter System Mission (EJSM) of NASA and ESA may refine our knowledge about the shell and
ocean.
Aims. Measurement of librational motion is a useful tool for detecting an ocean and characterizing the interior parameters of the
moons. The objective of this paper is to investigate the librational response of Galilean satellites, Europa, Ganymede, and Callisto
assumed to have a subsurface ocean by taking the perturbations of the Keplerian orbit into account. Perturbations from a purely
Keplerian orbit are caused by gravitational attraction of the other Galilean satellites, the Sun, and the oblateness of Jupiter.
Methods. We use the librational equations developed for a satellite with a subsurface ocean in synchronous spin-orbit resonance. The
orbital perturbations were obtained from recent ephemerides of the Galilean satellites.
Results. We identify the wide frequency spectrum in the librational response for each Galilean moon. The librations can be sepa-
rated into two groups, one with short periods close to the orbital period, and a second group of long-period librations related to the
gravitational interactions with the other moons and the Sun. Long-period librations can have amplitudes as large as or even larger
than the amplitude of the main libration at orbital period for the Keplerian problem, implying the need to introduce them in analyses
of observations linked to the rotation. The amplitude of the short-period librations contains information on the interior of the moons,
but the amplitude associated with long periods is almost independent of the interior at first order in the low frequency. For Europa,
we identified a short-period libration with period close to twice the orbital period, which could have been resonantly amplified in the
history of Europa. For Ganymede, we also found a possible resonance between a proper period and a forced period when the icy shell
thickness is around 50 km. The librations of Callisto are dominated by solar perturbations.

Key words. planets and satellites: general – planets and satellites: individual: Ganymede – planets and satellites: individual: Europa
– planets and satellites: individual: Callisto – celestial mechanics – planets and satellites: interiors

1. Introduction

Europa and Ganymede will be the main targets of the future
NASA-ESA Europa Jupiter System Mission (EJSM) (Blanc
et al. 2009). One of the objectives of this mission is to determine
the geophysical properties of both satellites and, in particular, to
characterize water oceans beneath their icy shell. Such oceans
might be crucial for the emergence of habitable worlds in the
Solar System. Measuring the librational motion of the satellites
can be a useful technique to prove the existence of a putative
ocean beneath the ocean as suggested by Wu et al. (2001) for
Europa.

The libration in longitude at the orbital period results from
the variation in the orbital velocity of the satellite related to the
orbital eccentricity (e.g. Comstock & Bills 2003). The librational
motion in longitude considered here describes the principal axis
oscillation of the body projected onto the equatorial plane of the
satellite. Since the Keplerian orbital motion of the satellite is dis-
turbed by gravitational interactions of the satellite with its neigh-
borhood and the Sun, the elliptical elements will present a broad
spectrum of oscillations. All these orbital oscillations modify the

orientation of the satellite with respect to the central planet and
result in libration motion. Henrard (2005a,b) has developed a
Hamiltonian theory for the rigid rotation of Europa and shown
that longer period librations are important, whereas direct effects
of a torque due to Jupiter’s oblateness or Io’s point mass are
negligible compared to the indirect effects on the orbital motion.
Based on this approach, the rigid rotation of Galilean satellites
has been investigated successively (Henrard & Schwanen 2004;
Henrard 2005a; Noyelles 2009). A recent study of the librational
motion of Enceladus, without a global ocean, further underlines
the importance of long-period librations in the rotational motion
of icy satellites (Rambaux et al. 2010).

The objective of this paper is to include the indirect ef-
fects of orbital perturbations on the rotational motion of Europa,
Ganymede, and Callisto each of which contains a subsurface
ocean. The presence of an ocean for the Galilean satellites is in-
ferred from analysis of the geological structures at the surface of
the satellites and magnetic measurements (Kivelson et al. 1999,
2000, 2002; Khurana 1998; Papalardo et al. 1999). Van Hoolst
et al. (2008, 2009) and Baland & Van Hoolst (2010) have in-
vestigated the librational response of the Galilean satellites and
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Titan in the presence of a subsurface ocean and showed that
it increases the librational amplitude. In contrast, the presence
of a fluid core has a weak effect on the amplitude of librations
(Baland & Van Hoolst 2010). In these studies the authors as-
sumed that the orbit is purely Keplerian and focused on the li-
bration in longitude at the orbital period. The amplitude of the
libration essentially depends on (i) the magnitude of the external
torque acting on the dynamical figure of the satellites; (ii) the
thickness of the icy shell h; and (iii) torques between the differ-
ent layers.

The paper is organized as follows: first, we present the out-
line of the librational model that follows the model developed in
Van Hoolst et al. (2009). Secondly, we describe the orbital model
of the Galilean satellites based on the ephemerides of Lainey
et al. (2006). These numerical ephemerides ensure accuracy of at
least a few tens of kilometers in the satellite position. The fourth
section is dedicated to the interior structure models. The follow-
ing sections are dedicated to describing the librational response
for Europa, Ganyemede, and Callisto, and our conclusions are
presented in the last section.

2. Librational model

Like our Moon in orbit around the Earth, the Galilean satellites
are in synchronous spin-orbit resonance and present on average
the same face towards their central body, i.e. Jupiter. Due to the
finite eccentricity of the orbits, the orbital velocity of the moons
is not constant. This variation leads to a gravitational torque from
Jupiter on the moon’s dynamical figure that drives the librational
response of the body. The physical libration represents the de-
parture from the uniform rotational motion, and the libration in
longitude describes the oscillatory motion in the equatorial plane
of the body. The latter is described by the small libration angle
γ = θ − M − θ0, where M is the mean anomaly that evolves lin-
early with time, θ is the angle of rotation corresponding to the
angle between the longest axis of the body and the line of the as-
cending node, and θ0 is a constant representing the initial value
of θ located at the ascending node of the moon’s orbit. As the
obliquity of the Galilean satellites is expected to be small (Bills
2005) we focus our study on the libration in longitude.

The rotation of a body composed of a rigid icy shell, liquid
ocean, and rigid solid interior can be described by the angular
momentum equations for each layer l:

dHl

dt
= Γl (1)

where Hl is the angular momentum and Γl is the sum of
Jupiter’s gravitational torque and internal gravitational and pres-
sure torques. As we neglect the obliquity this vectorial set of
equations reduces to three equations projected along the rotation
axis. In addition, the total torque on the internal ocean reduces
to zero for small differential rotations of layers with respect to
the synchronous rotation, and the dynamical equations can be
expressed as (Van Hoolst et al. 2009):

Csγ̈s +Coγ̈o +Ciγ̈i =
3
2

Gm
d3

[(Bs − As) sin 2ψs

+ (Bo − Ao) sin 2ψo

+ (Bi − Ai) sin 2ψi] (2)

Ciγ̈i =
3
2

Gm
d3

[(Bi − Ai) − (B′i − A′i )] sin 2ψi

+ Kint sin 2(γs − γi) (3)

where the first equation represents the librational motion of the
whole satellite and the second equation describes the librational
motion of the interior. The angle γl is the librational angle of
layer l where l stands for s= shell, o= ocean, or i= interior. G is
the gravitational constant, m the mass of Jupiter and d the rela-
tive distance between Jupiter and the moon. The angle ψl is the
angle between the longest axis and the direction of the satellite to
the Jupiter. It is equal to ψl = v−θl where v is the true longitude of
the satellite from the line of the ascending node of the orbit. The
right-hand-side terms depending on ψl describe Jupiter’s gravi-
tational torque on the different internal layers. The constant Kint
represents the magnitude of the internal gravitational and ocean
pressure coupling between the shell and the interior due to the
misalignment of the two layers. Details of these torques are pre-
sented in Van Hoolst et al. (2009) and references therein. The
principal moments of inertia for each layer Al < Bl < Cl are
assumed to be constant. We consider that the solid layers have
infinite rigidity. Hence elastic deformations and the phase lag
due to anelastic response were neglected (Baland & Van Hoolst
2010). The polar moment of inertia Cl is defined by:

Cl =
8π
15
ρl

[
r5

0,l

(
1 +

2
3
αl

)
− r5

0,l−1

(
1 +

2
3
αl−1

)]
(4)

where ρl is the density, r0,l is the mean radial coordinate of the
outer surface of layer l from the center of the satellite, and αl =
[(al + bl)/2 − cl]/[(al + bl)/2] is the polar flattening due to the
centrifugal and static tidal potentials with al, bl, cl the radii of
the three principal axes of the ellipsoids layers al > bl > cl. The
equatorial moment of inertia difference Bl−Al resulting from the
static tidal potential is:

Bl − Al =
8π
15
ρl

[
r5

0,lβl − r5
0,l−1βl−1

]
(5)

where βl is the equatorial flattening equal to (al − bl)/al. The
contribution (B′i − A′i) is the moment of inertia difference for
the volume of the interior with a constant density ρo

(B′i − A′i) =
8π
15
ρoβir

5
0,i, (6)

and the corresponding term in Eq. (3) expresses the pressure
torque exerted at the interior-ocean interface.

We express the torque of Jupiter on the ocean as the sum of
the torques on the top and bottom parts of the ocean. Therefore,
the second term inside the brackets in the right-hand side of
Eq. (2) can be rewritten as

(Bo − Ao) sin 2ψo = (B′s − A′s) sin 2ψs − (B′i − A′i) sin 2ψi (7)

where

(B′s − A′s) =
8π
15
ρoβor5

0,o (8)

is the equatorial moment of inertia difference of the top of the
ocean.

Because the eccentricity and the physical libration are small,
we retain only first-order terms in these quantities. We then have

Csγ̈s + {3n2[(Bs − As) + (B′s − A′s)] + 2Kint}γs − 2Kintγi =

3n2[(Bs − As) + (B′s − A′s)](v − M − θ0 s) (9)

Ciγ̈i + {3n2[(Bi − Ai) − (B′i − A′i)] + 2Kint}γi − 2Kintγs =

3n2[(Bi − Ai) − (B′i − A′i )](v − M − θ0 i) (10)

where we used θl = M + γl + θ0 in the dynamical equation. In
this linearized equation in eccentricity the quantity (Gm/d)3 can
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Table 1. Frequency analysis of the true longitude of Europa.

Freq. (rad/days) Per (days) Mag (′′) Phase (◦)
j ω j P j Hj α j

L1 − L2 1.782230 3.525463 3829.205 –75.737
ν +�3 0.013034 482.056270 177.012 247.453
ν +�4 0.012939 485.603204 93.901 85.580
L2 −�3 1.769195 3.551437 89.915 216.810
L2 −�2 1.768645 3.552542 80.478 181.379
ν +�2 0.013585 462.514730 63.444 102.910
L2 −�4 1.769291 3.551245 50.820 18.661
L2 − L3 0.891115 7.050927 41.001 142.128
Ψ 0.003051 2059.388286 40.964 109.334
LS 0.001450 4332.938725 37.853 122.629
2L1 − 2L2 3.564459 1.762732 18.712 208.531
3L2 − 3L3 2.673344 2.350309 18.141 246.387
ν +�1 0.015571 403.515373 13.050 –29.048
−Ω4 + Ω0 0.000030 209 871.378822 7.045 161.670
−Ω3 + Ω0 0.000125 50 324.176598 6.730 127.823
2LS 0.002900 2166.518223 4.248 87.421
– 1.795264 3.499868 4.097 –8.282
2ν + Ω2 + Ω3 0.025120 250.130673 3.468 142.546
– 3.539784 1.775020 3.367 17.141
2LS + 2�4 + Ω1 0.000649 9676.813046 2.923 –12.788
2ν + 2Ω2 0.024675 254.634447 2.904 11.386

Notes. The initial date is J1950.

be taken equal to n2 by using Kepler’s third law. If the orbit of
the satellite is purely Keplerian v − M can be developed as a
Fourier series of the mean anomaly as a function of the eccen-
tricity. However, due to gravitational interactions with the other
satellites and the Sun, the difference v − M − θ0 is densified by
Fourier coefficients of the frequencies corresponding to the lon-
gitude and nodes of the other Galilean satellites and the Sun (see
Lainey et al. 2006, and the following section). The equation of
the center v − M − θ0 is thus expressed as a Fourier series

v − M − θ0 =
∑

j

H j sin (ω jt + α j) (11)

where H j, ω j and φ j are the magnitude, frequency and phase of
the orbital perturbations described in the next section.

By substituting Eq. (11) into the libration Eqs. (9) and (10),
we obtain the forced solution for the libration angle of the shell
γs and the interior γi as

γs =
∑

j

γ
j
s sin (ω jt + α j); γi =

∑
j

γ
j
i sin (ω jt + α j) (12)

with the amplitude of sine terms expressed as

γ
j
s =

1
CiCs

1

ω2
1 − ω2

2

⎡⎢⎢⎢⎢⎢⎣ φs
1

ω2
j − ω2

1

+
φs

2

ω2
j − ω2

2

⎤⎥⎥⎥⎥⎥⎦ (13)

γ
j
i =

1
CiCs

1

ω2
1 − ω2

2

⎡⎢⎢⎢⎢⎢⎣ φi
1

ω2
j − ω2

1

+
φi

2

ω2
j − ω2

2

⎤⎥⎥⎥⎥⎥⎦ · (14)

The expressions for the resonant frequencies ω1 and ω2 and the
resonance strengths φk

1 and φk
2 are given in Appendix A. The

proper modes have been described in Van Hoolst et al. (2008,
2009) and correspond to the oscillations at which the body will
librate if it is slightly shifted from the dynamical equilibrium.
Usually, dissipation acting on long time span will damp the
proper mode oscillations to small amplitudes. Therefore we ne-
glect these terms in the libration solution Eq. (12).

3. Orbital model

We use the numerical ephemerides of Lainey et al. (2006) to ob-
tain an accurate representation of the orbit of the Galilean satel-
lites. The accuracy of these ephemerides is 20 km for Europa
and Ganymede, and 35 km for Callisto. The reference frame is
centered on Jupiter and defined by the Jupiter equatorial plane
at J1950. The orbital motion of the satellites is given in ei-
ther Cartesian coordinates or classical geometrical elements. The
Fourier series of the true longitude v are determined using the
TRIP software (Gastineau & Laskar 2008) based on the work
of Laskar (1988, 2005). Tables 1–3 show the main frequencies
for each body. The minimum magnitude1 is chosen as 1′′ for
Europa, Ganymede, and Callisto.

The different terms in Tables 1–3 can be identified by using
the frequencies listed in the tables of Lainey et al. (2006). We fol-
low the same notation in Lainey et al. (2006), m = 1, 2, 3, 4 rep-
resents Io, Europa, Ganymede, and Callisto. The angular vari-
ables Lm are the linear part of the mean longitudes of the four
Galilean satellites, �m the longitudes of their pericenters, Ωm
the longitudes of their nodes, ν the great inequality L1 − 2L2 or
L2 − 3L3 + π, Ls the linear part of the mean longitude of the Sun
(corresponding to Jupiter’s frequency around the Sun), and Ψ
the argument of the Laplacian libration. The variable ρ is the De
Haerdtl inequality 3L3 − 7L4.

The frequency analysis highlights two different timescales:
(i) short-period oscillations, with periods close to the orbital pe-
riod of the satellites, which stem from the orbital eccentricity
of the bodies and resonant interactions among satellites; and
(ii) long-period oscillations resulting from the Laplace reso-
nance (for Europa and Ganymede), interaction with the Sun,
and secular perturbations between satellites. The main forcing
in Tables 1–3 is related to the equation of the center (difference
between mean and true anomaly) and has an amplitude equal to

1 We use the term of magnitude to characterize the amplitude of the
perturbations and reserved the term of amplitude to describe the ampli-
tude of librations.
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Table 2. Frequency analysis of the true longitude of Ganymede.

Freq. (rad/days) Per (days) Mag (′′) Phase (◦)
j ω j P j Hj α j

L3 −�3 0.878081 7.155590 589.650 254.678
L3 −�4 0.878176 7.154814 318.178 56.549
L2 − L3 0.891115 7.050927 248.139 142.132
2L3 − 2L4 1.003443 6.261624 66.431 74.436
LS 0.001450 4332.938842 47.681 122.630
ν −�3 0.013034 482.056267 37.720 67.453
ν −�2 0.013585 462.514665 31.206 –77.113
ν −�4 0.012939 485.603206 19.708 265.581
L3 − L4 0.501722 12.523249 19.443 217.225
−�3 +�4 −Ω3 + Ω0 0.000030 210 144.247108 11.110 159.808
−Ω3 + Ω0 0.000125 50 299.889651 10.094 127.748
3L3 − 3L4 1.505165 4.174416 4.664 111.597
L1 − L3 2.673344 2.350309 4.483 66.341
2L2 − 2L3 1.782230 3.525464 3.882 104.268
Ψ 0.003051 2059.541551 3.503 –70.687
−ρ − 4�4 0.000652 9641.952977 3.193 –33.914
L3 − 2L4 +�4 0.125308 50.141824 2.998 190.809
– 0.877530 7.160079 2.939 36.203
– 0.904149 6.949281 2.930 209.587
−ρ −�3 − 3�4 0.000557 11 287.806242 2.799 –19.969

Notes. The initial date is J1950.

Table 3. Frequency analysis of the true longitude of Callisto.

Freq. (rad/days) Per (days) Mag (′′) Phase (◦)
j ω j P j Hj α j

L4 −�4 0.376454 16.690439 3042.813 19.342
LS 0.001450 4332.938603 115.268 122.637
−�3 +�4 −Ω3 + Ω0 0.000030 211 262.717128 78.265 –23.329
L4 −�3 0.376359 16.694661 64.434 37.467
– 0.373618 16.817142 22.235 21.898
2(L4 −�4) 0.752908 8.345220 14.031 38.682

Notes. The initial date is J1950.

two times the eccentricity. The associated frequency is the mean
anomaly except for Europa for which it is given by the combi-
nation L1 − L2. Indeed for bodies in resonance, the eccentricity
is the combination of a forced component due to the resonance
and a free component dependent on the initial conditions (e.g.
Ferraz-Mello 1979; Greenberg 2005). For Europa, the forced ec-
centricity is larger than the free eccentricity and so it is dominant
in the series of v associated with the period L1 − L2 as shown in
Table 1.

We conclude this section by noting that the frequencies of
the orbital motions are not fixed on long time-scale but slowly
vary in time at an observable level (Lainey et al. 2009). The vari-
ations are very slow and the orbital perturbations may be devel-
oped as Poisson series as for the Earth-Moon system. Although
the introduction of Poisson terms in the orbital series will imply
Poisson term and out-of-phase terms in the quasi-periodic libra-
tional development, we do not investigate such terms because
their amplitudes are expected to be small.

4. Interior models

The amplitudes of the torques which drive the librations in lon-
gitude depend on the equatorial flattening of the satellite. The
gravitational quadrupole moments, determined from the Galileo
spacecrafts radio tracking data, are consistent with the assump-
tion that the satellites are in tidal and rotational equilibrium

(Schubert et al. 2004). The equilibrium figure and the flatten-
ing of the internal layers due to the centrifugal and tidal po-
tentials, are calculated by using the Clairaut equation (Jeffreys
1952) extended to satellites in spin-orbit resonance (Van Hoolst
et al. 2008), for a given internal density distribution. The inte-
rior models for the density are required to be consistent with
the satellite mass and radius, and the mean moment of inertia
I = (A + B + C)/3 determined from the quadrupole moments
(see Table 5). These data by themselves can not be inverted to
a unique configuration. With such limited constraints, we exam-
ine simple layered models with homogenous densities. All mod-
els are composed of an ice shell including a subsurface ocean
and a rocky mantle. Oceans are predicted for all three satel-
lites (Kivelson et al. 1999, 2000, 2002; Khurana 1998; Papalardo
et al. 1999) and theoretical models shows that internal oceans are
conceivable for Europa, Ganymede and for a partly differentiated
Callisto with thicknesses as large as few hundred km (Schubert
et al. 2004). The Europa ocean is likely situated above the rocky
mantle. For Ganymede and Callisto, whose mean densities and
moments of inertia suggest much thicker ice/ocean shells, the
ocean may have a larger thickness and be between two ice lay-
ers. The thickness of the ice shell can be calculated theoreti-
cally by modeling internal radiogenic heating and tidal dissipa-
tion. The resulting thicknesses however are not always in good
agreement with those estimated from geological evidence, espe-
cially for Europa (Billings & Kattenhorn 2005). A metallic core
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Table 4. Selected interior model for Europa, Ganymede and Callisto. R and ρ are the radius and density of the different layers.

Europa Ganymede Callisto
R (km) ρ (kg/m3) R (km) ρ (kg/m3) R (km) ρ (kg/m3)

Core 100 7995.026
Mantle 1400 3787.728 1940.4 3348.95 2007.825 2297.502
Ocean 1520.8 1000.00 2581.2 1000.00 2360.300 1200.00
Surface 1560.8 1000.00 2631.2 1000.00 2410.300 1200.00

Table 5. Parameters for the interior models of satellites.

Europa Ganymede Callisto
Radius (km) 1560.8 2631.2 2410.3
Mass (kg) ×1022 4.8 14.28 10.76
I/MR2 0.348 0.312 0.354

is considered for Europa and Ganymede (additional evidence
comes from Ganymede’s intrinsic magnetic field, Kivelson et al.
1996), but not for the partially differentiated Callisto. Interior
models constrained only by the mean density and the mean mo-
ment of inertia requires that choices have to be made for the
values of some parameters such as the density and thickness of
the ice shell and/or the subsurface ocean. In the present study, the
densities of the shell and ocean are assumed to vary between 800
and 1200 kg/m3. We considered the shell thickness variations
between 40 km and 120 km except for Europa where it varies
between 5 km and 45 km. The simple interior models devel-
oped with homogenous density layers are consistent with previ-
ous studies (Schubert et al. 2004; Spohn & Schubert 2003; Sohl
et al. 2002; Van Hoolst et al. 2008; Hussmann et al. 2006). A
large number (more than 20 for each satellite) of models is con-
structed to obtain plausible ranges of moments of inertia, equa-
torial flattenings and associated torques. Table 4 summarizes the
density profile for selected models used to compute the libration
amplitude of Tables 6–8.

5. Europa’s librations

5.1. Description of main librations

The librational response driven by the external torque exerted by
Jupiter on Europa is obtained from Eqs. (12)–(13) for the orbital
perturbations (Table 1). We first calculate the librations for the
interior structure of Europa composed of a solid interior (core
plus mantle), a water ocean, and a solid icy shell listed in Table 4.
The temporal behavior of the libration from January 1st 2026,
date of expected arrival EJSM, is shown in Figs. 1a,b over 4500
and 800 days, respectively. The main libration is seen to have a
short period but its amplitude appears to be strongly modulated
on long periods of about 480 days. The short-period libration has
an amplitude of about 200′′ corresponding to a surface displace-
ment at the equator of 1.4 km and the long period of 480 days
has almost the same amplitude. Here, the amplitude is given as a
surface displacement at the equator by multiplying the libration
angle by the mean radius of the satellite.

A deeper insight into the motion is obtained by analyzing di-
rectly the librational motion in frequency domain. Table 6 lists
the physical librations in order of decreasing amplitude. The
main libration is a 3.52 days oscillation, i.e. the mean mean lon-
gitude of Europa perturbed by Io (L1 − L2). The forcing for this
term is mainly related to the eccentricity of the orbit (see Sect. 3).
Next, librations associated with long periods of 482.06 days,

485.60 days, and 462.51 days, which are related to the preces-
sion of the nodes of the orbits of satellites (ν+�k where k stands
for each Galilean satellites), have amplitudes around 70 and 10%
smaller than the main term. The influence of the resonant inter-
actions and the Sun are the 5th and 6th most important librations.
We also note the presence of the L2−L3 oscillation, with a period
approximatively twice the orbital period, although its magnitude
is relatively small.

The comparison of the magnitude of the forcing terms in
Table 1 and the amplitude of librations in Table 6 shows that
for the low frequency (long period) terms the forcing magnitude
H j and the libration amplitude γ j

s are similar whereas the am-
plitudes of the high frequency (short period) terms are strongly
diminished with respect to the forcing. The separation between
high and low frequencies is with respect to the proper frequen-
cies and is due to the presence of the forcing frequency in the
denominator (Eq. (13)), which decreases the libration amplitude
for short periods. This dynamical behavior corresponds to the
dynamics of a coupled forced oscillator where the restoring force
is Jupiter’s gravitational torque, the coupling force is Kint(γs−γi),
and the moons inertia is Csγ̈s approximated as Csω

2
jγ

j
s for quasi-

periodic librational response (Eqs. (9) and (10)). For small fre-
quencies, the gravitational torque is dominant and the orienta-
tion of the moon follows the direction of the force by keeping
the same face toward Jupiter, i.e. the amplitude of the libration
(γl for l = s, i) equals to the magnitude of the longitude perturba-
tion (v) and hence ψs = 0 (ψs = v−θs defined in Sect. 2). We note
that in this case the coupling torque vanished since the three an-
gles (γs, γi, v) are in phase. On contrast, for high frequency oscil-
lations the inertia of the moon has a strong impact and the moon
does not orient its long axis toward Jupiter anymore. This behav-
ior is similar to the case of Enceladus (Rambaux et al. 2010).

5.2. Influence of geophysical parameters

Figure 2a shows that the main geophysical parameter that drives
the libration at the orbital frequency is the thickness of the icy
shell h (Van Hoolst et al. 2008). Here a similar hyperbolic be-
havior dependence of libration amplitude on shell thickness is
obtained for the libration at 7.05 days (Fig. 2b). On contrast, the
amplitudes of the librations at 482 days and 485 days depend
only very weakly on shell thickness (see Figs. 2c,d), in accor-
dance with the observation above that the libration amplitude at
low frequency is almost equal to the restoring force, i.e. Jupiter’s
gravitational interaction, magnitude. By introducing the condi-
tion that the forcing frequency ω j � ω1, ω2 in the librational
solution (Eq. (12)), the libration amplitude of the shell can be
approximated correct up to the third order in ω j as

γ
j
s ∼ H j + H j

(2Kint(Cs +Ci) +CsKi)
(2Kint(Ks + Ki) + KsKi)

ω2
j + O

(
ω4

j

)
. (15)

where the Kj ( j = i, s) are defined in the Appendix A and depend
on interior parameters. At first order in ω j, the amplitude γ j

s is
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Fig. 1. Librational response times the mean radius of the icy shell of Europa by taking into account the orbital perturbations over 4500 days a) and
a zoom over 800 days b). The amplitude increase in panel a) is due to the contribution of long-periodic Fourier terms with different phases. The
initial date for the plot is January 1st 2026 corresponding to the expected date of arrival of EJSM at Jupiter. The interior model comes from the
Table 4.
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Fig. 2. Variation, with shell thickness (h), of the amplitude multiplied by the mean radius for the 4 main librations, 3.52 days a), 7.05 days b),
482 days c), and 485 days d).

equal to the forcing magnitude H j. The small dependence on the
interior is given by the coefficient of the term in the square of
the forcing frequency. The dependence on h is very weak, with
differences in amplitude of the order of a meter (Figs. 2c, d) that

is too small to be observed. Therefore, it will be not possible
to obtain information on the interior by measuring these long-
period librations.
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Table 6. Resulting libration for Europa due to orbital forcing.

j Freq. (rad/days) Per (days) Amp. (′′) Phase (◦)
L1 − L2 1.782230 3.525463 –203.165 –75.737
ν +�3 0.013034 482.056270 178.102 247.453
ν +�4 0.012939 485.603204 94.470 85.580
ν +�2 0.013585 462.514730 63.869 102.910
Ψ 0.003051 2059.388286 40.978 109.334
LS 0.001450 4332.938725 37.856 122.629
ν +�1 0.015571 403.515373 13.165 –29.048
L2 − L3 0.891115 7.050927 –11.546 142.128
−Ω4 + Ω0 0.000030 209 871.378822 7.045 161.670
−Ω3 + Ω0 0.000125 50 324.176598 6.729 127.823
2LS 0.002900 2166.518223 4.249 87.421
L2 −�3 1.769195 3.551437 –4.847 216.810
L2 −�2 1.768645 3.552542 –4.341 181.379
2ν + Ω2 + Ω3 0.025120 250.130673 3.550 142.546
2ν + 2Ω2 0.024675 254.634447 2.971 11.386
2LS + 2�4 + Ω1 0.000649 9676.813046 2.923 –12.788
L2 −�4 1.769291 3.551245 –2.739 18.661

Notes. The initial time is J1950. The table is truncated at 1′′ amplitude corresponding to a surface displacement of 7 m.

The amplitude of high frequency librations (Figs. 2a,b) de-
pends not only on the magnitude of the coupling (H j in Eq. (11))
but also on the proximity of the forcing frequency (ω j) to the
eigenvalues of the proper modesω1 and ω2 as shown in Eq. (13).
Whereas ω2 (between 2π/52 and 2π/60 days−1 for our models)
is far from the forcing frequencies,ω1 can be close to the largest
frequencies for small shell thickness (Fig. 3). For small thickness
of the icy shell the proper period (2π/ω1) tends toward a few
days (Fig. 3), i.e. very close to the forcing periods of 7.05 days
and 3.52 days, and leads to the resonance shape curves shown in
Figs. 2a,b. For the 7.05 days libration the increase is significant
because the resonance is crossed for h ∼ 10 km. In the linear
model developed in Sect. 2 the amplitude tends toward infinity
that is contrary to the hypothesis of small libration amplitude.
In order to compare with a more realistic libration model at the
resonance, we numerically integrated the non-linear Eq. (2). The
resulting libration is shown with red triangles. Outside the res-
onance both results coincide and the difference appears only at
the resonance as expected. The two lines of resonance (blue and
violet) have been computed by assuming that only Bs−As and Cs
depend on h and keeping all other geophysical parameters con-
stants. In this case, the amplitude can be expressed as

γL2−L3
s =

35 009.990+ 0.0145ρsh
65 510.895− 7.793ρsh

(16)

where ρs is the density of the shell expressed in kg/m3 and the
icy thickness h is expressed in km. The blue dashed curve is
plotted for a density equal to 800 kg/m3 while the violet line is
plotted for a density of 1000 kg/m3. These curves highlight the
importance of the shell density on the position of the resonance
(in the frequency space). Therefore, the amplitude of the libra-
tion is sensitive to the icy thickness h and to the density of the
ice shell because the last parameter controls the position of the
resonance.

The observational determination of the two librations at 3.52
and 7.05 days might separate the contribution of the icy thick-
ness h and icy density ρs. These two geophysical parameters are
crucial for geophysical, geological, and astrobiological studies
of Europa. The presence of a resonance in the librational mo-
tion of Europa may increase significantly the oscillatory motion
of the satellite and thus tidal heating and surface faulting of the

Fig. 3. Variation of the period of the eigenvalue of the first proper mode
for Europa.

moon. However, to determine the amplitude of librations in res-
onance, the rotational model needs to take into account dissipa-
tive torques that will bound the highest amplitude and modify
slightly the location of the resonance. In the available observa-
tions no signature of such dramatic events have been found but
it cannot be ruled out that today or during its history Europa has
reached such resonance. Hussmann & Spohn (2004) showed that
the icy thickness of Europa may vary during time due to the vari-
ation of the eccentricity and may have reached values as small
as 3 km.

6. Ganymede’s librations

In contrast to Europa, Ganymede’s largest libration is due to
solar perturbations Ls and is not of orbital period (Fig. 4 and
Table 7) because Ganymede is further away from Jupiter. As can
be seen in Table 7, the second to fourth largest libration terms are
due to the precession of the nodes ν+�m with m = 2, 3, 4. The li-
bration in longitude at the orbital period 7.15 days is only the 6th
largest term and is almost 3.8 times smaller than the main term.
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Table 7. Resulting libration for Ganymede due to orbital forcing.

j Freq. (rad/days) Per (days) Amp (′′) Phase (◦)
LS 0.001450 4332.938842 47.714 122.630
ν −�3 0.013034 482.056267 40.974 67.453
ν −�2 0.013585 462.514665 34.282 –77.113
ν −�4 0.012939 485.603206 21.370 265.581
L3 − 2L4 +�4 0.125308 50.141824 17.621 190.809
L3 −�3 0.878081 7.155590 –12.685 254.678
−�3 +�4 −Ω3 + Ω0 0.000030 210 144.247108 11.110 159.808
−Ω3 + Ω0 0.000125 50 299.889651 10.094 127.748
L3 −�4 0.878176 7.154814 –6.843 56.549
L2 − L3 0.891115 7.050927 –5.179 142.132
Ψ 0.003051 2059.541551 3.514 –70.687
−ρ − 4�4 0.000652 9641.952977 3.193 –33.914
−ρ −�3 − 3�4 0.000557 11 287.806242 2.799 –19.969
L3 − L4 0.501722 12.523249 –1.349 217.225
2L3 − 2L4 1.003443 6.261624 –1.088 74.436

Notes. The initial time is J1950. The table is truncated at 1′′.

Fig. 4. Librational response times the mean radius of Ganymede from
orbital perturbations. The main libration is an oscillation at the longi-
tude of the Sun period. The initial date for the plot is January 1st 2026.

We recall that this mode is essentially due to the eccentricity of
the orbit (see Sect. 3). In the case of Ganymede the eccentricity
is around 0.0013, about a factor 7 smaller than the eccentricity
of Europa (0.0094). Since the long-period librations are domi-
nant, a complete study of the librational motion of Ganymede
including the long-period librations is clearly required for any
rotational data analysis of Ganymede.

As explained for Europa, the amplitude of the long-period
librations almost does not depend on the existence of a subsur-
face ocean and can therefore not be used to study the interior
structure of Ganymede. The dependence of the libration at or-
bital period on the thickness h of the icy shell for Ganymede
is similar to the case of Europa (see also Baland & Van Hoolst
2010). Of particular interest here is that the libration with a pe-
riod of 50 days associated with the forced libration L3−2L4+�4
related to the interaction with Callisto may be resonant with the
first proper mode, which has a period tending toward 50 days
for an icy shell thickness of h ∼ 60 kilometers (Fig. 5). Such a
resonance might lead to a large libration amplitude at that period
if the forced and proper frequencies coincide.

Fig. 5. Variation of the period of the first eigenvalue of the proper mode
for Ganymede. For an icy shell of thickness equal to 60 kilometers, the
proper mode is of the order of 50 days that is very close to the forcing
mode of L3 − 2L4 +�4 and leads to a large resonance effects.

7. Callisto’s librations

The most distant satellite of the Galilean moons is Callisto and
contrary to Io, Europa, and Ganymede, it is not involved in the
Laplace resonance. Therefore, its libration series (Table 8) is
dominated by the Sun perturbations (at 4332 days) and there are
no components containing the great inequality. The behavior of
the librational response of Callisto is shown in Fig. 6 with the
geophysical parameters listed in Table 4. The second main libra-
tion is the long period of−�3+�4−Ω3+Ω0. The third oscillation
is the libration in longitude at the orbital period related to the ec-
centricity. Its amplitude is almost 10 times smaller than the main
term. The long-period librations are even more dominant than
for Ganymede and Europa due to Callisto’s larger distance from
Jupiter.

The long period behavior is similar to that for Europa and
Ganymede in the sense that the amplitudes of long-period libra-
tions are close to the magnitudes of the forcing terms. However,
in the short period regime a resonance with a proper mode does
not seem to be possible. The proper periods are in the range of
250–550 days for P1 and 775–1175 days for P2, which are far
from any forcing frequency.
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Table 8. Resulting libration for Callisto due to orbital forcing.

j Freq. (rad/days) Per (days) Amp. (′′) Phase (◦)
LS 0.001450 4332.938603 117.223 122.637
−�3 +�4 −Ω3 + Ω0 0.000030 211 262.717127 78.266 –23.329
L4 −�3 0.376454 16.690439 –10.934 19.342
− 0.000125 50 338.835217 6.920 –52.228

Notes. The initial time is J1950. The Table is truncated at 1′′ amplitude.

Table 9. Amplitude of the main librations of Europa, Ganymede, and Callisto.

Libration Period Europa Ganymede Callisto
(km) (km) (km)

Orbital period (solid case) 0.133 0.0011 0.00125
Orbital period (ocean) 0.5–2.4 0.06–0.24 0.03–0.19
ν −�3 482 days 1.381 0.522 –
ν −�4 485 days 0.7324 0.272 –
Jupiter’s orbital period (4332.93 days) 0.28 0.6087 1.37

Notes. The frequency ν is the Laplacian resonance.

Fig. 6. Librational response multiplied by the mean radius of Callisto
from orbital perturbations. The main libration is a long period at
4332 days due to the Sun orbital perturbation. The initial date for the
plot is January 1st 2026.

8. Discussion and conclusion

In this paper, we have studied the effect of orbital perturba-
tions on the librational response of Europa, Ganymede, and
Callisto. The orbital perturbations are induced by mutual grav-
itational interactions among satellites, especially the resonant
interactions related to the Laplace resonance for Europa and
Ganymede, and the solar gravitational interaction. These pertur-
bations, which have been determined from the most recent nu-
merical ephemerides of the Galilean moons (Lainey et al. 2006),
introduce a wide range of frequencies in the librations. The re-
sulting librations can be classified in two groups depending on
the value of the frequencies with respect to the proper frequen-
cies. For small frequencies, the restoring torque is dominant and
the moons librate by keeping the same face toward Jupiter in
phase with the perturbations. The resulting amplitude is almost

equal to the magnitude of the orbital perturbations (at first order
in frequencies). For the second group, the frequencies are long
and around the orbital frequency. In this case, the inertia of the
moon plays an important role and the amplitude is reduced with
respect to the magnitude of the perturbations. Nevertheless, they
can be strongly increased by a resonance between a proper fre-
quency and forced frequencies. The limit between the short and
long periods is essentially controlled by the highest proper fre-
quency (ω1).

The short-period libration amplitudes may increase in the
presence of a subsurface oceans as shown in Table 9. The ob-
served libration amplitude depends on the strength of the exter-
nal torque and are modified by the internal structure. They would
provide information on the exact coupling mechanisms between
the shell and the interior and can be used to better model satel-
lite’s interior. In contrast to previous studies, which only con-
sidered libration at orbital period, we used the whole spectrum
of the Galilean satellites to study the dependence of librations
on the internal structure. In particular for Europa, we identi-
fied a second short-period libration at twice the orbital period,
whose amplitude, although an order of magnitude smaller than
the amplitude of the libration at 3.52 days, could also be used
to infer information on the thickness and density of the icy shell
relevant for geophysical, geological, and astrobiological studies
(Eq. (16)).

The long-period librations are related to the orbital motion
of Jupiter around the Sun with a period of 4332 days and to
the motion of the orbital nodes and great inequality ν, leading
to periods of ∼480 days. In contrast to the high frequency li-
brations, the amplitude of the small frequency librations does
almost not depend on the distribution of mass inside the satel-
lites. As a consequence, this result is robust and does not de-
pend on the coupling mechanisms. In addition, it is important
to underline that an adequate description of the rotational mo-
tion of the satellites requires to take into account the long-period
librations because their amplitudes are not negligible and even
dominant for Ganymede and Callisto. If such librations are ne-
glected in the reduction process, the fitted rotational speed will
be increased (or decreased depending on the phase) leading to a
misstatement of non-synchronous rotation of satellites.
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The oscillatory motions of the icy Galilean moons present a
wide spectrum of frequencies due to orbital perturbations. Some
of the librations may present large amplitudes due to a resonance
with one of the proper modes. The exact position of the reso-
nance in frequency space, i.e. the value of the proper frequen-
cies, is sensitive to the values of the geophysical parameters in-
troduced in our model. By exploring a large range of possible
values of structure parameters, we have shown that such reso-
nances might exist for Europa and Ganymede for realistic ranges
of parameters. Although no observational evidence is available
for a resonant libration for Europa or Ganymede, it cannot be
ruled out that these bodies have crossed a libration resonance
during their histories, leading to potential surface faulting and
increased tidal heating.

In the present libration model, we have taken into account
the gravitational torque exerted by Jupiter and both pressure and
internal gravitational couplings, but neglected (visco-)elastic ef-
fects. The largest elastic effect can be expected to be due to
the tidal forcing of Jupiter and, by analogy to solid rotation, it
could contribute up to 10% to the libration amplitude at orbital
frequency (Baland & Van Hoolst 2010). The effect of inelastic
tides on libration is most likely very small, as shown e.g. for
Enceladus (Rambaux et al. 2010) without liquid ocean. Viscous
relaxation of the ice shell is also thought not to be efficient
in changing the libration because it is too slow for short peri-
odic librations and not effective for the long-period librations
for which the satellites always keep the same face toward Jupiter
(see Sect. 5). In addition, friction at the shell/ocean interface and
flow in the ocean (Noir et al. 2009; Tyler 2008) could modify the
amplitude of the librations.

The librational motion of the Galilean satellites may be in-
ferred by spacecraft measurements by tracking surface land-
marks, by fitting the shape of the satellites from surface images
(Tiscareno et al. 2010), and/or by altimeter measurements. The
accuracy obtained in the pole location of Titan from the different
flybys by the radar Cassini instrument is below 1 km. However,
Wu et al. (2001) predicted for Europa an accuracy of 0.02 km
with 15 days of tracking from 2 Earth stations of an Europa or-
biter. At such level of precision (2.8′′) all librations presented
in Table 6 may be detected. Let us mention that there is not
yet enough powerful techniques to reach the Galilean moons di-
rectly from the Earth as one for Mercury by radar interferome-
try (Margot et al. 2009) or the Moon by Lunar Laser Ranging
(Williams et al. 2001) but we could expect that some techniques
will be improved in the near future.

Acknowledgements. N.R. thanks V. Lainey for fruitful discussions on the orbital
ephemerides of Galilean satellites.

Appendix A: Expression of the librational angles

We introduce the following notation: Ks = (Bs − As) + (B′s − A′s)
and Ki = (Bi − Ai) − (B′i − A′i).

φs
1 = H j(−KsCiω

2
1 + 2KsKint + KsKi + 2KintKi) (A.1)

φs
2 = −H j(−KsCiω

2
2 + 2KsKint + KsKi + 2KintKi) (A.2)

φi
1 = H j(−KiCsω

2
1 + 2KintKi + KsKi + 2KsKint) (A.3)

φi
2 = −H j(−KiCsω

2
2 + 2KintKi + KsKi + 2KsKint) (A.4)

Δ = 4(Ci +Cs)2K2
int + (CsKi −CiKs)(CsKi − CiKs

+4Kint(Cs −Ci)) (A.5)

ω2
1 =

2CiKint +CiKs + 2CsKint + CsKi +
√
Δ

2CsCi
(A.6)

ω2
2 =

2CiKint +CiKs + 2CsKint + CsKi −
√
Δ

2CsCi
· (A.7)
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