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Abstract. I present in this paper a method to calibrate data obtained from optical and infrared interferometers. I show that
correlated noises and errors need to be taken into account for a very good estimate of individual error bars but also when model
fitting the data to derive meaningful model parameters whose accuracies are not overestimated. It is also shown that under
conditions of high correlated noise, faint structures of the source can be detected. This point is important to define strategies of
calibration for difficult programs such as exoplanet detection. The limits of validity of the assumptions on the noise statistics
are discussed.
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1. Introduction

With optical-infrared interferometry becoming more mature,
the quality of visibility measurements have become an issue.
Single-mode interferometers (see Sect. 2.3) allow one to elimi-
nate non-stationary effects by filtering out the spatial modes of
turbulence. The response of interferometers is therefore very
stable and the issue of estimating the accuracies of non-biased
data is raised. The final visibility estimate is a complex quan-
tity as it is a non-linear mix of noisy measurements and of pa-
rameter estimates with their own uncertainties. Estimating the
stability of the instrument, a crucial point for calibration, and
the final error on visibilities is therefore non-trivial and must be
considered with caution. Moreover, data analysis mainly con-
sists of model fitting the final visibilities and the matter of their
potential correlations becomes important, especially if some
very faint structures are looked for, as is the case in extra-solar
planet detection.

In this Paper I propose a method to meet these challenges.
The method has been tested and elaborated along with the
FLUOR interferometer, the first single-mode interferometer.
This method was first published in Perrin (1996) and used in
Perrin et al. (1998). It is updated and improved in this paper by
accounting for correlations.

2. Principles of data reduction and calibration

In this section the general scheme of data reduction is reviewed
to introduce the vocabulary and notations. Two main steps are

? Appendix A is only available in electronic form at
http://www.edpsciences.org
?? e-mail: guy.perrin@obspm.fr

to be considered. In the first one (Sect. 2.1), the fringe process-
ing, fringe contrasts are derived from raw signals. Because of
contrast losses, fringe contrasts are calibrated in a second step
(Sect. 2.2) to provide the visibilities directly linked to the spa-
tial intensity distribution of the source.

2.1. Fringe contrasts estimates

In the following we will distinguish between the fringe con-
trast obtained on a source and the visibility of this source.
The fringe contrast measured from a single exposure or scan
is called the coherence factor and is noted µ whereas the visi-
bility is noted V .

Whatever the beamcombining technique, µ being the mod-
ulus of a complex number, unbiased estimators are only ob-
tained for squared quantities from wich biases due to additive
noise can be subtracted. In the future, phase referencing tech-
niques may allow one to directly measure complex visibilities
(real and imaginary parts) but this is not the case yet and I will
only consider measurements of fringe contrast moduli. The re-
sult of the processing of a series of scans on a single source
is a series of realizations of the µ2 estimator or is an average
value of the realizations with a 1σ error bar if their statistical
distribution can be trusted to be Gaussian.

2.2. Necessity for a calibration

The average µ2 is not directly an estimator of the squared
modulus of the visibility of the source because some physical
phenomena degrade the coherence factor. Among these phe-
nomena, polarization mismatches between the interferometric
beams are the most common. Without perfect beam cleaning by
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Fig. 1. Examples of squared coherence factor histograms obtained with FLUOR in one of the interferometric channels. About
100 interferograms have been recorded for each object. The mean and rms of individual measurements are given for this channel. The corre-
lation factor r measures the noise correlation between the two interferometric channels. The amount of atmospheric piston is decreasing from
the left to the right.

a fiber, atmospheric turbulence also degrades the fringe con-
trast. It is necessary to estimate the loss of coherence on a
calibrator source for which the visibility is known. A transfer
function T is obtained by computing the ratio of the measured
coherence factor µc to the expected visibility Vexp. With
squared quantities this yields:

T 2 =
µ2

c

V2
exp
· (1)

If the instrument is stable enough then the estimate of T 2 ob-
tained on the calibrator can be used to derive an estimated vis-
ibility for the source from the measured coherence factor:

V2 =
µ2

T 2
= coT 2 µ2. (2)

where I call coT 2 the squared co-transfer function. Its use will
be detailed in Sect. 4.

2.3. Assumptions in the case of a single-mode
interferometer

The calibration process may fail if the assumption that the
transfer function is stable is wrong. This usually happens if
non-stationary processes like atmospheric phase turbulence
play a role in the fringe formation process. In a perfect single-
mode interferometer in which single-mode fibers are used to
filter the phase aberrations produced by atmospheric turbu-
lence (except for the piston mode) these non-stationary effects
are eliminated. In order to avoid instabilities due to the pis-
ton mode, the fringes are scanned at a frequency far above the
characteristic frequency of piston. In interferometers where the
piston is stabilized by a fringe tracking servo loop, this issue is
solved. The remaining main sources of variation of the transfer
function are basically temperature drifts and differential polari-
sation effects due to the change of beam inclination on the first
mirrors with changing positions of the sources in the sky. In
both cases the transfer function drifts are very slow and a good
estimate of the transfer function can be obtained by interpolat-
ing two estimates bracketing the source to be calibrated. This
has been demonstrated with the FLUOR beamcombiner, as will
be shown is Sect. 7.2.

In the following we will therefore consider that the effi-
ciency of the interferometer is continuously assessed by ob-
serving calibrators before and after science sources. We will
not consider the case where the transfer function is derived
by averaging individual transfer functions on a large temporal
scale, as this is not required for a single-mode interferometer.
This technique does not allow one to assess the quality of the
calibration in detail. Nevertheless, should the transfer function
estimates be statistically compatible with a constant transfer
function, it would be legitimate to use this value to calibrate
a whole night. The method to evaluate correlations should be
considered and accordingly adapted.

3. Estimating fringe contrasts

This section focuses on estimating the statistical properties of
fringe contrasts. I will not describe the method to compute co-
herence factors from single exposures and I will refer the reader
to appropriate articles in the next paragraphs.

3.1. Single-channel spatial modulation interferometer

In a multiaxial interferometer, distant parallel beams feed a
focusing optic. The beams are recombined in the focal plane
where they overlap at the focus locus. The modulation is spa-
tial as the fringe phase varies across the diffraction pattern.
A method to derive fringe contrasts has been published by
Mourard et al. (1994) in the case of GI2T. The method has been
adapted to AMBER which is a single-mode multiaxial interfer-
ometer (Chelli et al. 2000).

Thanks to the filtering of the non-stationary modes of tur-
bulence, the statistics of µ2 can be well approximated by a
Gaussian distribution. This will be demonstrated in the case
of the data obtained with FLUOR in Sect. 7.1. The estimate of
the squared coherence factor is therefore the mean of the distri-
bution of the realizations denoted µ2. An unbiased estimate of
the variance of individual measurements is:

S 2 =
1

N − 1

N−1∑
n=0

(µ2
n − µ2). (3)
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Fig. 2. Examples of squared co-transfer functions measured with FLUOR. The two curves for each night correspond to the two interferometric
channels of the coaxial interferometer. The full circles are the squared co-transfer functions measured on calibrators whereas the open circles
are the values interpolated at the time when the science targets were observed. 1σ error bars are displayed.

The estimate of the variance of the coherence factor estima-
tor µ2 is then:

Var(µ2) =
S 2

N
· (4)

3.2. Two-channel temporal modulation interferometer

In a coaxial interferometer, beams are superimposed in posi-
tion and in direction. This can be realized with a beamsplitter
or with a fiber coupler. A relative phase between the beams
is introduced by setting an optical path difference. This is
achieved with a moving mirror in one of the two beams, hence
the temporal modulation of the phase. A method to compute
fringe contrasts for this type of interferometer is described in
Coudé du Foresto et al. (1997). A more recent method based on
wavelets analysis has been proposed by Segransan et al. (1999).
The method to obtain an estimate of the coherence factor with-
out the photon noise bias is explained in Perrin (2003). A pro-
totype instrument for this kind of interferometer is the FLUOR
beamcombiner.

The difference with the previous interferometer of Sect. 3.1
is that it produces two interferometric beams and therefore two
sets of coherence factors estimates. The statistics of each set
can be well approximated by a Gaussian statistics as will be
shown in Sect. 7. The photon noises of the two interferomet-
ric signals are uncorrelated. The read-out noises are gener-
ally considered uncorrelated but some correlation may occur as

different pixels share the same read-out electronics. In addition
the two beams suffer from the same turbulence effects (resid-
ual piston and photometric beam fluctuations) which generate
some noise in the measurements. Part of the noise is therefore
common to the two signals and the coherence factors estimates
are correlated. The correlation factor r is directly estimated
from the µ2 distributions:

r =
〈µ2

1 − µ2
1〉〈µ2

2 − µ2
2〉√

Var(µ2
1)Var(µ2

2)
, (5)

where the subscripts describe the two interferometric channels.

4. Estimating the transfer function

It is assumed that the transfer function is a slowly varying func-
tion which is rapidly sampled. This property will be illustrated
with real data in Sect. 7. It is then legitimate to linearly interpo-
late the squared transfer function at the time when the science
source was observed. Because the variances of products of ran-
dom variables are more easily calculated than those of ratios,
the reciprocal of the squared transfer function, the squared co-
transfer function, is interpolated instead of the squared transfer
function. The use of one or the other is equivalent. In order
to be general, two interferometric outputs are always consid-
ered. The particular case of the multiaxial interferometer will
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Fig. 3. Example of visibility fit. The source is SW Vir and the model is a uniform disk. Errors are 1σ errors. Open circles and dashed line are
the visibilities and model fit computed without taking correlations into account. Full circles and continuous line are the equivalent with the
method described in this paper. The two cases are separately presented in the little windows.

be considered in discussions. The expression of the interpolated
co-transfer functions in the two outputs of the instrument is:


coT 2
1 = x Va 2

µa
1

2
+ (1 − x) Vb2

µb
1

2

coT 2
2 = x Va 2

µa
2

2
+ (1 − x) Vb2

µb
2

2

(6)

Va and Vb are the expected visibilities of calibrators A and B.
Coefficient x is the relative time distance between the observa-
tion of the science target and the observation of calibrator A.
The expected visibilities are supposed to be Gaussian random
variables. Dropping the channel indices, the variances of the
squared co-transfer functions are equal to:

Var
(
coT 2

)
= x2Var

(
coT a2

)
+ (1 − x)2Var

(
coT b2

)
(7)

when the two calibrators are different. When the two calibrators
are the same then the variance is equal to:

Var
(
coT 2

)
= x2Var

(
coT a2

)
+ (1 − x)2Var

(
coT b2

)

+2
x(1 − x)

µa2µb2
Var
(
Va2
)
. (8)

The squared co-transfer functions estimated on the calibrators
are ratios of Gaussian estimators. These new random distribu-
tions are not Gaussian. They are Cauchy distributions (the den-
sity probability of which is a Lorentzian) with no mean and no
variance. By analogy with the standard deviation of a Gaussian
law, an estimate of the uncertainty can be derived from the

width of the confidence interval. The upper and lower limits
of the confidence interval at 68.3% for a ratio of two Gaussian
random variables α and β are given by (Pelat 1992):

L± =
α ± β/σβ(

(α/σα)2+(β/σβ)2−1
)1/2 σα

β ∓ α/σα(
(α/σα)2+(β/σβ)2−1

)1/2 σβ
· (9)

This interval is not symmetric. I choose as error bar the larger
distance of the mean to the limits, thus slightly overestimat-
ing the error. The probability that the true value is in this in-
terval around the mean is therefore larger than 68.3%. In the
following I will consider that ratios of Gaussian variables are
Gaussian variables. This is not rigourously true but this al-
lows one to derive expressions otherwise difficult to handle.
The Gaussian and Lorentzian functions are both bell curves,
the wings of the latter being more extended than that of the
Gaussian. The approximation amounts to giving more weight
to the center of the lorentzian. The other possibility would
be to apply Monte-Carlo or bootstrap methods to all error
bar computations, which would make data reduction a very
long process for a very limited gain. Nevertheless, this method
will have to be applied once to compute the correlation be-
tween the visibilities of a two-channel coaxial interferometer
(Sect. 5). Consistency of error bars will be addressed in Sect. 7.
This final consistency is the justification of the approximations
performed.
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Fig. 4. Examples of fits of visibility data with a uniform disk model. All correlations are taken into account. Errors are 1σ errors. The visibility
point around 85 cycles/arcsec in the G Her panel is not taken into account in the fit.

5. Estimating visibilities

5.1. Mean and variance of channel visibilities

The single-channel squared visibility in the case of a multiaxial
interferometer or the two-channel squared visibilities of a coax-
ial interferometer are simply the product of the science target
squared coherence factors and squared co-transfer functions of
Eq. (6) yielding:


V2

1 = x
µ2

1

µa
1

2
Va2 + (1 − x)

µ2
1

µb
1

2
Vb2

V2
2 = x

µ2
2

µa
2

2
Va2 + (1 − x)

µ2
2

µb
2

2
Vb2·

(10)

The variances of the two-channel squared visibilities are cal-
culated with the variances of the squared co-transfer func-
tions and of the squared coherence factors with the following
formula:

Var(AB) = Var(A)Var(B) + Ā2Var(B) (11)

+B̄2Var(A)

We therefore have:

Var(V2
1 ) = Var(µ2

1)Var(coT 2
1 ) + µ2

1Var(coT 2
1 ) (12)

+coT 2
1 Var(µ2

1)

Var(V2
2 ) = Var(µ2

2)Var(coT 2
2 ) + µ2

2Var(coT 2
2 )

+coT 2
2 Var(µ2

2)

5.2. Correlation between two channel visibilities

The above equations define the uncertainties on the channel
estimates of the visibilities. In the case of a multiaxial interfer-
ometer, this is the final estimate of the visibility. In the case of
coaxial interferometers, the two estimates of the visibility need
to be averaged at this stage. For this, it is necessary to assess
the correlation factor between the two estimates. By definition,
the correlation factor is equal to:

ρ12 =
〈(V2

1 − V2
1 )(V2

2 − V2
2 )〉√

Var(V2
1 )Var(V2

2 )
· (13)

This quantity is defined by sums, ratios and products of ten ran-
dom variables. The correlation factor has to be computed with a
Monte-Carlo method by simulating each random variable from
its mean and variance (assuming it has Gaussian statistics) and
by correlating the series of V2

1 and V2
2 . In the special case when

the correlations between measured quantities can be neglected
because the correlated noise level is far below that of the uncor-
related noise, it is to be noticed that there is still a correlation
due to the common estimated values of the calibrators expected
visibilities in the two interferometric channels. This can be il-
lustrated by the equation below when the first and second cali-
brators are different:

ρ12 =

x2 µ
2
1

µa
1

2

µ2
2

µa
2

2
Var(Va2) + (1 − x)2 µ

2
1

µb
1

2

µ2
2

µb
2

2
Var(Vb2)

√
Var(V2

1 )Var(V2
2 )

· (14)
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When the two calibrators are the same the correlation factor
has the particular expression (for sake of simplicity the two
estimates of the visibility at slighlty different baselines are sup-
posed to be the same):

ρ12=

[
x
µ2

1

µa
1

2
+(1 − x)

µ2
1

µb
1

2

] [
x
µ2

2

µa
2

2
+(1 − x)

µ2
2

µb
2

2

]
Var(Va2)

√
Var(V2

1 )Var(V2
2 )

· (15)

It is now easy to see from Eq. (10) that if the noise on the
measurements is negligible with respect to the uncertainties on
the expected visibilities of the calibrators then the correlation
tends towards 1. In this case, the second interferometric chan-
nel brings no extra information except a consistency check and
the precision on the visibility of the science target is directly
proportional to the precision on the expected visibilities of the
calibrators.

5.3. Comments on visibility variances

It is also interesting to analyze the propagation of noises in
the visibility estimates. For example, if the noise on the mea-
surements is negligible, it is possible to evaluate the amount of
variance due to the uncertainty on the calibrators visibilities (or
diameters). Dropping channel indices I obtain:

Var
(
V2
)
|µ,µa,µb = x2

 µ
2

µa2


2

Var
(
Va2
)

(16)

+(1 − x)2

 µ
2

µb2


2

Var
(
Vb2
)
.

If the uncertainties on the calibrators’ squared visibilities are
equal to 1% and if the coherence factors are all equal to 1 and
observations are equally spaced in time then the uncertainty on
the measured squared visibility is equal to 0.7%. This equa-
tion also shows that the smaller the visibility of the calibra-
tor, the more amplified the noise on its expected visibility is.
Symmetrically, the smaller the visibility of the science target,
the smaller the contribution to the noise of the calibrators’ ex-
pected visibilities.

5.4. Final estimate of the visibility in a two-channel
interferometer

The final squared visibility V2 is estimated from the two
squared visibilities obtained from each output of the interfer-
ometer V2

1 and V2
2 and their respective variances (or equiva-

lently uncertainties σ1 and σ2). I define the final estimate V2 as
being the least squares fit estimator of the squared visibility as
this is an optimal estimator for Gaussian random variables. In
this fit, the model is linear and has only one parameter: V2. Let
us call C the covariance matrix of V2

1 and V2
2 :

C =

[
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

]
. (17)

The quantity to minimize in the least squares fit can then be
written:

S (V2) =
[

V2
1 − V2

V2
2 − V2

]t
C−1

[
V2

1 − V2

V2
2 − V2

]
= YtC−1Y. (18)

It can be shown that the minimum is reached for:

V2 = (XtC−1X)−1XtC−1

[
V2

1
V2

2

]
, (19)

with

X =

[
1
1

]
, (20)

the uncertainty on V2 being:

σ2
V2 = (XtC−1X)−1XtC−1. (21)

The above equations yield the final visibility estimate:

V2 =
V2

1 (σ2
2 − ρ12σ1σ2) + V2

1 (σ2
1 − ρ12σ1σ2)

σ2
1σ

2
2 − 2ρ12σ1σ2

(22)

and the associated error:

σ2
V2 =

(
1 − ρ2

12

)
σ2

1σ
2
2

σ2
1 + σ

2
2 − 2ρ12σ1σ2

· (23)

If ρ12 = 1 then the two single-output squared visibilities V2
1

and V2
2 are fully correlated and the above expression does not

apply. In this case V is equal to one of the two single-output
visibilities with its associated error bar.

The quality of the fit is expressed by the χ2:

χ2 =

(
V2

1 − V2
2

)2
σ2

1 + σ
2
2 − 2ρ12σ1σ2

· (24)

This parameter is important because it allows us to check the
consistency of the instrument and of the method to measure the
visibilities and the error bars. If all assumptions are correct then
the χ2 should be equal to 1 on average. In the FLUOR software
we use this number as a data quality parameter. Data with χ2

greater than 3 should be examined in detail and rejected for
science programs requiring a very good quality of calibration
as the probability to get a value larger than 3 is only of 8.33%.

5.5. Correlations of multiple baseline interferometer
simultaneous visibilities

Coherence factors recorded simultaneously on different base-
lines with telescopes in common may also be correlated. This
correlation should be taken into account and saved with the re-
duced data in the form of a correlation matrix. The correlations
may be as high as the correlations between the two channels
of a coaxial interferometer as all calibrators are common to all
baselines. The method used in Sect. 5.2 should be applied. A
correlation matrix for the µ2 should be computed first. The fi-
nal correlation factors for the final visibility estimates are then
computed with a Monte-Carlo method.
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6. Correlations between non-simultaneous
visibilities

Visibilities obtained on different baselines or on different days
are usually considered independent. In the last paragraph,
we focused on the possible correlations of visibilities recorded
simultaneously on baselines with telescopes in common. In this
section, we will consider the correlation due to common uncer-
tainties in the calibration process for independent baselines or
for visibilities measured at different times. The calibration of
the transfer function may have required us to use the same cal-
ibrators hence the same diameter estimates. The errors on the
visibilities are therefore not independent. It is the purpose of
this paragraph to establish a method to compute this correla-
tion and, more important, to be able to trace it to compute it
a posteriori long after taking the data at the telescopes.

Let S 1 and S 2 be two spatial frequencies at which squared
visibilities V2(S 1) and V2(S 2) have been measured. The visi-
bility estimates of Eqs. (10) and (22) can take the form: V2(S 1) = α1Va2(S 1) + β1Vb2(S 1)

V2(S 2) = α2Vc2(S 2) + β2Vd2(S 2)
(25)

where the calibrators are A, B, C and D. To save room, the
calibrator visibilities are replaced by the capital letters. It can
be shown that the correlation factor between the two squared
visibilities is:

ρ(V2(S 1),V2(S 2)) =
α1α2

√
Var(A)Var(B)ρ(A,C)√

Var(V2(S 1))Var(V2(S 2))
(26)

+
α1β2

√
Var(A)Var(D)ρ(A,D)√

Var(V2(S 1))Var(V2(S 2))

+
β1α2

√
Var(B)Var(C)ρ(B,C)√

Var(V2(S 1))Var(V2(S 2))

+
β1β2
√

Var(B)Var(D)ρ(B,D)√
Var(V2(S 1))Var(V2(S 2))

·

When all calibrators are different, all correlations are zero. The
correlation is maximum when a single calibrator has systemat-
ically been used. Measurement noise is present at the denomi-
nator only and the correlation is of course all the larger as the
measurement noise is smaller.

The correlation between two expected squared visibilities
at two different baselines is not easy to evaluate analytically.
Besides, it may depend upon the model of the calibrator. A
computation can be performed which shows that the correlation
is indeed equal to 1 with an excellent accuracy as long as no
baseline is equal to 0. This can also be shown by expanding
the visibility function. Thus, the expected visibilities derived
from a uniform disk model of a same calibrator at two different
baselines are fully correlated to the first order. This holds as
long as the second derivative of the model is small (which in
the case of the uniform disk model is true except close to the
zeros of the model) and as a condition, none of the baselines is
very close to zero. In practice, the error on the diameter being
usually small (less than 5%), the first order approximation is
valid and the two expected squared visibilities can therefore
be considered fully correlated. This is true down to very short

baselines as for example for a diameter of 10 ± 0.5 mas the
correlation starts to decrease for a baseline below 5 cm.

For practical use, Eq. (26) can be simplified as the cor-
relations between expected visibilities are either 0 or 1 when
the calibrators are respectively different or alike. The only re-
quirement to compute this correlation is therefore that the vari-
ances of the expected visibilities and the coefficients α and β
be saved with the reduced data. These correlations will have
to be computed to model fit the data. The generalization of the
Levenberg-Marquardt method with correlated data is given in
the Appendix at the end of the paper.

7. Validation of the method

Examples of data reduction results and calibrations are pre-
sented. The quantities introduced in the previous sections are
discussed in practical situations and general comments on ob-
serving strategies are expressed.

7.1. Squared coherence factors statistics

I have plotted in Fig. 1 three examples of µ2 distributions. In
the case of V636 Her, the fringe speed puts the fringe fre-
quency far above the turbulence piston spectrum. The piston
is almost frozen during each scan and the amount of corre-
lated noise is small. In the case of 71 UMa, the fringe speed is
lower and the measurements are more sensitive to piston hence
the higher correlated noise. δ Sge is an intermediate case. In
all three examples, the distributions of µ2 are compatible with
Gaussian distributions hence validating the basic assumption
on the statistics of the µ2. An important fact is that the amount
of correlated noise is not negligible and must be taken into ac-
count. However, a test on distributions is performed to detect
deviations from Gaussian statistics. Deviations are not common
and are always due to instrumental problems. In such cases,
depending on the required level of data quality, data may be
eliminated.

7.2. Examples of transfer functions

Figure 2 presents two examples of squared co-transfer func-
tions. Full circles are measurements on calibrators whereas
open circles are interpolations for science targets. It is visible
that the co-transfer function is not always stable and may expe-
rience variations. In some cases like on May 15, 2000 at 8:07,
an error of calibration may have happened as the co-transfer
functions jump by a few percent. Yet, in most cases, the trans-
fer functions variations are slow on time scales of a few hours
and variations can be well approximated to the first order. Data
collected on May 22, 2000 show that this is still the case when
the calibrator diameters are known with a very good precision.

7.3. Discussion of model fitting and examples

7.3.1. Amount of correlation

Before presenting examples let us summarize the different lev-
els of correlations we have encountered so far:

1. correlation of coherence factors (coaxial beamcombiners);
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2. correlation of interferometric channels (coaxial beamcom-
biners);

3. correlation of simultaneous baselines;
4. correlation of non-simultaneous baselines.

The first level (r) was addressed in Sect. 7.1. The amount of
correlation between interferometric channels (ρ12) for a coax-
ial beamcombiner like FLUOR varies from a few percent for
faint sources calibrated by very well-known calibrators to al-
most 100% for bright sources calibrated by sources whose di-
ameters are known with an accuracy of a few percent. The two
channels are therefore not fully independent in this case and it
is important to check the χ2 defined by Eq. (24). A large χ2

may indicate that either the assumptions on Gaussian statistics
were wrong for these particular data or that the transfer func-
tion variation is not well measured. In either case, data should
be examined in detail to decide whether the visibility value can
be used or not. A blind method is to reject visibilities with a
χ2 above a certain level that can be of 3 for difficult programs
or relaxed to a larger value for easier programs. It is important
to note that if the transfer function has varied accordingly in
both channels at the time the science target was observed by an
amount larger than the error bars then this χ2 test will fail to
detect it. It can only be detected if the variations are opposite
in the two channels. This is certainly a weakness.

It will be interesting to assess the level of correlations of
visibilities measured with multiple beam interferometers. It can
be anticipated that it will not be negligible and will be of the
same level as ρ12.

The importance of correlation between visibilities recorded
separately is illustrated in Fig. 3. The data have been reduced in
two different ways. Data plotted with open circles and fitted by
a dashed-line uniform disk model are reduced without taking
correlations into account. Data plotted with full circles and fit-
ted by the continuous line were reduced with the method of this
paper. In the first case, the fit is of very good quality with a χ2

smaller than 1. Yet, all visibilities have been calibrated with
the same source, hence a strong correlation between visibility
values as the 3 × 3 correlation matrix shows:

C =


1 0.96 0.96

0.96 1 0.97
0.96 0.97 1

 · (27)

It is to be noticed that the ρ12 correlation factor is larger than
90% for all three visibilities, a large fraction of this correlation
being due to the common calibrator. If correlations are ignored
then noise is considered independent from one visibility to the
other and this is why the first χ2 is smaller, as a large global
noise is now interpreted as a large fluctuating noise from one
visibility to the other. On the contrary, when correlations are
used, a tiny fraction of noise (4% at most) can be considered
a fluctuation giving degrees of freedom for the adjustement of
the model. This is equivalent to reducing error bars on visibili-
ties by 96% in the fit. The common noise due to the uncertainty
on the calibrator is then a simple common bias on the visibil-
ities but does not contribute to the noise in the fit, hence the
much larger χ2. In the zoomed part of this same figure, one can
see that the fit now conforms to only one of the visibility data

as the correlation matrix is close to being non-invertible (see
the Appendix for the use of the correlation matrix in the fitting
process). In more physical terms, the correlations being very
close to one, all data are equivalent and the fit can be derived
from one of the visibility data. If all data points were compat-
ible despite the large correlations then the best fit curve would
go through the error bars. It is not the case here and this is why
the χ2 is large.

7.3.2. Examples of visibility accuracies

Other examples of model fitting are presented in Fig. 4. The
BK Vir data were calibrated with the same calibrator (the cor-
relation matrix is similar to the matrix above) as SW Vir but
the visibilities are very consistent with each others. Data for
the three other sources are either totally independent or slightly
correlated. Only the first lobe data were used for the fit of
G Her. These four examples show very good fits and consis-
tency of data. In particular, this sets the best absolute accu-
racy of the calibration of visibilities with FLUOR to 0.004
(equivalent to an accuracy of 0.004 on V2 with V = 0.5 as
σV2 = 2σV .V to the first order).

7.3.3. Calibration strategies

It is important to adapt the strategy of calibration to the type
of astrophysical studies addressed with optical interferometers.
For most studies where visibility accuracies of a few percent
are acceptable, the repeated use of a single or of a few calibra-
tors is possible. For difficult programs like exoplanet detection,
a very high level of accuracy is required and the strategy needs
to be well prepared. Two cases may arise depending on whether
the required calibration of visibilities is absolute or relative. If
absolute accuracies better than 0.001 have to be obtained on
visibilities then it is very likely that no calibrator can be used
twice, unless the error on the expected visibility of this cali-
brator is less than the level of accuracy required. This would
suppose that the visibility model of the calibrator be measured
first. Another possibility is relative detection. As illustrated by
the example of SW Vir, if the same calibrator is systematically
used, the fit is sensitive to very low levels as the correlated noise
does not contribute to the value of the χ2. In this example, a de-
parture from the uniform disk model or a calibration error may
have been detected to a level much lower than the error bars.
For very faint detail detection, this can work if the visibility
curve of the calibrator is smooth and without wiggles of simi-
lar amplitude as the ones searched for on the science target.

In any case, the observing strategy should be prepared in
advance and should take the problem of data correlations into
account.

8. Conclusion

I have proposed in this paper a method to calibrate visibil-
ity data obtained with single mode interferometers. The single
mode character is required to make valid the assumption that
the statistics of coherence factors data are Gaussian and station-
ary. It is possible to derive reliable error bars if all correlations
are considered in the derivation of all estimators. Correlations
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also need to be taken into account when fitting the data by mod-
els. The validity of the method has been demonstrated on real
interferometric data recorded with FLUOR. An important con-
clusion of this work is that the strategy of calibration has to
be adapted for specific programs requiring high standards of
calibration.
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