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A new, wide class of relativistic stochastic processes is introduced. All relativistic pro-
cesses considered so far in the literature (the Relativistic Ornstein–Uhlenbeck Process
as well as the Franchi–Le Jan and the Dunkel–Hänggi processes) are members of this
class. The stochastic equations of motion and the associated forward Kolmogorov equa-
tions are obtained for each process in the class. The corresponding manifestly covariant
transport equation is also obtained. In particular, the manifestly covariant equations
for the Franchi–Le Jan and the Dunkel–Hänggi processes are derived here for the first
time. Finally, the manifestly covariant approach is used to prove a new H-theorem for
all processes in the class.
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1. Introduction

It is probably fair to say that Stochastic Process Theory originated with Einstein’s

1905 study on Brownian motion.12 The theory has since developed into a full-grown

branch of Mathematics20,21 and its current applications include Physics and Chem-

istry,25,15 Biology1,17 and Economics.23,24 As far as Physics is concerned, one had

to wait until the 70’s to see what started as an attempt to describe non-quantum

Galilean diffusions being extended to include Galilean quantum processes.25,16 But

the wait for a relativistic extension was even longer, since the first paper dealing

with a relativistic stochastic process of clear physical interpretation was only pub-

lished in 1997.5 Other relativistic stochastic processes have recently been considered

by various authors,13,10,11,14,7,2 sometimes with extremely different and seemingly

irreconciliable points of view. The aim of the present letter is to propose a unified

approach towards all processes already considered in the literature. It turns out

that these processes are particular members of a wide class of generalized relativis-

tic Ornstein–Uhlenbeck processes. This class is characterized by a certain simple

property obeyed by the stochastic force entering the definition of the processes.
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More precisely, for each process in the class, and for each point on the phase-

space trajectory of the diffusing particle, there exists a Lorentz frame in which the

stochastic force acting on the particle is a Gaussian white noise.

The gaps in the present literature are filled by providing, for all processes in

the class, the stochastic equations of motion in an arbitrary Lorentz frame and the

associated transport equations, in both standard (3 + 1) and manifestly covariant

form. In particular, a manifestly covariant treatment of both the Franchi–Le Jan

and the Dunkel–Hänggi processes is proposed here for the first time. Finally, the

general manifestly covariant approach is used to prove a new H-theorem, valid for

all processes in the class.

2. Definition of the Class

We work in the special relativistic framework. The space–time is thus flat, equipped

with the Minkowski metric η. We only consider Lorentz frames, where the compo-

nents of η read ηµν = diag(1,−1,−1,−1). There is no simple, direct special rel-

ativistic analog of the usual Galilean Brownian motion. The simplest relativistic

diffusion processes are analogs of the Ornstein–Uhlenbeck process.5 In these pro-

cesses, the force acting on the particle is made up of two distinct contributions.

The first one is deterministic and represents the mean force acting on the diffusing

particle; the second contribution is stochastic and is the source of noise for the

motion. This letter deals with a new class C of relativistic processes. This class is

characterized by the fact that, for each process P in C, there exists at any point Z of

the phase-space trajectory of the diffusing particle, a P - and possibly Z-dependent

Lorentz frame R∗(Z) in which the noise force acting on the particle is a usual

Gaussian white noise. Each process P in the class C is thus fully determined by a

choice of deterministic force and a choice of Lorentz frame R∗(Z) for each Z.

Let R be an arbitrary, fixed Lorentz frame, with coordinates (t,x) and let p be

the three-momentum of a point particle of unit mass in R. A point on the phase-

space trajectory of the diffusing particle can be labeled by Z = (t,x,p). Let us

fix a process P in the class C and a point Z0 in phase-space. The Lorentz frame

R∗(Z0) can be represented by its three-velocity field u(Z0) with respect to R. Let

Z∗ = (t∗,x∗,p∗) be coordinates attached to R∗(Z0). These coordinates naturally

depend on Z0 but are defined over all Minkowski space–time. Their values at point

Z0 will be denoted by Z∗
0 = (t∗0,x

∗
0,p

∗
0). The process P is represented, in R∗(Z0),

by stochastic equations of the form:

dx∗i
t∗ = ηij pj, t∗

γ(p∗
t∗)
dt∗

dp∗i, t∗ = (S)φ∗(Z∗
t∗)dt

∗ + σ∗
ij(Z

∗
t∗)dB

j
t∗ , (1)

where γ(p) =
√

1 + p2 is the Lorentz factor of the particle, (S)φ∗ is the determin-

istic three-force acting on the diffusing particle in R∗(Z0) and the superscript (S)

indicates that these equations are to be understood in the Stratonovich sense.21
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The fundamental property tracing the fact that P belongs to the class C is that

the noise entering (1) is, at point Z∗
0 , a Gaussian white noise:

σ∗
ij(Z

∗
0 ) =

√
2Dηij . (2)

3. Equations in an Arbitrary Reference Frame

The stochastic equations of motions describing the process P in the original, fixed

Lorentz frame R can be deduced from Eqs. (1) and (2) by carrying out, for all Z0,

a Lorentz boost from R∗(Z0) to R, followed by a random time change from t∗ to

t. One obtains equations of the form:

dxi
t = vi(Zt)dt ,

dpi,t = (I)φi(Zt)dt+ σij(Zt)dB
j
t ,

(3)

where

vi(Z) = ηij pj

γ(p)
, (4)

(I)φi(Z) = Hi(Z) + Ii(Z) + Ji(Z) , (5)

Hi(Z) =
p · U
γ(p)

(S)φ∗i − ui

γ(p)

[

γ(p)(1 − Γ)

u2
(S)φ∗ju

j + Γ(S)φ∗jp
j

]

, (6)

Ii(Z) = D
Γ

γ(p)(p · U)2

[

ui(1+2(p ·U)2)−Γ2γ(p)uj
∂ui

∂pj
+Γγ(p)(p ·U)pj

∂ui

∂pj

]

, (7)

Ji(Z) = −D
2

Γ2

γ(p)(p · U)2
p · ∂U
∂pj

[(

p · U
Γ

)2

ηij −
(

p · U
Γ

)

(uipj +ujpi)+uiuj

]

, (8)

and, finally,

σij(Z) = −
√

2D

√

1

γ(p)(p · U)

[

γ(p)(1 − Γ)

u2
uiuj + Γuipj − (p · U)ηij

]

. (9)

In Eqs. (6) to (9), we have introduced the four-velocity U , along with the Lorentz

factor Γ = (1−u2)−1/2, associated to the three-velocity u. The associated forward

Kolmogorv equation reads21:

∂Π

∂t
+

∂

∂xi

(

pi

γ(p)
Π

)

=
∂

∂pi
(ψiΠ) +

∂

∂pi

(

Aij
∂Π

∂pj

)

, (10)

with

Aij(t,x,p) = −DΓ2

γ(p)

1

p · U

[

(

p · U
Γ

)2

ηij −
(

p · U
Γ

)

(uipj + ujpi) + uiuj

]

, (11)

ψi(t,x,p) =
∂Aij

∂pj
− (I)φi(t,x,p) , (12)
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and where Π is the t-dependent distribution function in (x,p)-space, equipped with

the Lebesgue measure d3xd3p.

In R, each process of the class C is fully determined by fixing the deterministic

three-force ψ(t,x,p) and the velocity field u(t,x,p).

4. Manifestly Covariant Treatment

Equation (3) or, alternately, Eq. (10), fully characterize the class C. They are

however rather cumbersome and, therefore, difficult to use in practice. This problem

can be remedied by lifting the Kolmogorov equation off the mass-shell and treating

p0 as independent of p.19 One thus introduces a new, unphysical distribution f ,

which depends on (t,x, p0,p) and whose restriction to the mass-shell coincides with

Π. The Kolmogorov equation is itself replaced by a so-called manifestly covariant

transport equation i.e. by a manifestly covariant equation obeyed by the distribution

f and whose validity is a sufficient condition for the validity of the Kolmogorov

equation. Making use of the standard techniques of relativistic statistical physics,

one finds that the simplest manifestly covariant transport equation associated to

(10) reads:

L(f) = 0 , (13)

with

L(f) =
∂

∂xµ
(ηµνpνf) +

∂

∂pµ
(Ξµf) +

∂

∂pρ

(

DKµ
ρ

β
ν
pµpβ

p · V
∂f

∂pν

)

, (14)

where V is an off-shell four-velocity whose restriction on the mass-shell is U ,

Kµρβν = V µV β∆ρν − V µV ν∆ρβ + V ρV ν∆µβ − V ρV β∆µν , (15)

and ∆ is the projector on the orthogonal to V :

∆µν = ηµν − VµVν . (16)

Let ξ be any off-shell three-force whose restriciton on the mass-shell is the three-

force ψ. In Eq. (14), Ξ is an off-shell four-force acting on the particle, related to ξ

by:

Ξ0 = piξi ,

Ξi = −p0 ξi . (17)

Note that Ξ · p = 0, even for off-shell momenta. The operator L is clearly Lorentz

invariant. It can be proven by a very general argumentation that both distributions

f and Π also are scalars.18,19,6
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5. Particular Processes

5.1. The ROUP

The ROUP3–5 is the first relativistic process to have been introduced in the physi-

cal literature. It models the stochastic motion of a point particle diffusing through

its interaction with an isotropic fluid. The fluid is taken to be in a state of global

thermodynamical equilibrium, with rest-frame RW and four-velocity W . The co-

ordinates associated to RW are (T,X,P). The isotropy of the fluid leads to the

choice R∗(Z) = RW for all Z. The deterministic force acting on the particle is a

frictional force. The expression of the corresponding three-force in RW is5:

(

(S)φW

)

i
(T,X,P) = −α Pi

γ(P)
, (18)

where α is a friction coefficient. The Kolmogorov equation describing the transport

in RW reads:

∂Π

∂T
+

∂

∂X
·
(

X

γ(P)
Π

)

+
∂

∂P
·
(

−α
P

γ(P)
Π

)

= D∆PΠ . (19)

The Kolmogorov equation in an arbitrary Lorentz frame R3,4 is given by Eq. (10)

with

Aij(t,x,p) = −D Γ2

γ(p)

1

p ·W

[(

p ·W
Γ

)2

ηij −
(

p ·W
Γ

)

(wipj + wjpi) + wiwj

]

, (20)

and

ψi(t,x,p) = −p ·W
γ(p)

(

(S)φW

)

i
− wi

γ(p)

[

γ(p)(1 − Γ)

w2

(

(S)φW

)

j
wj+Γ

(

(S)φW

)

j
pj

]

. (21)

The manifestly covariant transport equation is (13), along with (14), where V = W ,

and4

Ξµ = −λν
µpν p · p+ λαβpαpβ pµ , (22)

with

λµ
ν =

α

(p ·W )2
∆µ

ν , (23)

where ∆ denotes the projector on the orthogonal to V (see Eq. (16)). Equation (13)

admits the off-shell Jüttner distribution19

fJ(p) =
1

4π

β

K2(β)
exp(−βW µpµ) , (24)

as invariant measure in p-space, provided the inverse temperature β, the friction

coefficient α and the noise coefficient D are linked by the relation α = βD. This

constitutes a special relativistic fluctuation theorem.

5
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5.2. The Franchi Le Jan process

This process13,14,2 is obtained by choosing, for all Z, the instantaneous proper

frame of the diffusing particle as the Lorentz frame R∗(Z) and by setting to zero

the force acting on the particle. This process does not describe the diffusion of

a particle interacting with a usual surrounding fluid. It has been suggested that

the Franchi–Le Jan process is a model for diffusions induced by interaction with

quantum gravitational degrees of freedom.8,7 The Kolmogorov equation describing

the Franchi–Le Jan process in an arbitrary Lorentz frame R is Eq. (10) with

Aij(t,x,p) =
D

γ(p)
[pipj − ηij ] , (25)

and

ψi(t,x,p) = 0 . (26)

It can be rewritten as

∂Π

∂t
+

∂

∂xi

(

pi

γ(p)
Π

)

=
D

γ(p)
∆mΠ , (27)

where m is the metric induced by the Minkowski metric η on the mass-shell and ∆m

is the Laplace–Beltrami operator9 associated to m. The components of the inverse

metric m−1 are given by mij = pipj − ηij and the Laplace–Beltrami operator is

defined by

∆m =
1

√

detmij

∂

∂pi

(

√

detmij m
ij ∂

∂pj

)

, (28)

where detmij = γ−2(p). The off-shell transport equation is given by Eq. (13) along

with Eq. (14), where Ξµ = 0. The noise term simplifies greatly because one can

choose V = p for this process, and the corresponding manifestly covariant transport

equation reads:

∂

∂xµ
(ηµνpνf) +

∂

∂pρ

(

D(ηρν − pρpν)
∂f

∂pν

)

= 0 . (29)

5.3. The Dunkel Hänggi process

This process10,11 mixes characteristics of both the ROUP and the Franchi–Le Jan

process. The Dunkel–Hänggi process is best presented as describing the interaction

of a point particle with a fluid. A proper frame RW and a four-velocity W for the

fluid are introduced and the deterministic force is a frictional force. The expression

of the associated three-force in RW reads:

(

(I)φW

)

i
(T,X,P) = −νPi +

3DPi

γ(P)
, (30)

where ν is a positive friction coefficient. The noise term, on the other hand, is

identical to the Franchi–Le Jan process. It is thus isotropic in the proper frame of

6
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the diffusing particle, and not in the proper frame RW of the fluid. It therefore

seems that the Dunkel–Hänggi process does not describe diffusions in standard

isotropic fluids.

The Kolmogorov equation in RW is given by

∂Π

∂T
+

∂

∂X i

(

P i

γ(P)
Π

)

=
∂

∂Pi
(νPi Π) +

∂

∂Pi

[(

D

γ(P)
(PiPj − ηij)

)

∂Π

∂Pj

]

. (31)

The Kolmogorov equation in an arbitrary Lorentz frame R is Eq. (10), with

Aij = −1

2
σilσ

T
kjη

kl , (32)

and

ψi =
∂Aij

∂pj
− (I)φi , (33)

where

σij(t,x,p) =

√

p ·W
γ(p)

(σW )kj

[

δk
i − wi

p ·W

(

(1 − Γ(w))γ(p)

w2
wk + Γ(w)pk

)]

, (34)

(I)φi(t,x,p) =
p ·W
γ(p)

(

(S)φi −
1

2
ηjlσkl

∂σij

∂pk

)

, (35)

(S)φi(t,x,p) =
(

(S)φW

)

i
− wi

p ·W

(

(1 − Γ(w))γ(p)

w2
wk

(

(S)φW

)

k
+Γ(w)pk

(

(S)φW

)

k

)

,

(36)

(

(S)φW

)

i
=

(

(I)φW

)

i
+

1

2
ηjl(σW )kl

∂(σW )ij

∂pk
(37)

and

(σW )ij(T,X,P) =

√

2D

γ(P)

[

1 − γ(P)

P2
PiPj + ηij

]

. (38)

The manifestly covariant transport equation is (13), with (14), where

Ξµ = −λ̃ν
µpν p · p+ λ̃αβpαpβ pµ , (39)

λ̃µ
ν =

ν

(p ·W )
∆̃µ

ν , (40)

and ∆̃ is the projector on the orthogonal to W :

∆̃µν = ηµν −WµWν . (41)

The noise term can be simplified into the noise term of Eq. (29).

7
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6. H-Theorem

The structure of the manifestly covariant equation makes it possible to prove an

H-theorem common to all processes in the class C. Let f and g be two solutions

of Eq. (13). The four-current S[f |g] of the conditional entropy of f with respect to

g is defined by:

Sµ
[f |g](x) = −

∫

pµf(x, p) ln

(

f(x, p)

g(x, p)

)

D4p, (42)

with D4p = θ(p0)δ(p
2 − 1)d4p, where θ is the Heaviside function and δ is the Dirac

distribution. The first step in the proof of the H-theorem is to evaluate the four-

divergence of this current and to use the manifestly covariant transport equation

to convert all space–time derivatives into momentum derivatives. An integration by

parts then leads to:

∂µS
µ
[f |g] =

∫
{

∂pν
(Jµνf) − ∂pν

(Jµνg)
f

g

}

∂pµ
ln

(

f

g

)

D4p

+

∫
{

Kµ(g)
f

g
−Kµ(f)

[

1 + ln

(

f

g

)]}

∂pµ
(D4p) , (43)

with

Jµν = −DKα
µ

β
ν
pαpβ

p · V , (44)

Kµ(f) = Iµf − ∂

∂pν
(Jµνf), (45)

where

Iµ = −DKα
µ

β
ν
∂

∂pν

(

pαpβ

p · V

)

+ Ξµ . (46)

A direct calculation shows that ∂pµ
D4p = 2pµθ(p0)δ

′(p2 −m2c2)d4p. The second

integral in Eq. (43) thus involves contractions of the form pµKµ(u), where the

function u is either f or g. Replacing K by its definition (45), one obtains:

pµKµ(u) = pµ

{

Iµu− ∂

∂pν
(Jµνu)

}

= DKα
µ

β
νp

µ pαpβ

p · V
∂u

∂pν
+ pµΞµu . (47)

The tensor Kαµβν is antisymmetric upon exchange of the indices µ and α, entailing

that Kαµβνpαpµpβ = 0. Moreover, the deterministic four-force F is orthogonal to

the momentum p, i.e. pµΞµ = 0 (see Eq. (17)). Equation (47) therefore simply

reduces to

pµKµ(u) = 0 . (48)

8



Acc
ep

ted
 M

an
us

cri
pt

Final Reading
March 5, 2008 19:46 WSPC/147-MPLB 01484

Equation (43) thus simplifies into

∂µS
µ
[f |g](x) =

∫

JµνDµ[f/g]Dν [f/g]D4p , (49)

where J is defined by Eq. (44) and the functional D is given by

Dµ[f/g] =
∂

∂pµ
(ln(f/g)) . (50)

The value of the scalar JµνDµ[f/g]Dν [f/g] at point z = (x, p) is best computed in

the Lorentz frame of four-velocity V (z). By definition, the components of V (z) in

this frame are (1, 0, 0, 0) and one finds by a direct calculation that:

JµνDµ[f/g]Dν [f/g] = −D

p0
ηijqiqj , (51)

with qi = piD0[f/g] − p2
0Di[f/g]. This proves that JµνD

µ[f/g]Dν [f/g] is non-

negative at all points z of the extended phase-space. The integral (49) is thus

non-negative, which proves the H-theorem.

7. Conclusion

We have introduced a new, wide class of relativistic stochastic processes. Processes

in this class are generalizations of the standard Ornstein–Uhlenbeck process and

are characterized by a certain simple property of the stochastic force acting on

the diffusing particle. All relativistic stochastic processes considered so far in the

literature13,10,11,14,7,2 belong to this class. We have obtained, for each process in the

class, the stochastic equations describing the diffusion in an arbitrary Lorentz frame

and the associated forward Kolmogorov equation. The corresponding manifestly

covariant transport equation has been obtained as well. In particular, a manifestly

covariant treatment of both the Franchi–Le Jan and the Dunkel–Hänggi processes

is given here for the first time. We have used the manifestly covariant formulation

to prove a new H-theorem, valid for all the processes in the class. Let us conclude

by mentioning some directions in which the work presented in this letter should

be extended. The calculations presented here have been performed in flat space–

time only. A necessary extension is therefore to perform all calculations in curved

space–time as well. The construction of relativistic stochastic processes proposed

in this letter also makes it apparent that the class of processes considered here

can be extended into even more general ones to describe, for example, diffusions in

non-isotropic media. Such extensions will be addressed in forthcoming publications.
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