
HAL Id: hal-03742173
https://hal.science/hal-03742173

Submitted on 1 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint cosmological parameters forecast from
CFHTLS-cosmic shear and CMB data

I. Tereno, O. Doré, Ludovic van Waerbeke, Yannick Mellier

To cite this version:
I. Tereno, O. Doré, Ludovic van Waerbeke, Yannick Mellier. Joint cosmological parameters forecast
from CFHTLS-cosmic shear and CMB data. Astronomy and Astrophysics - A&A, 2005, 429, pp.383-
398. �10.1051/0004-6361:20041099�. �hal-03742173�

https://hal.science/hal-03742173
https://hal.archives-ouvertes.fr


A&A 429, 383–398 (2005)
DOI: 10.1051/0004-6361:20041099
c© ESO 2004

Astronomy
&

Astrophysics

Joint cosmological parameters forecast from CFHTLS-cosmic
shear and CMB data

I. Tereno1,3, O. Doré2, L. van Waerbeke1, and Y. Mellier1,4

1 Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris, France
e-mail: tereno@iap.fr

2 Department of Astrophysical Sciences, Princeton University, Princeton NJ 08544, USA
3 Departamento de Física, Universidade de Lisboa, 1749-016 Lisboa, Portugal
4 Observatoire de Paris, LERMA, 61 avenue de l’Observatoire, 75014 Paris, France

Received 15 April 2004 / Accepted 23 August 2004

Abstract. We present a prospective analysis of a combined cosmic shear and cosmic microwave background data sets, focusing
on a Canada France Hawaii Telescope Legacy Survey (CFHTLS) type lensing survey and the current WMAP-1 year and
CBI data. We investigate the parameter degeneracies and error estimates of a seven parameter model, for the lensing alone
as well as for the combined experiments. The analysis is performed using a Monte Carlo Markov Chain calculation, allowing
for a more realistic estimate of errors and degeneracies than a Fisher matrix approach. After a detailed discussion of the
relevant statistical techniques, the set of the most relevant 2 and 3-dimensional lensing contours are given. It is shown that
the combined cosmic shear and CMB is particularly efficient to break some parameter degeneracies. The principal component
directions are computed and it is found that the most orthogonal contours between the two experiments are for the parameter
pairs (Ωm, σ8), (h, ns) and (ns, αs), where ns and αs are, respectively, the slope of the primordial mass power spectrum and the
running of the spectral index. It is shown, under the assumption of perfectely controlled systematics, that an improvement of a
factor of 2 is expected on the running of the spectral index from the combined data sets. Forecasts for error improvements from
a wide field space telescope lensing survey are also given.

Key words. cosmological parameters – large-scale structure of Universe – gravitational lensing

1. Introduction

The Canada-France-Hawaii Telescope Legacy Survey1

(CFHTLS) is a long term wide field imaging project that
started in early 2003 and should be completed by 2008. The
French and Canadian astronomical communities will spend
about 500 CFHT nights to carry out imaging surveys with
the new Megaprime/Megacam instrument recently mounted
at the CFHT prime focus. About 160 nights will focus
on the “CFHTLS-Wide” survey that will cover 170 deg2,
spread over 3 uncorrelated patches of 7◦ × 7◦ each,
in u∗, g′, r′, i′, z′ bands, with typical exposure times of
about one hour per filter. The “CFHTLS-Wide” survey design
and observing strategy are similar to the -Descart
cosmic shear survey2 but it will have a sky coverage 20 times
larger. It is widely seen as a typical second generation cosmic
shear survey.

The exploration of weak gravitational distortion produced
by the large scale structures of the universe over fields of view
as large as “CFHTLS-Wide” has an enormous potential

1 http://www.cfht.hawaii.edu/Science/CFHTLS/
2 http://terapix.iap.fr/cplt/oldSite/Descart/

for cosmology. Past experiences based on first generations
cosmic shear surveys (see for example reviews in
Van Waerbeke & Mellier 2003; Réfrégier 2003) have
demonstrated they can constrain the dark matter properties
(σ8, Ωm and the shape of the dark matter power spectrum)
from a careful investigation of the ellipticity induced by
weak gravitational shear on distant galaxies. For example, the
most recent cosmic shear results from the -Descart
survey (Van Waerbeke et al. 2004) lead to the conservative
limits σ8 = 0.85 ± 0.15 (99% C.L.) and Ωm = 0.3 ± 0.15
(99% C.L.), which means an accuracy of ≈1−3% can be
expected with the “CFHTLS-Wide” for the same set of cos-
mological parameters. The CFHTLS-Wide will also explore a
broader wavenumber range (105−102) than -Descart
and will extend to linear scale, which will considerably ease
cosmological interpretation of weak lensing data. Second
generation surveys will therefore allow a more thoroughly
investigation of different cosmological models, taking into ac-
count a broad range of cosmological parameters. For instance,
Benabed & van Waerbeke (2003), stressed the use of CFHTLS
as a probe of dark energy evolution.
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The full scientific outcome of the cosmic shear data from
the “CFHTLS-Wide” will only be complete with a joint anal-
ysis with other data sets, like Type Ia Supernovae, galaxy
redshift surveys, Lyman-alpha forest, or CMB observations.
Contaldi et al. (2003) have used the Red-Sequence Cluster
Survey (RCS) cosmic shear data together with CMB data.
It was shown that the Ωm, σ8 degeneracies for lensing and
CMB are nearly orthogonal, which makes this set of pa-
rameters particularly relevant for such combined analysis
(Van Waerbeke et al. 2002). The search for orthogonal param-
eter degeneracies between different observations is one of the
most important aspects of parameters measurements.

Ishak et al. (2004) recently argued that joint CMB-cosmic
shear surveys provide an optimal data set to explore the ampli-
tude of the running spectral index and probe inflation models.
They used a Fisher-Matrix analysis on WMAP+ACBAR+CBI
plus a cosmic shear “reference survey”. Their simulated sur-
vey covers 400 deg2 with a depth corresponding to a galaxy
number density of lensed sources of about 60 arcmin−2, and re-
stricted their analysis to 3000 > l > 20. They found that several
parameters can be significantly improved (like σ8, Ωmh2, ΩΛ)
and in particular that both the spectral index ns and the running
spectral index αs errors are reduced by a factor of 2. Their en-
couraging results show that joint CMB and weak lensing data
may provide interesting insights on inflation models. Here, we
investigate the 2-dimensional structure of the parameter degen-
eracies between lensing and CMB data sets, and look for the
expectation with a “CFHTLS-Wide”-like survey design.

To explore the smaller scales probed by the “CFHTLS-
Wide”, which will provide cosmic shear information down
to 20 arcsec, it is preferable to avoid prior assumptions re-
garding the Gaussian nature of the underlying distribution, and
to discard a Fisher matrix analysis. We used in this work the
so-called Markov Chain Monte Carlo (MCMC) method. The
MCMC computing time linearly scales with the number of pa-
rameters and eases the exploration of a large sample of pa-
rameters and a broad range of values for each. Contaldi et al.
(2003) already used this approach with the RCS survey to map
the Ωm, σ8 parameter space, but marginalised over a small set
of cosmological parameters. The goal of this present work is to
map the parameter space that describes cosmological models
in order to extract series of parameter combinations that would
minimise intersections of CMB and cosmic shear degeneracy
tracks. Compared to the Fisher-Matrix approach which pro-
duces ellipses only, MCMC provides more details of the pa-
rameter space and eventually a more realistic estimate of error
improvements of the joint analyses.

The paper is organised as follows: Sect. 2 introduces the
gravitational lensing and defines the cosmic shear fiducial data
used and the parameter space investigated. Section 3 gives the
details of our MCMC calculations, limitations and convergence
criteria. Section 4 shows the MCMC results from the cosmic
shear alone, assuming a lensing survey similar to the CFHTLS.
In Sect. 5 we present the results of the parameter degenera-
cies analysis on the combined cosmic shear and cosmic mi-
crowave background observations. The assumptions made and
the results obtained are discussed in Sect. 6 and we conclude
in Sect. 7.

2. Cosmic shear and cosmological parameters

Propagation of galaxy light beams across large scale mass inho-
mogeneities produces distorted and (de)magnified galaxy im-
ages (for reviews see Mellier 1999; Bartelmann & Schneider
2001; Réfrégier 2003; Van Waerbeke & Mellier 2003). The
gravitational lensing magnification and shear are described by
the amplification matrix which involves second order deriva-
tives of the projected gravitational potential ϕ: the shear, γ, and
the convergence, κ,

κ =
1
2

(
ϕ,11 + ϕ,22

)
; γ1 =

1
2

(
ϕ,11 − ϕ,22

)
; γ2 = ϕ,12. (1)

The cosmic shear may be derived from the ellipticity of the
galaxies. In the weak lensing approximation, the observed el-
lipticity of a galaxy is related to its intrinsic ellipticity and to
the shear by

εi = εis + γ, (2)

where εi = (εxi, εyi) and γ = (γ1, γ2). Several correlation func-
tions and 2-point statistics of the shear may be defined. In this
work we will use the shear variance in a top-hat window of ra-
dius θ (Eq. (7)), although all 2-points statistics are equivalent
and provide similar results (they are all linear combinations of
the others). Let us now relate this quantity to cosmology.

We parameterize cosmological models with a set of 13 pa-
rameters, (ωb, ωc, Ωv, fν, h; σ8, ns, αs, r, nt; τ; w; zs). Each
model defines a point in the high-dimensional space where a
value of the likelihood of the model with respect to the data
may be calculated. We use the CAMB software (Lewis et al.
2000) to compute the dark matter power spectrum and transfer
function. The parameters are defined as follow:

– (As, ns, αs) – parameterize the primordial scalar power
spectrum:

P(k) = As

(
k

k0s

)ns(k0s)−1+ 1
2αs ln( k

k0s
)

, (3)

which is normalized with As = P(k = 0.05 h Mpc−1) and
has a scale-dependent tilt.

– (As, r, nt) – parameterize the primordial tensor power
spectrum:

P(k) = rAs

(
k

k0t

)nt

, (4)

with k0t = 0.002 h Mpc−1.
– (ωb, ωc,Ωv, fν) – the matter budget consisting of baryons,

cold dark matter, dark energy and neutrinos, with ωb =

Ωb h2, ωc = Ωc h2.
– (h) – The hubble parameter. The spatial curvature is not a

free parameter: Ωk = 1 − Ωv − (ωc + ωb)/h2.
– (w) – Dark energy equation of state parameter.
– (τ) – Reionization optical depth.
– (σ8) – Once the 3-dimensional power spectrum of the den-

sity fluctuations is derived, it is renormalized according to
the model value of σ8, losing the memory of the original
value of As.
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Table 1. Cosmic shear: fiducial cosmological model.

ωb = 0.022 ωc = 0.114 Ωv = 0.73

fν = 0 Ωk = 0 h = 0.71

ns(k0s) = 0.93 αs(k0s) = −0.04 r = 0

w = −1 τ = 0.17

σ8 = 0.9 zs = 0.8

The non-linear evolution of the power spectrum is then evalu-
ated using the  prescription of Smith et al. (2003). The
power spectrum of the gravitational convergence is derived by
integrating the dark matter power spectrum along the line-of-
sight from the observer up to the radial coordinate of the hori-
zon χH:

Pκ(k) =
9
4
Ω2

m

∫ χH

0
dχ
g2(χ)
a2(χ)

P3D

(
k

fK(χ)
; χ

)

, (5)

where k is the 2-dimensional wave vector perpendicular to the
line-of-sight. fK(χ) is the comoving angular diameter distance
to a coordinate χ, and g(χ) is given by

g(χ) =
∫ χH

χ

dχ′p(χ′)
fK(χ′ − χ)

fK(χ′)
, (6)

where p(χ(z)) is the source redshift distribution, which depends
on the last item in our cosmological parameters set:

– (zs) – the redshift of the sources.

For simplicity, we assume that all the sources are at a single
redshift, zs, but the generalisation to a broad redshift distribu-
tion is straightforward.

From the power spectrum of the gravitational convergence,
the top-hat shear variance inside a circle of radius θ can be
computed:

〈γ2(θ)〉 = 2
πθ2

∫ ∞

0

dk
k

Pκ(k)[J1(kθ)]2. (7)

For each cosmological model generated by the Monte Carlo
simulation described in the next section, 〈γ2(θ)〉 is computed
and compared to a fiducial data model, 〈γ2

data(θ)〉 that corre-
sponds to the fiducial cosmological model of Table 1. This is
taken to be the best fit ΛCDM, flat, no neutrinos, no gravita-
tional waves, running spectral index model, derived from the
first year WMAP data (Spergel et al. 2003). The sources are
placed at zs = 0.8. The likelihood of each model is given by

−2L =
(
〈γ2〉i − 〈γ2

data〉i
)

C−1
data ij

(
〈γ2〉 j − 〈γ2

data〉 j

)
, (8)

where Cdata ij is the covariance matrix

Cdata ij =

〈 (
γ2

i − γ2
data i

) (
γ2

j − γ2
data j

) 〉
. (9)

The covariance matrix of a shear dispersion distribution is
analytically derived in Schneider et al. (2002). The shear dis-
persion at a given angular scale θ may be expressed as an in-
tegral of the two-point correlation of galaxy ellipticities, ξ+,

Table 2. Cosmic shear: survey specifications.

Size of the survey: A = 170 deg2

Density of galaxies: ng = 20 arcmin−2

Intrinsic ellipticity dispersion: σε = 0.4

Scales probed: 0.6′ < θ < 2 deg

90 < l < 18 000

estimated in bins of angular separation ∆ϑ at the center posi-
tion ϑi, evaluated with a window function S +(ϑi/θ). The co-
variance of the shear dispersion involves the four-point ellip-
ticities correlations. Equation (2) shows they depend on the
intrinsic ellipticity correlations, and therefore on the intrinsic
ellipticity dispersion σε , and on the shear correlations for each
model. The shear field is assumed to be Gaussian, so that the
4-point function can be factorised as a sum over products of
2-point functions. It is assumed that the covariance matrix de-
pends solely on the fiducial cosmological model. Assuming a
connected single field of solid angle A and a mean density ng

of source galaxies with an intrinsic ellipticity dispersion of σε ,
the ensemble average of the covariance matrix, Cov(S; θ1, θ2)
of the estimator S of 〈γ2(θ)〉 is,

Cov(S)=
σ4
ε

2π A n2
g

∫ 2min(θ1 ,θ2)

0

dϑϑ

θ21θ
2
2

[

S +

(
ϑ

θ1

)

S +

(
ϑ

θ2

)]

+

∫ 2θ1

0

dϑ1 ϑ1

θ21

∫ 2θ2

0

dϑ2 ϑ2

θ22

×
[

S +

(
ϑ1

θ1

)

S +

(
ϑ2

θ2

)

C′++(ϑ1, ϑ2)

]

. (10)

Equation (10) is the Eq. (42) in Schneider et al. (2002) trans-
posed for the dispersion 〈γ2〉. The first term is a pure Poisson
noise term, due to the intrinsic ellipticities of the galaxies. Its
value decreases rapidly with the scale θ. The second term is
determined by C′++(ϑ1, ϑ2), the shear correlations dependent
part of C++ (the covariance matrix of ξ+). It is computed us-
ing Eqs. (32) and (34) of Schneider et al. (2002) with the
the shear correlation function computed from the convergence
power spectrum at the fiducial model as

ξ±(θ) =
1

2π

∫ ∞

0
dk kPκ(k)J0,4(kθ). (11)

We do not include extra sources of errors, in particular we as-
sume that galaxy shape measurement and PSF anisotropy cor-
rections are free of systematics.

Table 2 summarizes the survey properties. These are based
on real observations; the values forσε and ng (the effective den-
sity, once galaxy selection is done) are found in cosmic shear
surveys (Van Waerbeke et al. 2002) and the field size is the to-
tal size of the CFHT Legacy Survey. To choose the upper limit
on the angular scale, we notice, from Eq. (10), that the com-
putation of the covariance of the shear dispersion at a scale θ
involves an integration up to 2 θ. Furthermore, the integrations
involved in the computation of C′++ need an extra factor of

√
2.

We define θmax to be such that 2
√

2 θmax corresponds to the
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Fig. 1. Shear variance as a function of scale. The bottom left plot shows the fiducial model with 3σ error bars. In the other 8 plots, we change
the labelled parameter by a step of +10% (solid line) and −10% (dashed line), except for αs where the step is ±100%. In each case, the
other 7 labelled parameters are kept constant. Flatness is not imposed.

largest wavelength that can fit in a field of the survey area.
Given that the fields of the CFHTLS-Wide survey have an ap-
proximate size of 7◦ × 7◦, we find θmax to be around 2◦. The
lower limit on the scale probes the deep non-linear regime.

The solid line in the bottom left plot of Fig. 1 shows the
shear variance of the fiducial model (Table 1) as function of an-
gular scale, along with 3σ error bars computed from Eq. (10)
at 20 angular scale points ranging from 0.6 arcmin to 2◦. The er-
ror bars are smaller at intermediate scales, slightly larger at the
smallest scales, where they are determined by statistical noise,
and are noticeably bigger at the largest scales, which are cos-
mic variance dominated. They are slightly optimistic at small
angular scales, due to the Gaussianity assumption, made in the
derivation of the covariance, lacking the non-linear enhance-
ment of the signal. The dashed line shows the shear variance
without the non-linear corrections. Both lines become well sep-
arated below 10 arcmin. The other panels in Fig. 1 illustrate the
cosmic shear sensitivity to different cosmological parameters.
From this figure, it is clear that cosmic shear is more sensi-
tive to Ωm, σ8, the source redshift, (with the cosmic shear sig-
nal increasing with the increase of these parameters) and h. It
also shows that the dependence on ns is a stronger function of
scale than for the other parameters. This is in agreement with
theoretical expectations derived from linear perturbation theory
(Bernardeau et al. 1997):

〈γ2(θ)〉1/2 ∝ σ8Ω
0.75
m z0.8

s

(
θ

1′
)−(ns+2)/2

· (12)

The measurement of the signal down to small (non-
linear) scales introduces additional parameter sensitivity with
some degeneracies broken, like for instance the parameter
pair (Ωm, σ8), as shown in Jain & Seljak (1997). This gain in
sensibility is also noticeable in the αs case.

3. Markov chain Monte Carlo

3.1. General considerations

The probability distribution function (PDF) of an
m-dimensional vector parameter p given the n-dimensional
vector data x(p0) (the posterior PDF P(p|x)), can be calcu-
lated using Bayes theorem from the prior PDF P(p) and the
conditional PDF of the data given the parameter vector (the
likelihood L(x|p)):

P(p|x) =
P(p)L(x|p)

∫
P(p)L(x|p)dp

· (13)

Its analytical computation would involve high-dimensional in-
tegrations, not only to compute the normalisation (also called
the evidence or the marginalised posterior) but also to ex-
tract information from the posterior, such as the determina-
tion of means or marginalised lower dimensional distributions.
Thus, Eq. (13) is analytically solved only for special cases:
For Gaussian PDFs, with the mean given by p0, we see from



I. Tereno et al.: Parameters forecast from CFHTLS-cosmic shear and CMB 387

Eq. (13) that the posterior inverse covariance matrix is C−1
i j =

Fi j + Fprior
i j , where F is the Fisher information matrix,

Fi j =

〈
∂2L
∂pi∂p j

〉

x

≡
(
∂2L
∂pi∂p j

)

p=p0

· (14)

In general, for non-Gaussian PDFs, this Fisher matrix method
still gives valuable information, since we can always Taylor-
expand L = − ln L around the point of maximum likeli-
hood, p = p0, obtaining, to quadratic order,

∆L(p) = (p− p0)t F(p− p0), (15)

and use the Fisher matrix as a linear approximation to the in-
verse covariance matrix. Being a covariance matrix of a real
physical problem, F−1 must be positive-definite. Therefore
an hypersurface of constant ∆L(p), as defined by Eq. (15),
is an hyperellipse which will be an approximation of a cer-
tain σ volume of the posterior. The one-dimensional parameter
marginalised errors, i.e., integrated over the other components
of the parameter vector, are given by ∆pi(1σ) = (F−1

ii )1/2. From
Eq. (15) it is clear that ∆pi(1σ) = (Fii)−1/2 is the error on pi

when all parameters but pi are fixed at p0. Note that, since
the Fisher matrix is exactly the quantity involved in the Rao-
Cramér inequality, the errors computed from the Fisher matrix
approximation are always lower limits of the true ones.

In practice, in order to obtain a more precise result, the
problem is usually solved by computing the posterior at opti-
mized sample points that pave the parameter space. The tra-
ditional approach uses a regular grid. This is a computer-
intensive procedure with computation time rising exponentially
with the space dimension, which limits the number of parame-
ters that can be explored. Markov chain Monte Carlo sampling
(Gilks et al. 1996) overcomes this limitation.

The use of the MCMC technique in cosmological param-
eter estimation was first implemented in Christensen et al.
(2001), following the proposal of Christensen & Meyer (2000).
Current tools like CosmoMC (Lewis & Bridle 2002) no longer
evaluate the likelihood at fixed points but at selected positions
of a Markov chain. Each chain point, pi+1, is derived from the
previous chain point, pi, in such a way that the transition prob-
ability from pi to pi+1 times the posterior PDF of pi, equals
the product of the transition probability from pi+1 to pi by the
posterior PDF of pi+1. Thus, after a relaxation time, the chain
reaches the equilibrium and constitutes a sample of the poste-
rior. A clear advantage of this is that statistical properties of
the distribution, like the mean of a parameter or a marginalised
confidence interval, can be directly derived from discreet sam-
ple points, without need to use the computed values of the like-
lihood. Different priors may also be introduced adapting the
weighting scheme defined by the sample, without need to build
a new chain.

The computing time is determined by the number of points
needed to converge to the equilibrium distribution. If the chain
is built in an efficient way, CPU time scales linearly with the
dimension of the parameter space. Computing time may be re-
duced by finding an analytical expression for the posterior. For
example, the Markov chain data is used to fit the log-likelihood
with a polynomial in Sandvik et al. (2004).

Table 3. Parameters and exploration range investigated by the
MCMC chain: the upper part of the table shows the 7 parameters used
in the initial proposal density, along with their exploration range. The
bottom part shows extra imposed limits to the MCMC exploration.
Other independent cosmological parameters are kept constant at their
fiducial values.

ωb 0.01 0.04

ωc 0.01 0.3

h 0.4 1.0

ns 0.5 1.4

Ωv 0.3 0.9

αs –0.2 0.2

σ8 0.6 1.2

ΩK –0.1 0.1

Age (Gyr) 10 20

Ωc < 3Ωb

3.2. MCMC analysis

The MCMC code we developed is based on the Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings 1970),
like CosmoMC (Lewis & Bridle 2002), Cog (Slosar & Hobson
2003) or the AnalyzeThis (Doran & Müller 2003) public
software.

3.2.1. Chain progression rules

We start several chains at different initial positions chosen ran-
domly inside the limited part of the 7-dimensional parameter
space we aim to explore (Table 3).

The next point is proposed using a proposal PDF, q(pi+1|pi)
and the unnormalised posteriors of both points are compared to
decide if the new point is acceptable. The PDF acceptance rule
we use for the next step point pi+1 is defined by

α(pi+1|pi) = min

{
p(pi+1)L(x|pi+1)q(pi|pi+1)

p(pi)L(x|pi)q(pi+1|pi)
, 1

}

. (16)

α is compared to a random number u generated from a uniform
distribution between 0 and 1. If α > u, then the new pi+1 is ac-
cepted; otherwise it is rejected and we keep the point pi+1 = pi.
Since both the proposal and the acceptance densities only de-
pend on the current element of the chain and not on its previous
history, the resulting sample will be a Markov chain. It is worth
noticing that the ratio in this definition makes the normalisation
of the posterior PDF unnecessary. Furthermore, the presence
of the proposal PDF in Eq. (16), ensures that p(p)L(x|p) is the
equilibrium function, even in the case of a non-symmetrical q,
i.e. when the probability of proposing p from p′ is different
from that of proposing p′ from p.

The result is independent of the proposal density, q. We use
as q, at the beginning of the chain, a 2-dimensional Gaussian
distribution centered at the current chain element. Hence,
only 2 of the 7 parameters (randomly chosen) change at each
step. The covariance matrix of q is chosen to be of the order
of the expected, squared, 1σ error bars. The 1σ error value is
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used as the step definition criterion and guarantees the step am-
plitude has an adequate size. Would it be too small, the chain
would move too slowly and could never leave the vicinity of
the best fit. This situation is known as poor mixing and leads to
underestimated confidence limits. In contrast, if the proposed
steps are too large, the acceptance rate will be too small and
once again the chain will move slowly.

In order to have an adequate initial proposal density we de-
rived approximate 1σ errors from a Fisher matrix computation.
Applying Eqs. (14) to (8) leads to (Tegmark et al. 1997),

Fi j =

n∑

α=1

n∑

β=1

C−1
αβ

(
∂〈γ2〉α
∂pi

∂〈γ2〉β
∂p j

)

, (17)

where the derivatives of the shear variance are evaluated at
the fiducial model. To numerically evaluate these derivatives,
we compute the shear variances at points pfid

i ± ∆ pi, with the
deltas ranging from 0.1% to 10% depending on the sensitiv-
ity of the shear statistic to each cosmological parameter, pi.
However, computing and sampling errors, coming mainly from
the near cancellation of certain combinations of derivatives, as
was pointed out by Einsentein et al. (1998), generate small fluc-
tuations in the Fisher matrix coefficients that are amplified by
matrix inversion when the covariance matrix is derived from
the Fisher matrix. For this reason, we did not use the inverse
Fisher matrix as the covariance matrix of the initial proposal
density, but used instead a diagonal covariance matrix whose
ratios between coefficients are equal to the ratios between the
diagonal coefficients of the inverse Fisher matrix. It is worth
noticing that one way to obtain a not so nearly singular Fisher
matrix is to include the derivatives of the data covariance ma-
trix in the derivation of the Fisher matrix formula (Eq. (17)).

In order to better explore the directions of degeneracy and
consequently speed up the convergence, a non-diagonal pro-
posal covariance matrix is needed. Hence, after 1000 steps, the
covariance matrix of the chain in progress is computed. From it,
a new set of 7 parameters, aligned with the eigenvectors of the
evaluated correlation matrix, is defined. From that step on, the
new sample points are built from a combination of 2 eigenvec-
tor directions, randomly chosen at each step. Though it defines
the next direction, the step size does not necessarily needs to
match the corresponding eigenvalues. In fact, after 1000 steps
the covariance matrix is smaller than it will be at its converged
value, so we must scale it. We update periodically the proposal
covariance matrix. However, since this process computes a new
sample covariance matrix, it cannot be done too frequently;
otherwise the progression of the chain too much depends on
the previous elements and would no longer be a Markov chain.
After a few periods we freeze the proposal density and set the
multiplicative correction factor to 1. The optimal scaling value
depends on the number of dimensions probed (Gelman 1996).

3.2.2. Convergence and goodness

The first elements of a chain depend on the starting point. It
is only after a so called burn-in period that the chain starts
sampling the target density. Although it is not possible to say
with certainty that a finite sample from an MCMC algorithm is

representative of the target distribution, several tests have been
proposed to detect non-convergence of the chain (for a review
see Cowles & Carlin 1994). In this work, we used the Gelman
and Rubin test to estimate the size of the burn-in.

Let us consider a Markov chain of a given parameter com-
posed of 2n iterations. Due to the random selection process of
the starting point we expect m different chains to differ signif-
icantly at the beginning and to converge towards the same dis-
tribution as the number of iteration steps increases. The burn-
in interval is set when the typical separation of several chain
points at a given iteration is similar to the amplitude of the
chain internal fluctuations. At each iteration i, two quantities
can be computed for each parameter:

– The within-chain variance, W(p), is the average of the m
variances of the parameter,

W(p) =
1
m

m∑

j=1

1
n − 1

2n∑

i=n

(pi( j) − 〈p〉i( j))2. (18)

– The between-chains variance, B(p), is the variance of the
parameter means from the m chains,

B(p) =
1

m − 1

m∑

j=1

(〈p〉i( j) − 〈〈p〉i( j)〉 j)2. (19)

In the first iterations, each chain is concentrated in a differ-
ent starting region, so B is in most cases much larger than W.
When the iterations increase, W grows while B decreases and
get closer and closer to zero at convergence. Since it is not pos-
sible to explore the whole space, W is always an underestimate
of the within-chain variance. Hence, B +W is an overestimate
of the parameter variance. In the limit i → ∞, both estimators
approach the true variance from opposite sides. Their ratio,

R =
1
W

(
B +

W n
n − 1

)
, (20)

is therefore a suitable estimate to monitor the convergence.
When, after 2n iterations, R is close to one for all the quan-

tities of interest, i.e., for all the parameters and derived param-
eters we want to analyse, we assume the chain has converged.
The first n iterations are the burn-in period. They are discarded
and the actual marginalised posterior density of a parameter is
drawn by its frequency of appearance in each bin, during the
iterations n + 1 to 2n. When after 2n iterations there was not
enough time to explore the tails of the distribution the errors of
the target distribution are underestimated. Therefore, it is use-
ful to let the chains run for a longer period in order to get a
better mixing. In the process, the value of the estimate R may
raise before getting smaller again. We show an example of this
situation in Fig. 2, where we follow a chain evolution.

Once a chain has stopped, we must remove the residual
correlation between the consecutive elements. For this rea-
son it is recommended to thin the chain out, i.e., to keep
only 1 out of k consecutive elements. The most widespread
method in the literature to determine the thinning factor, k, is
the Raftery and Lewis method (RL)(Raftery & Lewis 1996).
This method starts by constructing several chains from the con-
verged MCMC chain, by thinning the latter with several differ-
ent values. A weight may be assigned to each one of the thinned
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Fig. 2. Monitoring a chain.The upper plot shows the successive values
of σ8 for two of the CFHTLS simulated chains with different start-
ing points. In the middle plot, the Gelman and Rubin test between
these 2 chains is made at several stages. This example shows that
it is possible to detect an apparent convergence around the iteration
step 20 × 103. From the iteration 60 × 103 on, R started to consis-
tently approach 1 for all parameters, leading us to choose a burn-in
of 30 × 103. The horizontal line is R = 1.3. In the bottom plot, the
acceptance rate of one chain is computed at each iteration i, using all
chain elements from the first one up to i. In the very beginning we
notice two opposite behaviors: a shear drop and a steady raise. The
transition takes place at the moment the proposal density starts to fol-
low the covariance matrix of the sample, showing the efficiency of that
procedure. Afterwards, the acceptance rate drops slowly stabilizing at
about 20%.

chains, according to its compatibility to an independence chain
(a chain with no correlation between its consecutive elements).
RL computes the weight of a chain from the ratio between its
evidence and the evidence of an independence chain. The ev-
idences are computed in the Bayesian Information Criterium
(BIC) form of Schwarz (1978), which is a Gaussian approxi-
mation that may be derived from the Bayes formula (Eq. (13)).
It writes, ratio = BIC = G2 − 2 log n, where n is the number
of elements in the chain. The G2 statistic is a χ2 that measures
the fit of a chain to an independence chain. To obtain G2, one
counts the number of transitions between bins of the chain, in
order to get the ratio between the probability of the chain to
have a certain value at a certain step i for a given chain value
of a previous step i − j, and the probability independently of
the value at i − j. In practice, when counting the transitions,
only 2 bins are assumed, i.e., a chain element becomes a 0 or
a 1 as whether its parameters values are less or greater than a
certain cut-off, that we choose to be the parameters 2σ values.
The greatest weight is attributed to the longest chain verify-
ing BIC < 0. Its thinning value is the obtained k factor and
that chain is the best-fit to an independence chain that can be
obtained by thinning the original chain.

It is worth noting that this is an application of the use
of the evidence to the problem of selection between different

Fig. 3. The standard deviation of σ8 computed from different samples
taken from the same chain by using different thinning factors is plotted
against the thinning in logarithmic scale.

sets. Another evidence based weighting scheme is used when
combining different sets of cosmological data in Hobson et al.
(2002).

There are other methods to estimate a thinning factor. In
particular, Tegmark et al. (2004) obtain it by defining a more
intuitive chain correlation length. Using RL, we obtained very
large thinning factors for some of the MCMC chains (of or-
der 100). However, we checked the dependence of the results
on the thinning factor, by computing the parameters confidence
levels using several chains, thinned from the original chain with
different values of k and found no appreciable difference in
the results (see Fig. 3 for an example). Hence, in order not to
lose so many chain elements we did not use the Raftery and
Lewis method results, but a simpler criterium: for each chain
we choose the thinning factor as the average multiplicity of the
chain elements.

The results in the next section are computed from 4 chains
with 105 elements each, with a burn-in size of 30 × 103 and a
thinning factor of 5. The chains were merged, leading to a final
sample with about 50 000 elements.

4. Cosmological parameters from CFHTLS cosmic
shear statistics only

We will now extract information about the cosmological pa-
rameters from the obtained sample of the posterior PDF.

We start by computing one-dimensional confidence lev-
els for the parameters. Table 4(I) shows the standard devia-
tions obtained for a set of 8 parameters; the 7 original ones
and Ωm = (ωb + ωc)/h2. These values are computed using all
the sample points (hence being marginalised values) and are
shown in absolute value in the first line of Table 4(I) and in
percentage of the parameters fiducial values on the second line.
Since MCMC probes a non-Gaussian posterior, asymmetric er-
ror intervals may also be computed. We found the positive and
negative 68% confidence levels do not differ much from the
standard deviations and do not show them here. As compared
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Table 4. Numerical results for the cosmic shear sample, including 1σ precision on individual parameters and a principal components analysis.
I: 68% confidence levels in absolute value (first line) and in percentage of the corresponding parameter fiducial value (second line). II: The
7 eigenvectors of the correlation matrix ordered by decreasing accuracy. The column named 1σ, lists the dispersion of each X parameter defined
in Eq. (21), which is equivalent to the square root of the corresponding eigenvalue. Each line i shows the coefficients ai j of Eq. (21), i.e., the
projections of the corresponding Xi on each of the 7 parameters pj labeled on the very top of the table. Naturally the derived parameter Ωm is
not used for the computation of the eigendirections and

∑7
j=1 a2

i j = 1. III: The 7 eigenvectors computed for mean subtracted data normalized
by the means. The parameters used are (Ωb,Ωm, h, ns,Ωv, αs, σ8). The column 1σ, lists the dispersion of each Y parameter defined in Eq. (22).
The next 7 columns show the components, bi j, of the Yi. In the last column we show the relative contribution of the main parameter involved
in each pc. IV: Each line shows the fractional error of each of the 7 parameters (Ωb,Ωm, h, ns,Ωv, αs, σ8) computed using a limited number of
principal components. The first line, #pc = 1, refers to using only the projections of Y7. In #pc = 2 both Y7 and Y6 are used. Using all the PCS,
we recover, in the last line, 100% of the error values for all parameters.

I ωb ωc h ns Ωv αs σ8 Ωm

0.020 0.047 0.129 0.176 0.155 0.073 0.104 0.067

93.1 41.3 18.2 18.9 21.3 182.5 11.6 24.8

II pc 1σ

X1 0.061 0.218 0.616 −0.665 −0.102 0.156 −0.023 0.308

X2 0.104 −0.289 0.426 0.153 0.792 −0.149 0.246 0.042

X3 0.368 0.412 −0.341 −0.099 0.068 −0.314 0.661 0.406

X4 0.805 −0.370 −0.008 −0.040 −0.160 −0.693 −0.376 0.462

X5 1.142 −0.259 0.066 0.425 −0.188 0.522 0.128 0.651

X6 1.271 0.703 0.206 0.465 0.161 −0.100 −0.428 0.166

X7 1.811 0.004 −0.525 −0.354 0.520 0.304 −0.402 0.271

III pc Ωb Ωm %mp

Y1 0.007 0.009 0.404 −0.040 −0.070 0.207 0.000 0.887 78

Y2 0.022 −0.082 0.167 0.388 0.889 −0.143 0.027 0.046 79

Y3 0.103 0.084 −0.490 −0.287 0.088 −0.714 0.068 0.384 51

Y4 0.193 0.124 −0.231 0.872 −0.357 0.141 0.003 0.148 76

Y5 0.302 0.175 −0.677 −0.031 0.246 0.634 0.124 0.176 46

Y6 0.811 −0.904 −0.235 0.041 −0.044 0.055 −0.332 0.102 82

Y7 1.936 0.350 −0.038 −0.025 0.080 0.007 −0.932 0.176 87

IV # pc

1 67.7 24.7 27.1 81.5 6.9 98.9 29.6

2 99.8 68.7 32.7 83.6 22.1 99.9 77.5

3 99.9 97.3 33.1 92.4 92.8 100 90.2

4 99.9 98.5 98.5 99.3 93.7 100 93.5

5 100 99.9 99.9 99.4 99.9 100 99.6

6 100 99.9 99.9 99.9 99.9 100 99.7

7 100 100 100 100 100 100 100

to the early -Descart results, the CFHTLS configura-
tion does not seem to increase the precision on σ8. This is
however misleading since Van Waerbeke et al. (2002) carried
out their maximum likelihood analysis using only 4 parame-
ters (σ8 ,Ωm , Γ = Ωm h , zs). Hence the actual improvement is
eventually much better.

One-dimensional confidence levels do not show the de-
tailed statistical structure of the cosmological parameter space.
In the following we describe the interest in using a principal
components analysis in the cosmological parameter space, a
technique pioneered in Efstathiou & Bond (1999).

4.1. Principal components analysis

The principal components of the sample, Xi, are derived from
the eigenvectors of the sample correlation matrix. The correla-
tion matrix is the covariance matrix of the sample of parame-
ters in standardized form, which means each parameter value
is rescaled by subtracting the mean and dividing by the disper-
sion. The principal components (PCS) can be expressed as a
linear combination of the 7 rescaled parameters as follows:

Xi =

7∑

j=1

ai j
(p j − 〈p j〉)
σp j

, (21)
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Fig. 4. 1 and 2σ contours for pairs of principal components. Since they
are linear combinations of standardized variables, they are all centered
on zero. It is obvious these are plots of non-correlated parameters.
The low scattering in the X1 direction indicates that the cosmological
parameters combination defined by X1 is strongly constrained. On the
other hand, the high scattering in the principal components associated
with the highest eigenvalues, indicates these components contain most
of the sample dispersion, and determine the cosmological parameters
errors.

where 〈p j〉 and σp j are the mean and the dispersion of the pa-
rameter p j.The coefficients ai j are listed in Table 4(II), where
the principal components are ordered by decreasing accuracy.
Figure 4 shows some examples of 2-dimensional plots of the
parameters defined by Eq. (21).

The most accurate PCS are the best determined quantities
by the CFHTLS-wide cosmic shear experiment. In order to see
to which combinations of cosmological parameters they corre-
spond, one can look at the eigenvectors components, i.e., a high
coefficient ai j means p j strongly contributes to Xi. However,
since we are working with standardized parameters, the direct
reading of the coefficients may be misleading. In fact, if we take
any subset of 2 parameters and compute its eigenvectors, they
both will have equal components, which obviously does not
mean each principal component has equal contributions from
each parameter. Hence, for the purpose of obtaining a set of
meaningful coefficients, it is adequate to rescale the parameters
differently. We rescale them by subtracting the mean and divid-
ing by the mean. This is refered to as the fractional data in Chu
et al. (2003). The covariance matrix of the rescaled sample re-
lates to the original covariance matrix as, C′i j = Ci j/(〈pi〉〈p j〉).

We compute a set of principal components, Y, from the
fractional covariance matrix, expressed as,

Yi =

7∑

j=1

bi j
(p j − 〈p j〉)
〈p j〉 · (22)

Each Yi approximately corresponds to one Xi but they are not
equivalent since the principal components depend on the scal-
ing of the variables. We show this set in Table 4(III), com-
puted for a slightly different set of cosmological parameters
with (ωb, ωc) replaced by (Ωb,Ωm).

4.1.1. Well constrained PCS

The components of an eigenvector explicitly show the contri-
bution of each parameter to a principal component:

– The first one, Y1, is dominated by contributions from σ8

and Ωm. This is the well known σ8 −Ωm degeneracy.Ωv is
also non-negligible. Its presence here comes from its cor-
relation with Ωm through the prior on the curvature used to
compute the chains (see Table 3).

– The second best constrained direction, Y2, couples the pri-
mordial spectrum index, ns, with h and Ωm. This comes
from the correlation between the tilt ns and the parameter-
isation of the slope of the mass power spectrum to which
the shear is sensitive, Γ = Ωm h. Notice the coefficients of ns

and h have the same sign, as is also the case with σ8 andΩm

in Y1, which shows the orientation of the degeneracy.

The relative contribution of the main parameter involved in
each principal component is in the last column of Table 4(III).
For example, the projection of Y1 on the direction of its main
parameter (σ8) is 78%. Although these fractions may be im-
portant, they are significantly below 100%, showing that none
of these principal components that describe the cosmic shear
spectrum depends on a single cosmological parameter.

The 2-dimensional projections of Fig. 5 use colors to pro-
duce 3-dimensional plots that better describe sensitivity of
cosmic shear to cosmological parameters. The comparison of
Tables 4(II) and 4(III) shows for example that the σ8 − Ωm de-
generacy is equivalent to aωc−h−σ8 degeneracy. A color scat-
ter plot, like the top panels of Fig. 5, illustrates this in a simple
way. On this figure, we plot the sample points for the 3 possible
pairs of parameters, colored by the one left out. The continuous
gradient along the third parameter is obvious. In particular, the
degeneracy that is hidden in the σ8−ωc plane becomes evident
once the points are colored according to h. Likewise, the cos-
mic shear σ8 −Ωm degeneracy pattern σ8 ∝ Ω−0.5

m is shown on
the fourth panel, with a continuous gradient alongΩv. The fifth
panel shows how this correlation betweenΩm andΩv is related
to the curvature.

The color plots also help in understanding degeneracies de-
rived from the analysis of Table 4. The bottom panels of Fig. 5,
illustrate the cases on the Y2 term either when a third parameter
does not contribute to the degeneracy (σ8) (producing a mix-
ture of colors), or when it does (αs). The analysis of Table 4
alone is indeed confusing: while from 4(III) it is not evident
that αs contributes more to the second principal component
than σ8 does, Table 4(II) shows what really happens. The need
for a careful interpretation of this table is of primarily impor-
tance when fractional covariance matrix is used for parame-
ters with fiducial values close to zero. The simple extraction
of eigenvectors components to find degeneracies only provides
qualitative insight since there is no unique set of principal com-
ponents. For these ambiguous cases, color plots are very useful.
The bottom right panels of Fig. 5, reveal the sensitivity of Y2
to αs in a much better way than the tables do.

From the MCMC and the principal components analy-
sis, it is possible to describe some cosmic shear denegeracies
with empirical laws, using the best determined components Y1
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Fig. 5. 2-dimensional scatter plots colored by a third parameter putting in evidence the multi-dimensionality of the degeneracies. Panels are
numbered from top left to bottom right. Panels 1−3: illustrate the best determined pc in the form ωc − σ8 − h. The well defined continuous
gradients in all 3 cases show the existence of a degeneracy, even though that would not be obvious from the 2-dimensional projections alone.
Panel 4: using Ωm instead of ωc, the best determined pc already defines a narrow degeneracy in the 2-dimensional plane (Ωm, σ8). Ωv values
are also shown. Panel 5: coloring the (Ωv,Ωm) plot with the curvature values, a linear pattern appears. Panel 6: shows the degeneracy αs − ns

which was not clear from the eigenvectors table alone. By coloring with h it also shows that this degeneracy contributes to Y2. Panels 7, 8: the
second best determined pc relates mainly ns and h. These plots show it also has some correlation with αs (panel 7) and less from σ8 (panel 8).

and Y2. Since the 2-dimensional contours of Y1 and Y2 are
not ellipses, we made a new eigenvector calculation, using the
logarithm of the parameters. The laws are established for two
parameters only, marginalising over the others. This way we
found the shapes in the σ8 −Ωm and the ns − h planes to be:

σ8 Ω
0.52
m = 0.467 ± 0.008 (23)

and h n0.57
s = 0.67 ± 0.10. Defining Γ = Ωm h, we find a better

constrained, Y2 related, two parameter relation,

Γ n0.6
s = 0.187 ± 0.037. (24)

4.1.2. Poorly constrained PCS

As for the other principal components:

– Y3 is dominated by Ωv, Ωm and σ8. This constrains
the curvature, mixed with an Y1 orthogonal contribution

of σ8 −Ωm, as the coefficients of these 2 parameters have
now opposite signs.

– The projection of Y4 on the ns − h plane constrains an or-
thogonal direction to the Y2 projection.

– Y5 mixes almost all the parameters, while being dominated
by an Ωm −Ωv plane orthogonal direction to the one defin-
ing the curvature. As we will see next, Y5 alone is almost
enough to determine the parameters precision.

– The two worst constrained principal directions,Y6 and Y7,
are the most aligned ones with single parameters, being
strongly dominated by Ωb and αs, respectively.

Even though the best determined PCS give strong constraints
on certain combinations of parameters, constraints on indi-
vidual cosmological parameters are strongly dependent on the
worst determined PCS, exception made for a cosmological pa-
rameter aligned with a well constrained principal component
(from the last column of Table 4(III) we see there is no such
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case). In fact, the worst constrained PCS determine the size of
the hyper-volume defined by the sample in parameter space and
account for most of the dispersion of the sample. This is the rea-
son why Ωb and αs, which dominate Y6 and Y7, are the worst
determined parameters (Table 4(I)). To investigate the contri-
bution of each principal component to the one-dimensional er-
rors on parameters, we compute the 1σ marginalised parame-
ters dispersion using only a restricted number, n, of principal
components, as:

σ2(p j, n) = 〈p2
j〉

8−n∑

l=7

(Yl bl j)2. (25)

Notice the case n = 1 uses only Y7. Notice also the need to
multiply by the parameters means, since we are using fractional
data. Table 4(IV) shows the 1σ marginalised errors for each
parameter as a percentage of the total 1σ marginalised errors
(shown in Table 4(I)), computed in this way, where #pc = i
refers to n = i of Eq. (25). We see that Y7 + Y6 + Y5 (#pc =
3) accounts for over 95% of several parameters 1σ values and
from Y7 + Y6 + Y5 + Y4 + Y3 all the correct values are obtained.
Hence, we may conclude that the statistical information of the
sample can be reduced to 5 dimensions plus 2 narrow priors
defined by Y1 and Y2. This way, a 5 dimensional MCMC would
be enough to obtain an equivalent sample in a faster way.

4.2. Summary

Finally, the cosmic shear dependence on the cosmological pa-
rameters may be summarized in a single expression analogous
to Eq. (12). It is derived by using the surface of least disper-
sion defined on the 7-dimensions surface. It must be orthogonal
to Y1, i.e., defined by Y1 = const. This constant is proportional
to the cosmic shear variance signal from all scales (since they
were all integrated to compute the likelihood, it does not ex-
plicitly depend on angular scale). We found that

〈γ2〉1/2 ∝ σ8Ω
0.57
m Ω0.007

b Ω0.18
v h−0.02 n−0.02

s α−0.002
s . (26)

The MCMC and principal component analysis of CFHTLS
cosmic shear data alone can be generalised with joint data sets.
As it has been shown in this section, the method provides use-
ful information on degeneracies and principal components and
allows a description of orthogonal directions. Used jointly with
CMB data sets, we can therefore predict how CFHTLS cosmic
shear and CMB data can be used in an optimal way to shrink the
exclusion diagrams attached to each cosmological parameters.

5. Constraints from Cosmic Shear and CMB

We produced a different set of chains, computing the joint like-
lihood of the models with respect to the same cosmic shear
fiducial data and CMB data.

We used the WMAP first year data3: the combined
TT power spectrum (Hinshaw et al. 2003) and the TE power

3 http://lambda.gsfc.nasa.gov

Table 5. One-dimensional results from the joint sample. The er-
rors are 1σ. Above the horizontal line are the 7 explicitly changed
MCMC parameters, while results for some other popular parameters
are shown under the line. The column labeled g1 shows the gain in
the parameters precision in relation to the values obtained with the
CMB chains. In the last column, the gain g2 is computed in relation to
available CMB results (taken from Table 8 of Spergel et al. 2003, for
the case WMAPext).

Joint g1 g2

ωb 0.0224 ± 0.0008 1.4 1.2

ωc 0.112 ± 0.003 3.6

h 0.71 ± 0.02 1.9 2.9

ns 0.94 ± 0.03 1.7 2.0

αs −0.050 ± 0.018 1.7 2.1

109 As 2.8 ± 0.2 1.1

τ 0.24 ± 0.04 1.0 1.7

Ωm 0.26 ± 0.02 2.8

σ8 0.91 ± 0.03 2.5

Ωm h 0.188 ± 0.008 3.2

σ8Ω
0.5
m 0.47 ± 0.01 6.7 (1.1)

σ8 e−2 τ 0.56 ± 0.03 1.8

spectrum (Kogut et al. 2003). Model’s likelihoods with re-
spect to WMAP data were computed using the WMAP like-
lihood code (Verde et al. 2003). In order to have informa-
tion from smaller scales, we included CBI data4: the mosaic
odd binning (Pearson et al. 2003). The number of indepen-
dent parameters explored by the Markov chains was kept at 7:
(ωb , ωc , h , ns , αs , τ , As). The normalization is now parameter-
ized by As, with a fiducial value of As = 2.6×10−9, correspond-
ing in our fiducial model to σ8 = 0.9. We restrict to flat mod-
els, hence Ωv is no longer an independent parameter and let τ,
the optical depth to reionization, change in the restricted region
of τ < 0.3., keeping its fiducial value at τ = 0.17.

We present results from a combination of 8 converged
chains about 70 × 103 elements long from which we rejected
the first 30 × 103 elements. The thinning factor is 8, leaving us
with a final merged sample of about 40 000 elements.

Table 5 shows one-dimensional marginalised results from
the joint sample. In order to explicitly see what can be gained
when joining cosmic shear data to CMB data, we also pro-
duced CMB only chains. One-dimensional distributions from
both CMB and joint samples are shown in Fig. 6. The ratio
between the parameters standard deviations obtained with the
CMB sample and the joint sample, g = σ(CMB)/σ(CFHTLS+
CMB), tells us to which parameters the combined analysis is
more efficient. These values are shown in column g1 of Table 5.
As a consistency check we show in column g2 the factor gained
by the joint sample when compared with the most appropriate
case of the published WMAP results. The largest gain is on the
cluster abundance scaling,σ8Ω

0.5
m . As we saw, this parameter is

roughly the first principal component of the cosmic shear and

4 http://www.astro.caltech.edu/˜tjp/CBI/
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Fig. 6. Marginalised distributions for the cosmological parameters
from the joint likelihood chains (solid line) and the CMB chains
(dashed line).

its error is well determined by cosmic shear alone. So, what
makes more sense here is to compute the gain with respect to
the cosmic shear sample and not to the CMB sample. In this
case we find the joint sample brings no gain (g1 = 1.1).

Keeping in mind that the combined result of 2 indepen-
dent experiments with errors of the same order has already
a gain of

√
2, we consider the combined analysis to be effi-

cient for a certain parameter if g >
√

2. Hence, the efficiency
is higher for the dark matter density, the hubble parameter,
σ8 and the spectral indexes. To illustrate this result, we plot
in Fig. 7 the pairs of parameters where the orthogonality be-
tween CMB and CFHTLS contours is most striking, among all
possible pairs. These are contours of equal likelihood, contain-
ing 68% and 95% of the sample. All the 4 cases involve only
the efficient parameters. Furthermore, they correspond to cos-
mic shear Y1 and Y2 related well constrained cases we found in
the previous section. Thus, we found that projections of the best
constrained cosmic shear principal components are orthogonal
to the corresponding CMB contours, which shows a comple-
mentarity between cosmic shear and CMB.

To understand the origin of some of this complementarity,
let us consider the ns/αs case. The gain on both parameters is
around 2, even though, as we saw, the cosmic shear by itself
is not very sensitive to the running spectral index. In Fig. 8
we plot the primordial power spectrum from Eq. (3) as func-
tion of the linear wavenumber. The spectral indexes parame-
terize the shape of the spectrum and have no further role on
its evolution. Thus the opposite behaviour of the CMB/cosmic
shear responses to a change on the indexes may be understood
from these plots. The solid line in all panels is the fiducial
model (ns = 0.93 , αs = −0.04). It bends away from a power
law (αs = 0, the dashed line on the upper left panel) from the
pivot point. The dotted lines are deviations from the fiducial
model, they correspond to the indexes values written as the pan-
els titles. In the top panels one parameter is changed at a time.

On the left, a change on ns produces changes of opposite signs
at both ends of the spectrum. On the right, changing αs raises
both ends of the spectrum. The bottom panels show how it is
possible to mimic the fiducial spectrum for large (small) scales
by changing both indexes in the same (opposite) direction.

On the first panel, the solid horizontal lines show the scale
ranges probed by the CMB (the line on the left) and the cos-
mic shear (on the right) data used in this work. These intervals
were found by using the calculations of Tegmark & Zaldarriaga
(2002), in particular their fitting k ≈ √(3′/θ) [h/Mpc]. Hence,
the 2 bottom plots lead to expect an upper left - lower right di-
rection of degeneracy for the cosmic shear and an orthogonal
one for the CMB.

The shape of the ns/h lensing degeneracy has a similar ori-
gin. The slope of the power spectrum at the scales probed by
the cosmic shear is Ωm h. A raise of h, increases the power at
small scales that must be compensated by a decrease in ns.

In order to have an explicitly view of the cosmic shear ns/αs

degeneracy scale dependence, we produced a new set of 4 cos-
mic shear MCMC chains. This time, we only allowed the scalar
spectral indexes to change and kept the other 5 of the 7 origi-
nal parameters (see Table 3) at the fiducial values. The chains
were built following the procedure detailed in Sect. 3. Due to
the small number of parameters probed, convergence was very
rapid and a burn-in of 300 elements was enough to reach the
equilibrium. The model shear dispersion and likelihood were
computed for 4 cases, distinct on the angular scales used. These
are (in arcminutes):

– “small” scales: (0.6, 1, 1.3, 2, 3, 4, 5, 6);
– “medium” scales: (8, 10, 15, 20, 25, 30);
– “large” scales: (40, 50, 60, 80, 100, 120);
– “all”: all the above 20 angular scale points, which are

the ones used in the 7-dimensional MCMC cosmic shear
chains.

Figure 9 plots the sample points and contours obtained. It
shows that even inside the comparatively small region of
Fig. 8 probed by the cosmic shear, the scale dependency of
the ns/αs degeneracy constraint is detected, with the best con-
straint coming from the smallest scales. The signal from the
largest of the cosmic shear scales is more dispersed as it is
shown in the bottom left panel of Fig. 9. Notice, in this case,
the orientation of the contours is cut by the MCMC exploration
limits imposed.

There are parameters for which no gain was found, for
instance, the measurement of ωb is dominated by the CMB.
For τ, even though the cosmic shear is not sensitive to it,
the introduction of cosmic shear data strengthens the σ8 − τ
correlation allowing to lower the errors on σ8 e−2 τ (Table 5).
Thus, even though we do not predict a gain on the measure-
ment of τ from CFHTLS+CMB data, future cosmic shear sur-
veys, through a more precise measure of σ8, will be helpful
in its determination. In Fig. 10 its is shown the correlation be-
tweenσ8 and e−2 τ, the factor by which the CMB at small scales
is damped after reionization. The information provided by the
cosmic shear is clear.
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Fig. 7. Marginalised 2-dimensional 68% and 95% contours from the three samples. These are the most relevant plots to illustrate the largest
gains on the parameters precisions.

Fig. 8. Primordial power spectrum parameterized by ns and αs. The values written in the panel titles define the dotted lines, while, in each panel,
the solid lines are plotted with the fiducial values (ns = 0.93αs = −0.04). The scale ranges probed by the CMB and the cosmic shear are shown
in the upper left panel.
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Fig. 9. ns αs MCMC sample points and 68% and 95% confidence lev-
els. The models likelihoods were evaluated using 4 different sets of
angular scales – small, medium, large and all, defined in the text. The
“small” case is the one that better constrains the ns − αs degeneracy
found in the 7-dimensional analysis.

Fig. 10. Marginalised 2-dimensional 68% and 95% contours.The first
plot is from the CMB sample and the second one from the joint
sample.

6. Discussion

We studied the determination of cosmological parameters by
a CFHTLS-Wide type of experiment. For this we have made
some assumptions that may not exactly match the real situation.

Firstly, the real survey properties are generally degraded
with respect to initial goals. In particular, we made the op-
timistic assumption that CFHTLS will cover 170 deg2, while
its size may drop down to 130 deg2 if a large fraction must be
masked5. In order to check the impact of a change of the survey
area on the cosmological parameter determinations, let us con-
sider the Fisher-matrix approximation. In this regime, the co-
variance matrix in the parameters space depends linearly on the
data covariance matrix (see for example Huterer 2002). From
Eq. (10), it follows that the relative merit between 2 different
cosmic shear experiments varies as:

gcs =




A1 n2
1 σ

4
2

A2 n2
2 σ

4
1




1
2

· (27)

So, the area lost to masking, will affect all the parameter deter-
minations by a factor of 1.15.

5 The masking process may reduce by about 20% the total sky
coverage of deep surveys.

Secondly, we assumed that the source redshift distribution
was perfectly known. In reality, there is an extra source of error
coming from the marginalisation over the real source redshift
distribution. The same happens with the marginalisation over
other cosmological parameters not taken into account in this
study, such as the equation of state of dark energy or the neu-
trino density. If we take the single source redshift, zs, as an
extra free parameter to be determined by the experiment, we
find (using a Fisher-matrix calculation) that zs is determined
with a precision of 20%. The presence of this extra parameter,
which is degenerate with some of the cosmological parameters,
will degrade the latter determinations by a factor of 1.15−1.40,
depending on the parameter.

Finally, the precision of the non-linear mapping used in
our calculations into deep non-linear regime is another source
of error. To check this point, we assumed a 5% precision in
the  and changed our fiducial matter power spectrum
by ±5%. The difference between the new top-hat shear, com-
puted from this power spectrum, and our fiducial one, was
quadratically added to the diagonal part of our data covariance
matrix. Figure 11 shows the relative sizes of εh, the 
uncertainty contribution to the error bars, and εcov, the original
error bars. The  contribution dominates the statistical
noise on scales below 4 arcmin. However, as the right panel of
Fig. 11 shows, the (ns, αs) degeneracy direction is robust. As
for the individual parameters precisions, we found they are de-
graded by a factor of 1.15−1.35. We should also keep in mind
that the  formula was tested with N-body simulations
using initial power-law spectrum. However, this is probably not
a significant limitation to our study, since the running spec-
tral index is just a first order approximation of the power-law
spectrum.

We found the σ8 precision to be the most stable one against
the inclusion of the sources redshift or the non-linear mapping
uncertainties. On the other hand, the result for the running spec-
tral index, while not being much affected by the zs uncertain-
ties, is the most affected one by the non-linear error bars. By
picking up the 3 factors found (sky coverage, sources redshift
and non-linear modelling), we end up with an average overall
degradation factor of 1.9 for each parameter. It is important to
note that this result refers to parameter determinations using
cosmic shear alone. We will come back to this issue later on.

B-mode contamination due to systematic residuals is still
one of the primary concerns in cosmic shear data. Its ampli-
tude and the way it should be handled in the covariance ma-
trix significantly increases uncertainties in the noise correction
process. However, it has recently been shown that the residual
B-mode on the -Descart data could be further corrected
and eventually set to zero. This result follows from a better
understanding of the PSF variation across the CCD chips (see
Hoekstra 2004; Van Waerbeke et al. 2004) and it is expected
that the CFHTLS will be at least as good as -Descart
in terms of image quality, hence we set B-modes to zero in this
work.

On the other hand, it is important to stress that the 2-point
correlation functions do not contain all the cosmic shear in-
formation. Higher order statistics, for example, have a dif-
ferent sensitivity to the cosmological parameters, allowing to
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Fig. 11. Left panel: the ratio between the shear top-hat error bars induced by a 5% uncertainty in the non-linear mapping and the shear top-hat
error bars used in the cosmic shear MCMC is shown as a function of angular scale. Right panel: (ns, αs) 1σ contours computed with (dark) and
without (grey) the 5%  uncertainty being included.

break degeneracies and improve measurements (Bernardeau
et al. 1997). Also, we did not use lensing tomography and
have not assumed a redshift source distribution. (The integra-
tion over the redshift would not significantly increase the time
of the Markov chain calculations.) The joint use of power
spectrum information with bispectrum and tomography would
allow an average gain of a factor of 2 for a survey the size of
the CFHTLS-Wide (Takada & Jain 2004).

7. Conclusions

We explored the cosmological parameter space using cos-
mic shear, describing the results in the context of a princi-
pal components analysis, and found a set of parameter de-
generacies orthogonal to CMB ones. This led us to predict
a gain of the order of 2 or 3 for several parameters, when
combining CFHTLS-Wide data with WMAP and CBI data.
This means, for example, precisions of σ(σ8) = 0.03 and
σ(Ωm) = 0.02. This result is consistent with the parameter de-
terminations of Contaldi et al. (2003) that combines CMB data
with the Red-Sequence Cluster Survey (RCS) data, where they
found σ(σ8) = 0.05 and σ(Ωm) = 0.03, since from Eq. (27)
the ratio between CFHTLS-Wide and RCS (with a size A =
53 deg2) is 1.8.

As compared to the fiducial reference survey used by Ishak
et al. (2004), Eq. (27) shows that the relative merit between
that configuration and ours is about 4. However, we find the
same, or only slightly bigger, σ values. The main reason for
this discrepancy is the fact that our degraded configuration, as
compared to the survey in Ishak et al. (2004), is partly compen-
sated by the inclusion of smaller angular scales. In fact, we saw
that it is in the non-linear regime that lies not only the greatest
sensitivity of cosmic shear to the cosmological parameters, but
also the cause of its orthogonality to CMB.

Futhermore, the estimator of gain, given by Eq. (27), only
applies to cosmic shear results, being an upper limit of the com-
bined gain. This also means that the factor that will be lost in
the joint measurement, when including extra sources of errors,
will be less severe than the estimated value of 1.9. To check this
point, we proceed as follows: we start by computing the covari-
ance matrix, C1, of our cosmic shear PDF sample determined
by the cosmic shear Markov chains. We assume C1 describes

Fig. 12. 68% and 95% C.L. for the 4 most orthogonal cases found
in Sect. 5. Blue is WMAP+CBI data and red shows predictions for
the wide field space telescope – cosmic shear parameters of Table 6
(99% C.L. is also shown in this case).

the parameter errors as determined by the cosmic shear, i.e., we
assume a Gaussian posterior in the parameter space. Then, we
take the CMB sample and weight each of its elements ac-
cording to this cosmic shear Gaussian posterior. This tech-
nique is known as importance sampling and produces a good
approximation of a joint cosmic shear + CMB sample from
separated cosmic shear and CMB samples, provided the widest
sample (in this case the cosmic shear one) has good sampling
in the region covered by the narrowest one. Then, we define
a degraded cosmic shear covariance matrix as C2 = 4 ∗ C1 to
account for the 1.9 factor, and apply the importance sampling.
This way, we find two joint cosmic shear + CMB samples and
can compare their results for the parameter precisions. We ob-
tain a ratio, between the results of the two samples, in the range
of 1.25−1.45, depending on the parameters. This means that the
inclusion of a 5% uncertainty on the non-linear mapping, plus
leaving the redshift of the sources as a free parameter, plus the
reduction of the survey area due to masking, only implies a
loss of a factor of 1.25−1.45 in the joint constraints. In par-
ticular, for the running spectral index, we find a factor of 1.3.
The smaller impact on the joint results, as compared to the im-
pact on the cosmic shear results, comes from the fact that the
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Table 6. Cosmic shear: wide field space telescope illustration
specifications.

Size of the survey: A = 1000 deg2

Density of galaxies: ng = 50 arcmin−2

Intrinsic ellipticity dispersion: σε = 0.3

Scales probed: 0.6′ < θ < 5 deg

40 < l < 18 000

CMB contours are smaller than the cosmic shear ones and also
from the complementarity between the two experiments.

The CMB/cosmic shear complementarity opens good
prospectives for the determinations of cosmological parame-
ters by combining CMB and cosmic shear data sets. In fact,
even for CFHTLS, whose contours are, in general, noticeably
larger than the WMAP+CBI ones (Fig. 7), we predict non neg-
ligible gains. Figure 12 shows what can be expected with future
space telescope data. These results were produced with a cos-
mic shear Fisher matrix analysis, using Eq. (17) and the fidu-
cial model of Table 1 (except for the redshift of the sources
which was moved to zs = 1.1). For this illustration, the data
covariance matrix of Eq. (10) was computed for the config-
uration shown in Table 6, which is close to the SuperNova
Accelerator Probe/Joint Dark Energy Mission (SNAP/JDEM)
“Wide+” case of Réfrégier et al. (2003). The CMB ellipses are
plotted from the parameter covariance matrix found with our
WMAP+CBI chains.

In summary, we found the best constrained parameters
by 2-point cosmic shear correlation functions to be σ8 Ω

0.5
m

and Γ n0.6
s (with Γ = Ωm h). We have shown that 2-dimensional

degeneracies defined by these parameters plus another one de-
fined by ns and αs are orthogonal to CMB degeneracies. Due
to this CMB/cosmic shear complementarity, current weak lens-
ing surveys, such as the CFHTLS, already have the potential to
improve the precision on several cosmological parameters. In
particular, a better knowledge of αs will have an impact on in-
flationary scenarios. The crucial information provided by the
cosmic shear comes from the small scales it probes. Thus, it
provides an additional possibility, along with galaxy redshift
surveys and Lyman-α forest, to combine with CMB data.
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