Mickael Seznec

Nicolas Gac

François Orieux

Alvin Sashala Naik

Mickaël Seznec

Alvin Sashala Naik

Mickaël Seznec

Mickaël Seznec

Computing Large 2D Convolutions on GPU Efficiently with the im2tensor Algorithm

Keywords: Image Convolution, Hardware Acceleration, GPU Optimisation, Image Processing Systems, GPU Tensor Cores

published or not. The documents may come L'archive ouverte pluridisciplinaire

Convolutions are a fundamental tool of signal processing. When applied to images, they serve for templatematching methods [START_REF] Brunelli | Template Matching Techniques in Computer Vision: Theory and Practice[END_REF], edge detection [START_REF] Winnemöller | XDoG: An eXtended difference-of-Gaussians compendium including advanced image stylization[END_REF], or noise reduction [START_REF] Smith | The Scientist and Engineer's Guide to Digital 755 Signal Processing[END_REF]. Convolution is such a ubiquitous opera-5 tion that much work has been devoted to speeding up its execution on modern computers.

In its most basic form, computing a 2D convolution can be done with nested loops that perform a multiply-and-add routine for each resulting coefficient. This strategy is simple but has a computational complexity growing in O(N 2 M 2), with an N ×N image and a M ×M kernel. Another method, based on the convolution theorem in the Fourier space, has a O(N 2 log(N)) complexity. While more sustainable for large kernels, that strategy introduces significant overhead for smaller convolutions [START_REF] Seznec | A Study on Convolution using Half-Precision Floating-Point Numbers on GPU for Radio Astronomy Deconvolution[END_REF]. Finding more efficient ways of doing 2D convolution is then a challenging topic that would benefit many real-time image processing applications.

In the meantime, new processor architectures, such as GPUs (Graphics Processing Units), have been widely featured on embedded systems [?]. Those chips are used extensively for compute-heavy workloads, and the current trend is to feature accelerators for specific operations [START_REF] González | Trends in Processor Architecture, in Harnessing Performance Variability in Embedded and Highperformance Many/Multi-core Platforms: A Cross-layer Approach[END_REF], such as hardware matrix-multiplication units[?].

On GPUs, tensor cores have been introduced starting on NVIDIA Volta and accelerate applications such as DNNs (Deep Neural Networks) or, more generally, BLAS (Basic Linear Algebra Set) operations [START_REF] Bhaskaracharya | Automatic Kernel Generation for Volta Tensor Cores[END_REF]. More than just plain GEMM programs, other algorithms may benefit from tensor cores by being reexpressed as matrix-multiplications. In that regard, a recent corpus of work has been devoted to using tensor cores, either for parallel primitives [START_REF] Navarro | GPU Tensor Cores for fast Arithmetic Reductions[END_REF][START_REF] Dakkak | Accelerating Reduction and Scan Using Tensor Core Units[END_REF][START_REF] Firoz | On the Feasibility of Using Reduced-Precision Tensor Core Operations for Graph Analytics[END_REF], image processing via a DSL (Domain-Specific Language) [START_REF] Sioutas | Programming tensor cores from an image processing DSL[END_REF] or CT reconstruction [START_REF] Nourazar | Accelerating iterative CT 725 reconstruction algorithms using Tensor Cores[END_REF], for example. Regarding convolutions as GEMMs, algorithms exist but target a specific setting, where a convolution between a 3D tensor and multiple small kernels is performed. This situation is usually found within CNNs (Convolutional Neural Networks). im2col, explained in [?], targets this very setting. It has been implemented in the CUDNN library and leverages tensor cores. However, non-deep learning applications, like large spatial gradients or Gaussian blurs, do not use batches of kernels at once. In those cases, im2col might not be the most efficient method.

In this article, we then introduce im2tensor, shown on fig. 1, a new 2D convolution algorithm designed to take advantage of tensor cores in a general setting. Our contributions are the following:

-A description of im2tensor algorithm for 2D convolutions. It is a composition of a sequence of matrix multiplications and summations on the diagonals. Expressed in this form, the 2D convolution can leverage matrix-multiplication units. -A CUDA implementation on Nvidia Titan V and Jetson Xavier. It serves to demonstrate the soundness of the algorithm under a GPU environment. We show the different challenges raised by using tensor cores and how to get the maximum performance out of them. -A comparaison with state-of-the-art methods such as CUDNN, CUFFT, and ArrayFire [START_REF] Yalamanchili | ArrayFire -A High Performance Software Library for Parallel Computing with an Easy-to-Use API[END_REF]. We compare im2tensor results in terms of speed and accu-65 racy. Our proposed algorithm is fastest on a large range of kernel sizes and is one of the most accurate methods.

Section 2 presents related work on convolution algorithms and an overview of GPU programming and 70 tensor cores. Section 3 explains in detail the im2tensor algorithm and provides a proof that is it equivalent to a 2D convolution. Section 4 goes through the details of the CUDA implementation. It reviews the different strategies used to minimize the runtime of the algo-75 rithm. Section 5 provides a comparison between our method and several state-of-the-art implementations. The evaluation is done in two different contexts: embedded (30W) and desktop (500W). Results are given in terms of speed and accuracy with respect to a refer-80 ence implementation. Finally, section 6 concludes this paper and offers directions to follow for further work.

Background

2D Convolutions

Convolutions are a fundamental tool of signal process-85 ing. When applied to images, it serves for templatematching methods [START_REF] Brunelli | Template Matching Techniques in Computer Vision: Theory and Practice[END_REF], edge detection [START_REF] Winnemöller | XDoG: An eXtended difference-of-Gaussians compendium including advanced image stylization[END_REF], or noise reduction [START_REF] Smith | The Scientist and Engineer's Guide to Digital 755 Signal Processing[END_REF]. Convolution is such a ubiquitous operation that a lot of work has been devoted to speed up its execution on modern computers: 90 Separable convolutions If the convolution kernel K can be written as the outer product of two vectors K = k 1 k T 2 , the convolution can be performed in two steps: R = (I * k 1) * k 2 . This technique reduces the overall memory pressure but is restricted to particular 95 kernels.

Convolutions in the Fourier space A convolution can be computed with an element-wise multiplication of the Fourier transforms of the image and the kernel. This product should then undergo an inverse Fourier 100 transform. This technique is asymptotically faster than convolutions in the direct space but may be slower for large images and small kernels [START_REF] Seznec | A Study on Convolution using Half-Precision Floating-Point Numbers on GPU for Radio Astronomy Deconvolution[END_REF].

Winograd convolutions This category groups several methods that build optimal algorithms in terms of arithmetic complexity. In [START_REF] Lavin | Fast Algorithms for Convolutional Neural Networks[END_REF], Lavin et al. first presented a GPU implementation said to be Winogradbased [START_REF] Winograd | Arithmetic Complexity of Computations[END_REF]. Like the Fourier method, it requires the input image and kernel to be transformed, pointwise multiplied and then be inverse-transformed. It has been shown to perform well in DNN for small convolution kernels but is also sensitive to numerical instability [START_REF] Barabasz | Improving The Accuracy of Winograd Convolution for Deep Neural Net-650 works[END_REF].

Overlap and Add

This technique follows the divideand-conquer strategy: first, divide the input image into smaller images. Then, compute the convolution of all 115 smaller images with the original kernel. Then recombine the full image and sum where the results overlap. It can be applied to different algorithms [START_REF] Adámek | GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory[END_REF].

GEMM-based techniques

GEMM strategies are motivated by heavily optimized libraries for matrix multiplication (openBLAS, cuBLAS). im2col is one such GEMM-based algorithm. First, it flattens the kernel into a vectorn. Second, it constructs a matrix based the image's coefficients so that the vector-matrix product effectively computes the convolution [8, ?]. This method 125 yields best performance when processing multiple kernels at once. The vector representations are stacked into a matrix. Computing multiple convolutions at once is hence transformed into a matrix-matrix multication, that leverages more of the GPU compared to vecor-130 matrix. Anderson et al. [START_REF] Anderson | Low-memory GEMM-based convolution algorithms for deep neural networks[END_REF] extend the im2col idea to different layouts.

The design of im2tensor has been guided by other GEMM-based techniques. The unique feature of our algorithm is that it exhibits matrix-matrix multiplications even with a single kernel. This situation is found in several computer vision algorithms, such as Harris corner detection or SURF features that use differential or gaussian kernels [?,?].

Notations 140

In this article, a lowercase a denotes a coefficient, the bold lowercase a is a vector, the uppercase A is a matrix, and the bold uppercase A is a three-dimensional tensor. A i,j denotes the coefficient in the i-th row, j-th column of A. The colon notation selects all elements in a dimension: A i,: is the entire i-th row of A.

Let I be an image of size (h I , w I) and K be the kernel of size (h K , w K). Let R, of shape (h R , w R), be the convolution of I by K, defined by:

∀i ∈ 0, h I -h K , ∀j ∈ 0, w I -w K , (1)
R i,j = h K -1 y=0 w K -1 x=0 K y,x I i+y,j+y (2)
Formally, this definition is a cross-correlation. For 150 the sake of simplicity, it is, anyway, called a convolution throughout this article. The real convolution can be computed by cross-correlating the image with the reversed kernel. With our definition, the result's dimensions are (h R , w R) = (h Ih K + 1, w Iw K + 1). To 155 adhere to numpy and Matlab conventions, this is the socalled "valid" convolution. A "full" convolution yields a (h GPUs handy as a compute platform.

I + h K -1, w I + w K -1)
From the software perspective, CUDA bases its programming model on a SIMT (Single Instruction, Multiple Threads) paradigm, a variant of SIMD (Single Instruction, Multiple Data). The programmer writes a 175 single program and specifies how many threads should run it. Threads are partitioned into Thread Blocks (TB) of a customizable size where threads can be synchronized using barrier instructions and share data efficiently through shared memory. This memory location 180 is used in our implementation to share partial matrix multiplication results.

See [START_REF] Kirk | Programming Massively Parallel Processors: A Hands-on Approach[END_REF][START_REF] Sanders | CUDA by Example: An Introduction to General-Purpose GPU Programming[END_REF][START_REF] Khairy | A survey of architectural approaches for improving GPGPU performance, programmability and heterogeneity[END_REF] for more information about GPU and CUDA programming.

Tensor Cores

185

Tensor cores are recent additional hardware built into the Volta (2017) and later GPU architectures [START_REF]V100 GPU Architecture: The world's most advanced datacenter GPU[END_REF][START_REF]NVIDIA Turing GPU Architecture: Graphics Reinvented[END_REF][START_REF]NVIDIA A100 Tensor Core GPU Architecture: Unprecedented Acceleration at Every Scale[END_REF].

These special units compute a matrix multiplication and accumulation: D = AB + C as shown in fig. 3. While tensor cores operate on 4×4 matrices at the hard-190 ware level, the ISA (Instruction Set Architecture) of NVIDIA GPUs provides instructions for larger operand sizes. This is made possible by combining block matrices operations.

D = A3,0 A2,0 A1,0 A0,0 A3,1 A2,1 A1,1 A0,1 A3,2 A2,2 A1,2 A0,2 A3,3 A2,3 A1,3 A0,3 × B3,0 B2,0 B1,0 B0,0 B3,1 B2,1 B1,1 B0,1 B3,2 B2,2 B1,2 B0,2 B3,3 B2,3 B1,3 B0,3 + C3,0 C2,0 C1,0 C0,0 C3,1 C2,1 C1,1 C0,1 C3,2 C2,2 C1,2 C0,2 C3,3 C2,3 C1,3 C0,3
Fig. 3: The matrix multiplication-and-accumulation operation made by a tensor core.

The operands A, B, C, and D may be stored with several numerical precisions. The supported formats depend on the generation of the GPU. Volta GPUs brought the first generation of tensor cores and only supported fp16 precision (IEEE 754 binary16). Turing and Ampere added support for other input types while keep-200 ing backward compatibility for already supported precisions. The output type is usually the same as the input matrices, except for fp16 inputs, where the user chooses between an fp16 or fp32 output.

Several authors have explored the arithmetic accu-

205 racy of such reduced or mixed-precision operations [START_REF] Haidar | Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers[END_REF][START_REF] Mukunoki | DGEMM Using Tensor Cores, and Its Accurate and Reproducible Versions[END_REF][START_REF] Basso | Impact of Tensor Cores and Mixed Precision on the Reliability of Matrix Multiplication in GPUs[END_REF]. Several experiments are conducted later in this article to assess those effects on our convolution algorithm.

The im2tensor algorithm 210

This section introduces our novel algorithm to compute a valid convolution between an image I and a kernel K, as defined in section 2.1.1. The algorithm has two main components, the definition of a 3D tensor S that holds row selections of I and a sum operation along its diagonal with the Tr + operation.

First, let S be a tensor of shape (h S , w S , d S) = (h K , w I , h Ih K + 1), such that:

∀i ∈ 0, h K -1 , ∀j ∈ 0, w I -1 , ∀k ∈ 0, h I -h K , S i,j,k = I i+k,j (3)
Then, we define the Tr + operation, a sum along the tensor diagonals, like:

Tr + : R h×w×d → R (w-h+1)×d (4) A → A, A i,j = h-1 k=0 A k,i+k,j , (5)
∀i ∈ 0, w -h , ∀j ∈ 0, d (6)
Let us now show that Tr + (K T S) is, indeed, the "valid" convolution between I and K:

Proof Tr + (K T S) i,j = w K -1 x=0 (K T S) x,i+x,j (7)
=

w K -1 x=0 h K -1 y=0 K T x,y S y,i+x,j (8)
=

w K -1 x=0 h K -1 y=0 K y,x I j+y,i+x (9)
Figure 1 illustrates the K T S product and the application of the Tr + operation, shown with red arrows.

220

We call im2tensor the algorithm that uses such a tensor S and the Tr + operation to compute a convolution. It is well-suited for parallel computation and exhibits a matrix-tensor product that may leverage specialized hardware units such as tensor cores.

4 Efficient GPU implementation

The previous section introduced the mathematical reasoning behind im2tensor. Many hardware architectures could benefit from computing convolution as a matrixtensor multiplication. In this section, we restrict our-230 selves to using NVIDIA GPUs and their tensor cores. It allows us to verify the interest of the algorithm on a readily available platform.

Overview

For the initial version, we implement im2tensor with 235 two CUDA kernels. One for the matrix-tensor product, one for the Tr + operation. We divide those two tasks into independent pieces of work, handled by CUDA thread blocks (TBs). For the matrix-tensor operation, the K T S tensor is split into different sub-tensors (see 240 fig. 4) called P block . For Tr + , we process all diagonals in parallel. Algorithm 1 details the structure of the algorithm.

An important implementation feature is to avoid the explicit construction of S. This is made possible by Since tensor cores only accept matrices of a limited choice of dimensions as inputs, our implementa-tion must pad block-matrices to work around this con-260 straint. A bad choice for the input dimensions may lead to significant overhead, so it is in our best interest to find a sensible choice of those tensor cores input shapes.

Let the tensor cores input dimension be (m tc , n tc , k tc). For a convolution kernel (h K , w K) = (5, 5) and tensor 265 core input dimension of size [START_REF] Winograd | Arithmetic Complexity of Computations[END_REF][START_REF] Chetlur | cuDNN: Efficient Primitives for Deep Learning[END_REF][START_REF] Kirk | Programming Massively Parallel Processors: A Hands-on Approach[END_REF], the K T must be padded to an height of 32. With this choice of shape, tensor cores mostly operates on zero padding.

For im2tensor to operate efficiently with tensor core on a diversity of images' and convolution kernels' shapes, 270 we explore how to choose the best set of input shapes. First, we introduce the notation m (n) , the multiple of n directly higher than m:

∀n ∈ N * , ∀m ∈ N, m (n) → n m n (10)
Zero-padded matrices use a hat in their name, such that:

ŵK = w K (mtc) , ĥK = h K (ktc) , ŵI = w I (ntc) (11) KT = K T 0 0 0 ∈ R ŵK × ĥK (12) ∀k ∈ 0, d S -1 , Ŝ:,:,k = S :,:,k 0 0 0 ∈ R ĥK × ŵI (13)
Now, we have P = KT Ŝ of shape (ŵK , ŵI , h Ih K + 1).

Computational Complexity

Let us show the impact of padding on the algorithm by deriving its computational complexity. Our method uses a simple matrix multiplication algorithm, without Strassen-like methods' sophistication. Then, its complexity is:

O ŵK ŵI ĥK (h I -h K + 1) (14)
i.e., O w K (mtc) w

I (ntc) h K (ktc) (h I -h K + 1) (15)
Three terms are directly impacted by the padding introduced by tensor cores' input shapes. In our setting, the image is significantly larger than the kernel: w I w K , w I h K . This assumption guide indicates that 280 that k tc and m tc should prioritly be kept small.

Arithmetic Intensity

The arithmetic intensity of a computer program that transfers Q bytes of data to execute W operations is defined as: ai = W Q .

This measure, central to the roofline model analysis [START_REF] Williams | Roofline: An insightful visual performance model for multicore archi-760 tectures[END_REF], must be high enough to claim using the GPU efficiently [START_REF] Ding | An Instruction Roofline Model for GPUs[END_REF]. It is usually measured at execution time through performance counters. We, however, propose an a priori estimation of the arithmetic intensity to guide our design choices.

We are interested in the computation of a P block , of size (h B , w B , d B), as shown in fig. 4. Let us see how these three dimensions should be chosen to maximize the arithmetic intensity.

As for data transfers, this operation fetches data from KT : a (h B , ĥK) sub-image; and from S: a (ĥK , w B , d B) sub-tensor. Due to duplicate rows in S block , this subtensor only requires reading a (ĥK + d B -1, w B) subimage from I. Memory writes are not counted in this analysis.

Regarding operations, the matrix-tensor products for P block involve h B ĥK w B d B multiplication additions. Then, we have: The analysis of numerical results in table 1 show that it is preferable to increase d B as a priority, then h B , and finally w B . One must still consider that increasing d B and h B means reading more rows of I, which is usually slower than reading longer rows (by increasing w B) due to the memory layout of the image.

ai(h B , w B , d B) = h B ĥK w B d B h B ĥK + (ĥK + d B -1)w B (16)
In our experiments, with (m tc , n tc , k tc) = (8, 32, 16), we set (h B , w B , d B) to [START_REF] Chetlur | cuDNN: Efficient Primitives for Deep Learning[END_REF][START_REF] Winograd | Arithmetic Complexity of Computations[END_REF][START_REF] Winograd | Arithmetic Complexity of Computations[END_REF] as it provided the best results.

Fusing the operators

Section 4.2.3 showed how to choose adequate dimensions for P block to get a sufficient arithmetic intensity.

However, the number of writes in memory to store the intermediate tensor P was not considered.

315

To mitigate overutilization of the memory bandwidth, a technique called kernel fusion can be quite efficient [START_REF] Filipovic | OpenCL Kernel Fusion for GPU, Xeon Phi and CPU[END_REF]. Here, we propose to fuse the computation of P block and the sums on the diagonals of P .

We can take advantage of the fact that a P block is 320 computed by a TB to store it on the shared memory first, then sum along its diagonals, and finally, write those sums back to main memory. By doing so, the storage space requirement and main memory bandwidth usage drop from

h B w B d B to (h B + w B -1)d B .
325

The proposed algorithm is then modified to include this P block partial reduction. The sum on diagonals is now split into two passes: the first one within the shared memory for a P block , then recombination of the partial sums from the different P blocks . The pseudo-code in al-330 gorithm 2 summarizes this idea. Finding an efficient data structure to hold the partial sums of a tensor is not straightforward. The perhaps simplest idea would be to store partial sums of a diagonal directly on the pixel of R it contributes to.

335

This requires atomic sums for all thread blocks to work concurrently. In the following, this strategy is named atomic. On the one hand, it removes the need for an intermediate buffer. On the other hand, it makes the algorithm slower, as atomic memory accesses are seri-340 alized and do not fully utilize the available bandwidth.

For better performance, we developed a method that does not rely on atomic operations. Let us present it in a simple case. A is a (h A , w A) matrix on which Tr + should be applied. A is partitioned by the submatrices {M (i,j) } of size (h M , w M) as shown in fig. 5.

A =    M (0,0) • • • M (0,w A /w M)
.

M (h A /h M ,0) • • • M (h A /h M ,w A /w M)    (17)
Let us explore a method for computing sums on the M (i,j) concurrently. This would translate into each GPU TB being affected to a M (i,j) block in our implementation. To do so, a 2D buffer C is used to store partial sums computed in each submatrix. Each column of C is reserved for a diagonal of A. Each M (i,j) writes its partial results on a row of C. In fig. 5, M (0,1) computes partial sums of A-diagonals d (3) to d (9) . The results are written to C 0,3:9 .

Reserving one row of C per B-block would waste a lot of space. We adopt two strategies to reduce the memory footprint needed for C. First, blocks on the same block-antidiagonal (i.e. ∀n, {M (i,j) , s.t. i + j = n}) do not have any diagonal of A in common to sum. This way, they can safely use the same row C, as the columns they use don't overlap. In fig. 6, M (1,1) and M (0,2) use the third row of C.

Second, let's examine a block-antidiagonal's memory footprint on C: it is a segment of length h A -1 + w M min(h A h M , w A w M). Moreover, the gap in the diagonal indices treated by two consecutive block-antidiagonals is w M . Thus, when two antidiagonals are sufficiently apart from each other, they may safely use the same row of C. With antidiagonals n and m (with m > n) this happens when:

(m -n)w M > h A -1 + w M min h A h M , w A w M (18) m -n ≥ h A -1 w M + min h A h M , w A w M (19)
In fig. 6, this is shown with M (0,0) and M (1,2) , from antidiagonals 0 and 3, using the same row of C.

With these two techniques, the required number of rows for C is reduced from (

h A h M w A w M) to h A -1 w M + min(h A h M , w A w M) .
Compared to the initial algorithm, the fused version limits the memory footprint by avoiding the creation of P . It also limits the main memory bandwidth through partial summations in the P block .

In a setting where the image is 1024 × 1024, the kernel 32 × 32 and w B = h B = 32, the fused algorithm reduces by ∼ 15× its memory bandwidth. d (3) d (9) M (1,0) M (0,0)

M (1,1)
M (0,1)

M (1,2)
M (0,2)

A Fig. 5: The matrix A is divided into submatrices {M (i,j) }. M (0,1) computes partial sums for d (3) to d (9) .

C d (-h A +1) d (3) d (9) d (w A -1) M (1,1) M (0,2)
M (1,0) M (0,1)

M (0,0) M (1,2)
Fig. 6: Each M (i,j) writes its results to a segment of C.

To get the full sum for d (3) , one should add the partial sums from M (0,0) , M (0,1) , and M (1,1) .

Results

Introduction

Experimental setup

This section presents the results of several experiments. They were run in two environments, as detailed in ta-380 ble 2. We are interested in two facets of a convolution's performance: the speed and the accuracy of its results. For speed tests, we run the implementations on the cameraman image (see fig. 7), resized to (1024 × 1024) or (4096 × 4096) pixels. This setting has been chosen 385 to mimic an industrial context where an image is to be preprocessed by a large Gaussian kernel.

We summarize the results by taking the median execution time over 20 runs. Our benchmark program measures performance with the help of cudaEvents. The reported timings measure the GPU kernel's execution time. CPU/GPU transfers are left aside, as we assume that they all already live in the GPU memory.

For accuracy, we rely on the median absolute percentage error (median APE, or MAPE). For a pixel p i , Fig. 7: Left, the original image. Middle, a 15×15 random kernel. Right, the "same" convolution. generated by the algorithm under test and compared to r i , the pixel from the reference implementation, the APE is defined as:

APE(p i) = | pi-ri ri |, if r i = 0 0, if r i = 0 (20
)
We aggregate the results on 39 images from the Miscellaneous USC-SIPI dataset [START_REF] Weber | The USC-SIPI image database version 5[END_REF]. Kernels' coefficients are randomly chosen in the interval [0, 1). We use scipy's correlate2d with float64 numbers to generate reference results. All images are also stored on disk in float64 precision using the FITS format.

When the precision used by an algorithm is less than 405 fp64, we initially convert the image and kernel to the lower precision. That lower precision is subsequently used for all computations and storage. It is finally promoted to fp64 to compute its APE.

We also consider mixed-precision: in fp16fp32, the algorithm accesses data in fp16, does the computation in fp32, and store the final result in fp16 (which will later be promoted to fp64 for file storage). For tensor core implementations, the situation is slightly more subtle: with fp16 input, tensor cores always use fp32 internal registers for intermediate results (see fig. 8).

In what we call fp16 implementation, an fp16 output is requested from the tensor core. For fp16fp32, we use fp32 results from the tensor core.

A coef. B coef. × + D coef. C coef.

fp16 input fp32 internal fp16 or fp32

Other products fp32 multiplier fp32 accumulation The exclusive mode is requested for the GPU under 420 test, which means that no other programs will interfere with its execution. Moreover, the GPU clocks are set to fixed values to mitigate dynamic frequency scaling effects.

Implementations Under Test

425

In this benchmark, we try to cover a broad range of algorithms. However, to make the comparison fair, we restricted ourselves to general implementations, not dedicated to one kernel size. While those specialized programs may reach 2-5× speedups compared to general 430 algorithms, they need to produce an executable for each kernel size. Thus, the compilation time increases, and the final binary is large, making it less prone to generalpurpose library integration.

We compared two families of in-house implemen-435 tations ("naive", im2tensor) with first-party NVIDIA libraries (CUFFT, CUDNN, NPP) and a third-party library (ArrayFire). Let us give a brief description of each algorithm:

im2tensor This is the algorithm explained in this 440 article. The + shmem versions use the shared memory for efficient reuse of S block and K block . The + fused versions use the optimization explained in section 4.2.4.

Finally, the via CUBLAS version builds the S tensor explicitly and uses CUBLAS to perform matrix multi-445 plications between K T and the slices of S.

"Naive" This is the classical approach for convolutions on GPU: each GPU thread is assigned to computing a resulting pixel. Therefore, each thread loops over the kernel and image pixels to multiply and sum. In the 450 + shmem version, threads in the same thread block use the shared memory to reuse image pixels. Most of the code is inspired by CUDA samples [START_REF] Podlozhnyuk | CUDA Samples Documentation: convo-lutionSeparable[END_REF].

CUFFT

This algorithm performs convolutions in the Fourier domain. The time to do the Fourier trans-455 form of the kernel is not counted, as it could easily be precomputed and stored in a real-world application. What counts for this implementation is the Fourier transform of the image, the pointwise multiplication in the Fourier domain, and the inverse Fourier transform.

460

CUDNN This library, used for deep neural networks, features the im2col algorithm [START_REF] Chetlur | cuDNN: Efficient Primitives for Deep Learning[END_REF]. We used "cudnn-ConvolutionForward" with the "CUDNN CONVOLU-TION FWD ALGO IMPLICIT GEMM" setting on version 8.1.1 (2021).

465

NPP NPP are NVIDIA Performance Primitives. They contain many utility functions for signal and image processing.

ArrayFire This general-purpose GPU-accelerated library features convolution implementations based on

Fourier transform (ArrayFire Freq.) or similar to naive + shmem (ArrayFire Spatial) [START_REF] Yalamanchili | ArrayFire -A High Performance Software Library for Parallel Computing with an Easy-to-Use API[END_REF]. Used on version 3.8.0 (2021). Figure 9 shows the results for different implementations of the im2tensor algorithm. The CUBLAS version creates the whole S tensor before using the GEMM CUBLAS implementation for multiple matrix-matrix multiplications, as explained in section 5.1.2. Because the time to create S is not counted, it only serves as a reference for the other implementations. Aside from that, even if the CUBLAS library is highly optimized for GEMMs, it is still penalized, with respect to other implementations, by the large data movement that results from fetching S entirely.

Performance

The base im2tensor algorithm already achieves satisfying results. Nevertheless, we applied the optimizations discussed previously. The shmem version performs slightly worse, we suppose it is mainly caused by bank conflicts in the shared memory and to the L1 cache being already as efficient as using shared memory.

By adding the fused optimization, though, the initial algorithm is outperformed. This confirms the efficiency of reusing data as much as possible once they have been moved to the thread block. At last, the ad-ditional atomic optimization slows down the runtime slightly, but does not rely on any intermediate buffer. In fig. 10, the im2tensor algorithm is compared with other fp16 implementations. CUDNN proves to be rather slow in with a single kernel setting. Naive implemen-500 tations perform well for relatively small kernels. The usage of shared memory is beneficial for larger kernels. Note that both programs use the vectorized half2 data type to maximize compute-throughput. The Fourier implementation, CUFFT, is almost constant with respect 505 to the kernel size. The overhead for small kernels is prohibitive but becomes less of a problem with large kernels (> 40 pixels).

Our algorithm behaves quite well for all kernel sizes. On small kernels, it is on par with the best implemen-510 tations. The overhead due to padding for tensor cores does not allow it to be the fastest. As the kernel grows in size, the im2tensor execution time curve is less steep than "naive" implementations. Thus, it is the fastest for kernels between 15 and ∼ 50 pixels in size.

515

For very large kernels, CUFFT remains the fastest. This seems sensible, as the algorithmic complexity is asymptotically better for convolutions in the Fourier space rather than in the direct space.

Additionally, we collected several runtime metrics to understand the implementations' bottlenecks. For a kernel of size 40, the "naive" + shmem implementation is compute-limited. It uses more than 95% of the GPU's ALU throughput. That limitation is also present for CUDNN, which uses about 80%. Conversely, CUFFT is mostly bandwidth-limited: it attains 85% of the theoretical memory bandwidth. Finally, our im2tensor versions are mainly occupancy-limited. This restriction is caused by their large register footprints and required shared memory (for versions that use it). Table 3 provides timings for various implementations and several precisions. It shows once again that im2tensor is the fastest method for most kernel sizes. Our algorithm also performs well in the mixed fp16fp32 case. Note that im2tensor algorithms are only implemented in fp16 and fp16fp32, due to a limition in NVIDIA's API. In fp32 and fp64, ArrayFire (Spatial) cannot handle large kernels. For those cases, the result is marked "-". Fig. 11: MAPE accuracy of algorithms in fp16 (solid) or fp16fp32 (dashed). One color per algorithm. Lower is better.

This inaccuracy might be too large in some contexts [START_REF] Seznec | A Study on Convolution using Half-Precision Floating-Point Numbers on GPU for Radio Astronomy Deconvolution[END_REF]. Fortunately, other implementations perform better. CUFFT is almost constant at 0.1%. im2tensor algorithms in fp16 reach a constant 0.02% inaccuracy, 565 whatever the kernel size. Finally, the performance of the "naive" algorithm meets those of im2tensor when it is executed in fp32fp16 mixed precision.

The remarkable performance of im2tensor is explained by the use of tensor cores. As fig. 8 showed, even in fp16 precision, the intermediate results of the tensor core are computed with fp32 numbers [START_REF] Haidar | Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers[END_REF][START_REF] Abdelfattah | A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic[END_REF]. Given that the accuracy of im2tensor (fp16) is about the same as the mixed (fp16fp32) versions of "naive" and im2tensor, we can deduce that the accuracy is further limited by the storage type rather than the type used for intermediate computations. For reference, accuracy results are included for higher precision in table 5. In fp32, the trend is the same, with the "naive" growing with the kernel size. Most results stay within a 10 -5 , 10 -6 % accuracy.

In fp64, the "naive" implementation is bit-accurate, hence the 0 precision. This is due to the reference scipy version making the same sequence of operations to compute the convolution. Other implementations are very close, about 10 -14 %. Since the reference implementation also cannot be perfectly precise, it is hard to conclude for an implementation to be more accurate than another in fp64.

Conclusion

In this article, we have proposed a new algorithm for 2D convolutions, im2tensor, that exhibits matrix-multiplication operations. We implemented it on NVIDIA tensor cores, that allow modern GPUs to feature extensive FLOP/s capabilities.

We conducted an analysis of the algorithm in terms of algorithmic complexity and arithmetic intensity. This helped us make the best choice of parameters for implementing our algorithm based on matrix-tensor multiplication.

To prove the relevance of this new method, we have benchmarked several well-known implementations on GPUs. For completeness, we compared in-house implementations with first and third-party libraries. The effects of floating-point precision on the accuracy of the 605 computation were also reviewed.

We evaluated those methods on two different setups: embedded (∼ 30W) with an NVIDIA Jetson Xavier and desktop (∼ 500W) with an NVIDIA Titan V. Based on our experiments, it appears that our optimized method 610 for computing convolution via matrix-tensor multiplication with tensor cores is competitive for a large range of kernel sizes.

For small kernels (≤ 20-pixel wide), it is on par with shared memory "naive" implementations and 10× 615 faster than Fourier transforms. For large kernels (∼ 50 pixels), our method is as fast as Fourier transforms and 2× faster than shared-memory "naive".

Regarding accuracy, compared to other fp16-only methods, our algorithm is 5× more precise than Fourier 620 transforms and 100× as good as "naive" implementation for large kernels, in terms of MAPE. This gain is directly provided by tensor cores, as they use extendedprecision intermediate registers.

In the future, the im2tensor algorithm could be 625 extended to the newer Ampere architecture. Further optimization could be conducted to use the low-level mma interface to tensor cores and attain maximum performance. Non-GPU targets may also benefits from im2tensor, such as Google's TPU or Habana's Gaudi [?].

630

Fig. 1 :

 1 Fig. 1: im2tensor achieves 2D convolution of image I and kernel K with a matrix-tensor product P = K T S then sums along its diagonals (red arrows).

 275

1 2 K 3 begin CUDA Kernel 4 while any P block remains do 5 b 6 K 7 S 8 P 9 d 14 while any diagonal remains do 15 d 19 end 2 :

 1234567891415192 Function Im2TensorFused input : An image I, a kernel K output: R the 2D valid convolution T ← transpose(K) idx ← getPBlockIdx (TB idx) block ← readLines (K T , b idx) block ← readAndBuildSubTensor (I, b idx) block ← matTensorMultiply (K block , S block) partial ← sumTensorDiagonals (P block) 10 store (P partial , d partial) (k) , d (l) ← getDiagIds (Thread idx) 16 s ← sumDiagonal (P partial , d (k) , d (l)) 17 storePixel (R, s) 18 end Algorithm The fused im2tensor variant.

Fig. 8 :

 8 Fig. 8: Internal decomposition of a tensor core operation. Based on: https://developer.nvidia.com/blog/ programming-tensor-cores-cuda-9/.

Fig. 9 :

 9 Fig. 9: Effects of im2tensor (fp16) optimizations on Titan V on 1024 × 1024 images.

Fig. 10 :

 10 Fig. 10: Comparison of fp16 algorithms in two contexts: (1024 × 1024) images on Jetson Xavier and (8192 × 8192) images on Titan V. Bands represent the 95% confidence interval.

 P block is handled by a thread block. To compute its values, the TB must read the associated K block and S block .

				S
				Sblock
			Kblock	hB	Pblock
				wB	dB
			K T	P
		Fig. 4: A 16	end
		17	end
		Algorithm 1: Pseudo-code description of
		im2tensor.
		reading directly rows of I when a TB needs them for a
		matrix-matrix product (algorithm 1, line 6).
		4.2 Performance optimization
		4.2.1 Tensor cores considerations
	250	im2tensor is designed to run efficiently on matrix mul-
		tiplication units, such as tensor cores, presented in sec-
		tion 2.3. The first part of im2tensor computes K T S,
		a matrix-tensor product, which is, in essence, a collec-
		tion of matrix-matrix multiplications. In turn, each of
		these products can be further decomposed into smaller

1 Function Im2Tensor input : An image I, a kernel K output: R the 2D valid convolution 2 K T ← transpose(K) 3 begin CUDA Kernel 4 while any P block remains do 5 b idx ← getPBlockIdx (TB idx) 6 K block ← readLines (K T , b idx) 7 S block ← readAndBuildSubTensor (I, b idx) 8 P block ← matTensorMultiply (K block , S block) 9 end 10 end 11 begin CUDA Kernel 12 while any diagonal remains do 13 d (k) , d (l) ← getDiagIds (Thread idx) 14 s ← sumDiagonal (P, d (k) , d (l)) 15 storePixel (R, s) 255 block-matrices products that are accelerated by tensor cores.

Table 1 :

 1 Value of ai for some choices of h B , w B , and d B , with ĥK set to 32.

	h B	w B	d B	ai(h B , w B , d B)
	16	16	16	103.7
	32	16	16	147.6
	16	32	16	130.0
	16	16	32	172.5

Table 2 :

 2 Environments of the experiments.

Table 3 :

 3 Median execution time (in ms) on 4096×4096 images vs. size of kernel. Best time per category is highlighted.

Table 4 :

 4 Algorithms' required memory for a 15×15 convolution with a 4096 × 4096 image. Add 423MB to account for image, kernel, and result storage as well as CUDA runtime.

	Implementation	Extra memory requirement (MB)
	"Naive"	0
	CUDNN	260
	CUFFT	1,680
	im2tensor	516
	im2tensor + shmem + fused	98
	im2tensor + shmem + fused + atomic	0

Table 5 :

 5 Median accuracy (in percentage) of convolutions vs. size of kernel.