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Abstract Generating multivariate normal distributions is widely used in
various fields, including engineering, statistics, finance and machine learning.
In this paper, simulating large multivariate normal distributions truncated
on the intersection of a set of hyperplanes is investigated. Specifically, the
proposed methodology focuses on cases where the prior multivariate normal
is extracted from a stationary Gaussian process (GP). It is based on combin-
ing both Karhunen-Loève expansions (KLE) and Matheron’s update rules
(MUR). The KLE requires the computation of the decomposition of the co-
variance matrix of the random variables, which can become expensive when
the random vector is too large. To address this issue, the input domain is
split in smallest subdomains where the eigendecomposition can be computed.
Due to the stationary property, only the eigendecomposition of the first sub-
domain is required. Through this strategy, the computational complexity is
drastically reduced. The mean-square truncation and block errors have been
calculated. The efficiency of the proposed approach has been demonstrated
through both synthetic and real data studies.
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1 Introduction

This paper investigates the simulation of large multivariate normal (MVN)
distributions truncated on the intersection of a set of hyperplanes. This prob-
lem is widely used in Bayesian regression and is closely related to nonpara-
metric function estimation through Gaussian processes (GPs) [2, 5, 13, 20].
For instance, in [13], the authors propose a finite-dimensional GP approx-
imation for shape-restricted function estimation. They demonstrate that
sampling from the posterior distribution is equivalent to simulating a MVN
distribution truncated on the nonnegative orthant. Furthermore, in econo-
metrics, the authors in [5] apply this approach to estimate discount factors
and forward rates. Recently, in [17, 24], the authors employ a constrained
GP model to address the proton radius problem in nuclear physics. In [11],
the authors estimate the demand for electricity as a function of temperature
using a GP regression approach that utilizes the Karhunen-Loève expansion
(KLE).

The standard approach involves simulating from the posterior distribu-
tion using the location-scale transformation. A scaling matrix of the pos-
terior covariance matrix can be computed, and sampling from a standard
MVN distribution can be performed [14]. However, computing a scaling ma-
trix becomes expensive in higher dimensions, with computational complexity
scaling cubically with the dimension of the MVN random variable [7]. To
address this issue, it is possible to compute a polynomial or Lanczos ap-
proximation of the scaling matrix of the covariance matrix [1, 6]. However,
simulating from the posterior distribution leads to the loss of information on
the unconditional (precision or prior) covariance matrix.

The proposed methodology is quite different, as there is no need to com-
pute the posterior covariance matrix and its decomposition. Instead, it in-
volves combining the Karhunen-Loève expansion (KLE) and Matheron’s up-
date rule (MUR).

On the one hand, the KLE can be seen as an efficient way of simulat-
ing random fields, based on the computation of the eigendecomposition of
the covariance operator [12]. However, in higher dimensions, the eigende-
composition becomes computationally expensive. To address this issue, the
input domain can be divided into smaller subdomains and the KLE coeffi-
cients conditioned to satisfy the given correlation between subdomains, as
proposed in [3, 16].

On the other hand, the MUR, which first appeared in geostatistics [9]
and later in astrophysics [8], can be summarized in two steps. First, we sim-
ulate from an unconstrained MVN distribution. Second, we project onto the
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intersection of a set of hyperplanes. In [4], the MUR algorithm is generalized
to efficiently simulate random variables from a MVN distribution whose co-
variance (precision) matrix can be decomposed as a positive-definite matrix
minus (plus) a low-rank symmetric matrix. The idea is to simulate from a
block diagonal covariance matrix and use the MUR. Recently, the authors in
[21] used the MUR to simulate conditional Gaussian processes. This method
is called pathwise conditioning and has been applied to global optimization
problems.

In the present paper, the main idea is to focus on the first step of the
MUR algorithm. The large-scale KLE is developed for simulating the uncon-
strained MVN distribution. Then, we utilize the second step of the MUR to
map it into the intersection of a set of hyperplanes. With this approach, we
can efficiently simulate a large MVN distribution that is truncated on the
intersection of a set of hyperplanes.

The article is structured as follows: In Sect. 2, we briefly recall the KLE
and present the large-scale KLE technique along with some numerical illus-
trations. We compute the truncation and global block errors between the
proposed approach and the original random field. Furthermore, we include
a comparison with alternative approaches. Section 3 is devoted to sampling
hyperplane-truncated MVN distributions. The MUR and its extension to
higher dimensions are presented, including real-world applications that ex-
amine the performance of the proposed approach.

2 Karhunen-Loève expansion

Karhunen-Loève expansion (KLE) is an accurate and highly efficient approx-
imation of random processes [19]. It can be seen as a linear combination of
basis functions, with standard Gaussian random variables. By truncating
the expansion at a certain number of basis functions, it achieves a balance
between accuracy and computational efficiency. Recently, this approxima-
tion has been used in [11] for shape-restricted function estimation ans has
also been applied to estimate electric demand as a function of temperature.
Furthermore, in [10], the Karhunen-Loève procedure has been employed for
the characterization of human faces.

In the following section, we provide a brief overview of the KLE approach,
discussing its advantages as well as limitations.
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2.1 Standard Karhunen-Loève expansion

Without loss of generality, let (Y (x))x∈D be a zero-mean stationary Gaussian
random field, whose covariance function C(|x− x′|) is equal to

C(|x− x′|) = Cov(Y (x), Y (x′)) = E[Y (x)Y (x′)], ∀x, x′ ∈ D.

For simplicity, we suppose that D is the unit interval [0, 1] in R.

Table 1: Some popular stationary covariance functions with their degree of
smoothness used in the Machine Learning community [20]

Name Expression Class

Squared Exponential exp
(
− (x−x′)2

2θ2

)
C∞

Matérn ν = 5/2
(

1 +
√
5|x−x′|
θ

+ 5(x−x′)2
3θ2

)
exp

(
−
√
5|x−x′|
θ

)
C2

Matérn ν = 3/2
(

1 +
√
3|x−x′|
θ

)
exp

(
−
√
3|x−x′|
θ

)
C1

Exponential exp
(
− |x−x

′|
θ

)
C0
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Figure 1: Some covariance functions (left) and associated GP sample paths
(right). The length-scale parameter θ is fixed to 0.3

Table 1 shows some commonly used stationary covariance functions, or-
dered by decreasing degree of smoothness, where θ is the length-scale pa-
rameter. These kernels are widely used in the Machine Learning community
[20]. Figure 1 displays sample paths of three covariance functions along with
the associated GPs. The input domain D = [0, 1] has been discretized into
N = 200 equally spaced points, involving the simulation of a MVN distribu-
tion of size N = 200. In general, the computational complexity of simulating
a MVN grows cubically as a function of the dimension, i.e., O(N3) [7], where
N is the dimension of the MVN random variable. Our aim in this section is
to reduce the computational complexity when the dimension N is high (i.e.,
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when N � 1, 000) using the KLE method. In the following, we will provide a
brief overview of the KLE approach, discussing its advantages as well as limi-
tations. In the next section, we will introduce our approach, called large-scale
KLE, which is specifically designed to tackle scenarios where N � 1, 000.

The KLE approach is based on the eigendecomposition of the covariance
function over the domain D [12]:∫

D
C(|x− x′|)ϕi(x)dx = γiϕi(x

′), ∀i, ∀x, x′ ∈ D. (1)

The deterministic functions ϕi(x) and the coefficients γi are respectively the
eigenfunctions and eigenvalues of the covariance function C(|x− x′|) on the
domain D. Equation (1) is well known in mathematics as the Fredholm in-
tegral equation. The analytic solution of (1) is possible only for particular
covariance functions such as Brownian motion covariance function. Numeri-
cal solutions are often used in applications. Let us recall that the eigenvalues
are real and non-negative since the covariance is symmetric and positive
semi-definite: ∫∫

D2

C(|x− x′|)f(x)f(x′)dxdx′ ≥ 0

for any f having finite L2 norm on D. Let us recall also that the eigenfunc-
tions ϕi(x) form a complete orthonormal basis functions set [19]. This means
that ∫

D
ϕi(x)ϕj(x)dx = δij;

+∞∑
i=1

ϕi(x)ϕi(x
′) = δ(x− x′),

where δij represents the Kronecker delta (equal one if i = j and zero other-
wise) and δ(x) is the Dirac distribution function.

In the KLE, we represent the Gaussian random field (Y (x)) using a se-
quence of independent standard Gaussian variables {ξi, i ∈ N} as follows:

Y (x) =
+∞∑
i=1

√
γiξiϕi(x), ∀x ∈ D, (2)

where the KLE coefficients {ξi} are zero-mean uncorrelated Gaussian ran-
dom variables (independent) with unit variance. The KLE coefficients are
defined as the projection of the Gaussian random process onto the KLE
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eigenfunctions:

ξi =
1
√
γi

∫
D
ϕi(x)Y (x)dx, (3)

E[ξi] = 0 and E[ξiξj] = δij.

We have the following well-known result (see for instance [19]):

Proposition 1 (Covariance decomposition). If (Y (x)) is the random field
defined as in (2), then the associated covariance function can be expressed as
follows:

C(x, x′) = E[Y (x)Y (x′)] =
+∞∑
i=1

γiϕi(x)ϕi(x
′), ∀x, x′ ∈ D.

To maintain clarity, the proof of Proposition 1 is deferred to Appendix 6.
In practice, the process (Y (x))x∈D is approximated by the truncated sum

of p terms on the domain D as follows:

Y (x) ≈
p∑
i=1

√
γiξiϕi(x) = Y p(x), ∀x ∈ D.

This approximation with a finite number of terms is called truncated KLE.
Let us recall that the mean-square truncation error ε2KL is related to the sum
of the eigenvalues:

ε2KL =

∫
D

E
[
(Y (x)− Y p(x))2

]
dx∫

D
E[Y (x)2]dx

= 1−
∑p

i=1 γi∑+∞
i=1 γi

. (4)

This mean-square truncation error decreases with the number of terms p
retained in the expansion.

When the Gaussian random field (Y (x)) is discretized into N equally
spaced points over D, the eigendecomposition leads to an eigenvalue prob-
lem of size N×N . However, when the domain is huge and a fine discretization
of the field is used, the eigendecomposition problem becomes expensive to
solve, with a computational complexity of O(N3). In the following sections,
we propose splitting the domain D into smaller subdomains to reduce the
complexity of the eigendecomposition problem. For instance, when the do-
main is split into two subdomains, the complexity reduces to O((N/2)3).
Instead of solving an eigendecomposition problem of order N , we only need
to solve an eigendecomposition of order N1 = N/2. Due to the stationary
property of the random field, we show that the eigendecomposition of the
first subdomain is sufficient for any number of subdomains.
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2.2 Large-scale Karhunen-Loève expansion

The aim of this section is to reduce the computational complexity of simulat-
ing a MVN distribution of size N too high (i.e., N � 1, 000). To the best of
our knowledge, the methodology presented in this section was first introduced
in [3] and then in [16]. We assume that the random field (Y (x))x∈D is station-
ary, and the input domain D is discretized into N equally spaced points. For
simplicity, the domain D = [0,MS] is split into M equally sized subdomains
D(m) = ((m − 1)S,mS] for any block parameter m ∈ {1, . . . ,M}, where
MS = 1. Thus, the first subdomain [0, S] is discretized into N1 = N/M
equally spaced points. The investigation of the extension to subdomains
with different lengths is available in Appendix 5. The analytic expression of
the covariance function C(|x−x′|) of the field (Y (x)) is known for x, x′ ∈ D.
For any m ∈ {1, . . . ,M} and x ∈ D(m), let

Ym(x) =
+∞∑
i=1

√
λiξ

(m)
i φi(x− (m− 1)S) (5)

be the standard KLE covering the mth subdomain D(m), where the determin-
istic functions φi(x) and the coefficients λi are respectively the eigenfunctions
and eigenvalues of the covariance function C(|x−x′|) on the first subdomain

D(1) = [0, S], and where ξ
(m)
i are random coefficients following a normal

distribution (see Proposition 2 below for more details). Equation (5) im-
plies that the GP Ym is defined on the corresponding subdomain D(m) for
any m = 1, . . . ,M . Furthermore, when M = 1, Equations (2) and (5) are
equivalent since λi = γi and φi ≡ ϕi, for any i ∈ N.

Let us mention that the following notation will be used throughout this
paper:

(Ym ∪ Ym′) (x) = Ym(x)1D(m)(x) + Ym′(x)1D(m′)(x),

for any x ∈ D and m,m′ ∈ {1, . . . ,M}, where 1D(m)(x) is the indicator
function equal one if x ∈ D(m) and zero otherwise.

Proposition 2 (Distribution on blocks). In the setting of the stationary
property of the covariance function C, we have the following results:

(i) For a given m ∈ {1, . . . ,M}, the process Ym defined in (5) and Y have
the same distribution on D(m) if and only if the elements of the sequence
{ξ(m)

i } are independent and identically distributed N (0, 1).

(ii) For any m′ > m, (Ym ∪ Ym′) and Y have the same distribution on

D(m)∪D(m′) if and only if the sequences {ξ(m)
i } and {ξ(m

′)
j } are normal
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distributed N (0, 1) and the correlations between ξ
(m)
i and ξ

(m′)
j is

Cov
(
ξ
(m)
i , ξ

(m′)
j

)
=

1√
λiλj

∫ S

x=0

∫ S

x′=0

C (|x− x′ − (m′ −m)S|)φi(x)φj(x
′)dxdx′.

For clarity of the presentation, the proof of Proposition 2 is provided in
Appendix 6.

In practice, we assume that p terms have been retained in the expansion

Y p
m(x) =

p∑
i=1

√
λiξ

(m)
i φi(x− (m− 1)S), ∀x ∈ D(m).

Let us consider the so-called coupling matrix, which has been defined in [23]
and used in [3, 16]. The coupling matrix Km,m′

represents the correlation
between the KLE coefficients sets of any two subdomains D(m) and D(m′),
where m < m′. For any i, j = 1, . . . , p

Km,m′

i,j = Cov
(
ξ
(m)
i , ξ

(m′)
j

)
.

When m′ = m + 1, we denote by K the coupling matrix of any two con-
nected subdomains. It is important to recall that, under the assumption
of a stationary random field and when using equally sized subdomains with
uniform subdivision, the coupling matrix K is defined once between any two
connected subdomains. In fact, we have for any i, j = 1, . . . , p

Ki,j = Km,m+1
i,j =

1√
λiλj

∫ S

x=0

∫ S

x′=0

C (|x− x′ − S|)φi(x)φj(x
′)dxdx′, (6)

for all m ∈ {1, . . . ,M − 1}. The coupling matrix K can be seen as the
projection of C(|x− t|), for x ∈ [0, S] and t ∈ [S, 2S], onto the basis φi.

The main idea is to generate M independent samples, each covering the
corresponding subdomain, and then impose a correlation between the KLE
coefficients of the two connected samples. This implies that the second item
of Proposition 2 will be used when m′ = m+ 1.

Let (Y ⊥m (x)) and (Y ⊥m+1(x)) be two independent sets that cover the D(m)

and D(m+1) subdomains, respectively, for any m ∈ {1, . . . ,M − 1}. Thus,

Y ⊥m (x) =

p∑
i=1

√
λiζ

(m)
i φi(x− (m− 1)S), with x ∈ ((m− 1)S,mS];

Y ⊥m+1(x) =

p∑
i=1

√
λiζ

(m+1)
i φi(x−mS), with x ∈ (mS, (m+ 1)S],
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where the KLE coefficients ζ
(m)
i and ζ

(m+1)
i are two independent replicates

following a standard normal distribution N (0, 1). Since the two sets ζ(m) ={
ζ
(m)
i

}
i

and ζ(m+1) =
{
ζ
(m+1)
i

}
i

are independently generated, the two Gaus-

sian random fields are uncorrelated:

E
[
ζ
(m)
i ζ

(m+1)
j

]
= 0, ∀i, j ⇒ E

[
Y ⊥m (x)Y ⊥m+1(t)

]
= 0,

for all x ∈ D(m) and t ∈ D(m+1).
Let us define the lower triangle matrix L of the Cholesky factorization

as:
Ip −K>K = LL>, (7)

where Ip is the p× p identity matrix and K> is the transpose of K.

Proposition 3 (Construction of conditional coefficients). Under the station-
ary property of the random process Y , if the mth conditional coefficients set
ξ(m) is computed as follows:

ξ(m) = K>ξ(m−1) +Lζ(m), ∀m ∈ {2, . . . ,M}, (8)

where ξ(1) = ζ(1) and {ζ(m)} is an independent and identically distributed
sequence of standard Gaussian vectors, then

• the two processes Y and (Ym−1 ∪ Ym) have the same distribution on
D(m−1) ∪ D(m), for any m ∈ {2, . . . ,M}.

• For any m′ ≥ m Km,m′
= Cov

(
ξ(m), ξ(m

′)
)

= Km′−m,

Km,m = Cov
(
ξ(m)

)
= Ip,

(9)

where K0 is the identity matrix and K is the coupling matrix defined
in Equation (6).

For the sake of clarity, the proof of Proposition 3 is presented in Ap-
pendix 6.

Corollary 1 (Correlation between blocks). For any (x, x′) ∈ D(m) × D(m′),
we have

Cov (Y p
m(x), Y p

m′(x
′)) =

p∑
i,j=1

√
λiλjφi(x−(m−1)S)φj(x

′−(m′−1)S)(Km′−m)ij,

(10)
where K is the coupling matrix given in Equation (6).
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Proof. The covariance between Ym(x) and Ym′(x′) is a simple consequence of
Equation (9).

By construction, at each subdomain (except for the first two), the set of
conditional coefficients is computed using the set of previous conditional co-
efficients on the left-hand side and the set of non-conditional coefficients on
the right-hand side. From (9), when m′ = m+ 1, we get the coupling matrix
K between the connected subdomains. In fact, the matrix Km′−m is inter-
preted as the coupling matrix between any two subdomains D(m) and D(m′).
To be more precise, the matrix Km′−m represents the correlation between
any two conditional coefficients sets ξ(m) and ξ(m

′). From Proposition 3, the
elements of ξ(m) are uncorrelated and then independent (since Gaussian).

The elements of ξ(m) are the conditional coefficients {ξ(m)
i } which are used

in order to sample the random process defined on the entire domain D:{
Y p
1 (x) = Y ⊥1 (x) =

∑p
i=1

√
λiζ

(1)
i φi(x), if x ∈ D(1)

Y p
m(x) =

∑p
i=1

√
λiξ

(m)
i φi(x− (m− 1)S), if x ∈ D(m)

where m ∈ {2, . . . ,M}. Let us recall that for any m ∈ {2, . . . ,M}, λi and φi
are respectively the eigenvalues and eigenfunctions of the covariance function
C on the first subdomain D(1) = [0, S].

Remark 1. The methodology presented in this section can also be applied
to the family of stationary covariance functions with compact support. As
said in [20], ‘compact support means that the covariance between points be-
come exactly zero when their distance exceeds a certain threshold’. This is
an interesting class of covariance function since the covariance matrix will
become sparse by construction which lead to computational advantages. Let
us mention that some piecewise polynomial covariance functions with com-
pact support are given in [20] Sect. 4.2. In the present paper, the triangular
covariance function will be used:

C(|h|) = max

(
1− |h|

θ
, 0

)
, ∀h ∈ D,

where θ is the length-scale parameter. However, in the proposed approach,
this class of covariance functions with compact support does not solve the
problem of correlation errors between the coefficient sets of unconnected sub-
domains. This is because the proposed approach introduces non-zero corre-
lations between the conditioning coefficient sets of unconnected subdomains
Km,m′

for m′ > m+ 1.
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Proposition 4 (Truncation and block errors). In the setting of Proposi-
tion 3, we have the following mean-square truncation and global block errors
respectively:

ε2T =

E

[∫
D(m)

(Ym(x)− Y p
m(x))2dx

]
E

[∫
D(m)

Ym(x)2dx

] = 1−
∑p

i=1 λi∑+∞
i=1 λi

; (11)

ε2B,M =

E

[∫
D

(Y (x)− Y1:M(x))2dG(x)

]
E

[∫
D
Y (x)2dG(x)

] =
Trace

(
(SY − SY1:M )(SY − SY1:M )>

)
Trace(SY S>Y )

,(12)

for any m ∈ {1, . . . ,M}, where Y1:M = ∪Mm=1Ym and SY and SY1:M are the
Cholesky matrices of the covariance functions of Y and Y1:M on the grid
G = {x1, . . . , xN} respectively and G is the cumulative distribution function
(CDF) of the Uniform discrete random variable on G.

The proof of Proposition 4 is deferred to Appendix 6.
In the numerical examples presented in this section, the Matérn covari-

ance function with a smoothness parameter of ν = 5/2 (see Table 1) has
been used [15]. The length-scale parameter θ is fixed at 0.2 unless other-
wise specified. In this case, the mean-square truncation error (4) is equal to
ε2KL = 9.7 × 10−6 when p = 30 terms are retained in the expansion. Other
covariance functions such us the Squared Exponential (SE), exponential co-
variance function (see Table 1) can also be used.
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Figure 2: GP sample paths when the domain is split into two subdomains,
with solid curves representing the paths before conditioning and dashed
curves representing the paths after conditioning. The number of terms re-
tained in the expansion is p = 5 on the left and p = 30 on the right

In Fig. 2, the domain D = [0, 1] is decomposed into two subdomains with
equal size, i.e., M = 2 and S = 0.5. It is discretized into N = 100 uniformly
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spaced points, with each subdomain consisting of N1 = 50 uniformly spaced
points. The black dashed curves represent the path of Y p

2 (x) on (S, 2S]
(i.e., the random process path after conditioning), while the gray curves
represent the paths of Y ⊥1 (x) for any x ∈ [0, S] (i.e., random process before
conditioning). In the left panel, p = 5 terms are retained in the expansion,
whereas in the right panel, p = 30 terms are retained. Let us mention that
in the second part of the domain, the realizations are adjusted to match the
generation in the first part of the domain.
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Figure 3: GP sample paths when the domain is split into three subdomains.
Dashed (resp. solid) curves represent the paths after (resp. before) condi-
tioning. The left panel shows one replicate, while the right panel shows five
replicates

In Fig. 3, the domain D = [0, 1] is divided into three subdomains (M = 3)
with equal lengths. It is discretized into N = 150 uniformly spaced points,
resulting in N1 = 50 uniformly spaced points per subdomain. Similar to the
previous experiments, p = 30 terms are retained in the expansion. The solid
curves (resp. dashed curves) represent the paths of the GP before (resp.
after) conditioning. In the second and in the third subdomain, the real-
izations are adjusted to follow the generation in the left-hand side previous
subdomain (see Fig. 4 for more details).

Under the same setting used in Fig. 3, the black solid curve in Fig. 4
represents the true correlation C(|h|) for h ∈ D(2) (left panel) and h ∈ D(3)

(right panel). Let us recall that the true covariance function is the Matérn co-
variance with a smoothness parameter ν = 5/2 and a length-scale parameter
of θ = 0.2. The black dashed curve represents the simulated correlation using
1,000,000 replicates. In the right panel, the red dash-dotted curve represents
the model correlation between Y p

1 (0) and Y p
3 (t) for t ∈ D(3), calculated us-

ing Equation (10) from Corollary 1. As expected, the simulated correlation
between the first two subdomains (left panel) coincides with the true correla-
tion, whereas the correlation between the first and the last subdomain differs
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Figure 4: The covariance functions between t = 0 and t ∈ D(2) (resp. t ∈
D(3)) are presented in the left (resp. right) panel. The simulated correlation
is based on 1,000,000 replicates, while the model correlation is computed
from Equation (10)

(right panel). This is because, by construction, the correlation between the
first set of coefficients ξ(1) and the third set ξ(3) is estimated by the square of
the coupling matrix, i.e., Cov(ξ(1), ξ(3)) = K2 as stated in the second item
of Proposition 3. To improve clarity in the left panel, the model correlation
between Y p

1 (0) and Y p
2 (t) for t ∈ D(2) has been omitted.
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Figure 5: The covariance functions between t = 0 and t ∈ D(3) are shown
in the left (resp. right) panel, with (resp. without) truncation. The length-
scale parameter is fixed at θ = 0.1. The model correlation is obtained from
Equation (10)

In Fig. 5, the domain D is divided into three subdomains and discretized
into N = 150 equally spaced points, resulting in N1 = 50 equally spaced
points per subdomain. The black solid curve represents the true covariance
function C(|h|) for h ∈ D(3), while the red dash-dotted curve represents the
model correlation between Y p

1 (0) and Y p
3 (t) for t ∈ D(3) obtained from Equa-

tion (10) in Corollary 1. The left panel shows the truncated expansion with
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p = 30 terms, while the right panel shows the expansion without truncation,
with all terms retained (p = N1 = 50). When the proposed approach is
used without truncation, the correlation between unconnected subdomains
follows the true covariance function C, which is the Matérn covariance with
a smoothness parameter of ν = 5/2 and a length-scale parameter fixed at
θ = 0.1.

Table 2: Root-mean-square error on D between the true covariance function
and the approximated one using the proposed approach

θ = 0.1 θ = 0.5 θ = 1
Triangular 3.02× 10−16 8.26× 10−2 7.56× 10−2

Matérn ν = 5/2 5.96× 10−13 4.64× 10−9 1.65× 10−8

Matérn ν = 3/2 3.47× 10−16 4.17× 10−13 5.02× 10−12

Exponential 7.86× 10−16 8.54× 10−16 1.75× 10−15

Table 2 shows the RMSE onD between the true covariance function C and
the approximated covariance function obtained from the proposed approach.
The domain D is decomposed into four subdomains and discretized into N =
200 equally spaced points, resulting in N1 = 50 equally spaced points per
subdomain. The proposed approach was used without truncation, meaning
that all terms were retained (p = N1 = 50). We observe that the RMSE
decreases as the length-scale parameter θ and the degree of smoothness ν
of the Matérn family of covariance functions decrease. Let us mention that
the Markovian Exponential covariance function (refer to [20], Section 4.5
page 102) provides negligible errors compared to other covariance kernels
for different values of θ and for different number of subdomains M . In this
numerical example, the triangular covariance function represents the class of
kernels with a compact support (see Remark 1). When θ = 1, we obtain
C(|h|) = 1− |h| > 0 for any h ∈ [0, 1[.

Table 3: Root-mean-square global block error (12) on D between the original
random process Y and the approximated one Y1:M with M = 4

θ = 0.1 θ = 0.5 θ = 1
Triangular 1.27× 10−2 2.29× 10−1 9.0× 10−2

Matérn ν = 5/2 3.63× 10−19 5.84× 10−12 9.68× 10−10

Matérn ν = 3/2 3.24× 10−24 2.56× 10−19 1.31× 10−17

Exponential 3.17× 10−28 7.22× 10−27 3.23× 10−26

Table 3 presents the mean-square global block error (12) on D between the
original random process Y and the proposed process Y1:M with M = 4, under
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the same setting as in Table 2. As for the RMSE of the covariance function,
the global block error decreases as the length-scale parameter decreases and
as the degree of smoothness ν of the Matérn family of covariance functions
decreases. Similarly to the previous experiment, the Markovian Exponential
covariance function exhibits negligible errors for various values of θ and dif-
ferent numbers of subdomains M . The domain D is decomposed into four
subdomains in this case (M = 4). As the number of subdomains decreases,
the global block error also decreases. For example, with only two subdomains
(M = 2), the error ε2B,M is of order 5.24 × 10−23 for the Matérn covariance
function with smoothness parameter ν = 5/2 and length-scale parameter
θ = 0.1. In the same setting, when M = 10, we obtain ε2B,M = 2.89× 10−14.

2.3 Run-time comparison

This section aims to demonstrate the performance and efficiency of the pro-
posed large-scale KLE approach through a comparison with alternative ap-
proaches, such as the naive KLE and the highly efficient Fast Fourier Trans-
form (FFT) approach developed in [22].
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Figure 6: Average time of sampling a MVN over 25 replicates as a function
of the dimension. The proposed approach, LS.KLE, has been compared to
the naive KLE method

In Fig. 6, we compare the proposed large-scale KLE approach, namely,
LS.KLE, with the naive KLE method. The dashed and solid curves represent
the average running time (in seconds) of sampling a MVN over 25 replicates
as a function of the dimension N for the naive KLE and LS.KLE, respectively.
For both approaches, the number of terms retained in the expansion is p = 30.
For the proposed approach, the first subdomain is discretized into N1 = 50
equally spaced points, and the number of subdomains M takes values from
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the set {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. The proposed approach has a clear
advantage over the naive KLE method.
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Figure 7: Average time of sampling a MVN over 25 replicates as a function of
the dimension N (left) and of the smoothness parameter ν (right). The pro-
posed approach, LS.KLE, has been compared to the Fast Fourier Transform
(FFT) developed in [22]

In Fig. 7, we compare the proposed large-scale KLE approach, LS.KLE,
with the FFT method developed in [22]. This is a highly efficient approach for
simulating stationary GPs. The left panel shows the average running time (in
seconds) of sampling a MVN distribution over 25 replicates as a function of
the dimension N , with the smoothness parameter ν of the Matérn covariance
function fixed at 0.5. The proposed approach demonstrates a clear advantage
over the FFT method. In the right panel, we examine the computing time
(in seconds) of sampling a MVN distribution over 25 replicates as a function
of the smoothness parameter ν. The dimension N of the MVN variable η
is fixed at 10, 000. Unlike the FFT method, the proposed LS.KLE approach
remains stable as the smoothness parameter ν increases.

Figure 8 illustrates the performance of the proposed approach as a func-
tion of the dimension. The black curve represents the average running time
(in seconds) for generating a MVN distribution over 25 replicates using the
proposed LS.KLE method. The first subdomain was discretized into N1 = 100
equally spaced points, and the block parameter M varied from 1, 000 to
100, 000. Notably, when employing the proposed approach, sampling a MVN
of dimension N = 10, 000, 000 can be achieved in approximately 1.2 seconds,
with the average time increasing linearly as a function of the dimension.

In the next section, we explain how simulating hyperplane-truncated MVN
distributions in high dimensions N � 1, 000 using the proposed large-scale
KLE approach LS.KLE developed in Sect. 2.2.
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Figure 8: Average time (in seconds) of sampling a MVN over 25 replicates
as a function of the dimension using the proposed approach LS.KLE

3 Hyperplane-truncated MVN distributions

In this section, we consider the problem of simulating a N -dimensional MVN
prior η ∼ N (µ,Γ) truncated on the intersection of a set of n < N hyper-
planes, denoted

{η s.t. Aη = y}, (13)

where A ∈ Rn×N , y ∈ Rn and rank(A) = n. This problem is widely used in
nonparametric function estimation using GPs [13, 20, 4, 17]. For instance, the
authors in [4] propose a fast algorithm for simulating a hyperplane-truncated
MVN distribution with a covariance (precision) matrix Γ that can be de-
composed as a positive-definite matrix minus (plus) a low-rank symmetric
matrix. In the present paper, however, the only condition imposed on the
precision covariance matrix Γ is that it is generated from a stationary GP.

In the following proposition, we recall the well-known result for com-
puting the posterior distribution of a MVN distribution with linear equality
constraints (13).

Proposition 5 (Posterior distribution). The conditional distribution of η ∼
N (µ,Γ) given {Aη = y} follows a MVN distribution

{η s.t. Aη = y} ∼ N (µc,C), where{
µc = µ+ (AΓ)>(AΓA>)−1(y −Aµ);
C = Γ− (AΓ)>(AΓA>)−1AΓ,

are the conditional mean and covariance matrix respectively.

Proof. See for instance [14, 20].
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3.1 Sampling in low dimensions

The standard (or direct) approach for simulating from the posterior distribu-
tionN (µc,C) involves computing a scaling matrix of the posterior covariance
matrix C, denoted here as S ∈ RN×k, for any k ∈ N∗ verifying SS> = C,
and using the following equation

X = µc + SU ,

where U ∼ N (0N , IN) is a N -dimensional standard Gaussian vector. To
compute a scaling matrix S, one can use Cholesky factorization [18] or
eigendecomposition. Generally, the computational complexity of computing
a scaling matrix grows cubically, and it is of order O(N3) [7]. In practice, it
becomes cumbersome when N is greater than one thousand.

Hereafter, we show how to simulate hyperplane-truncated MVN distribu-
tions without computing the covariance matrix of the posterior distribution
C and its decomposition. This allows us to sample hyperplane-truncated
MVN distributions in cases where the dimension N of the prior Gaussian
vector η is too high (i.e., N � 1, 000).

3.2 Sampling in high-dimensions

The term ‘high-dimension’ is used to refer to scenarios where the dimension
N of the prior Gaussian vector η is too large (i.e., N � 1, 000). We have
observed that due to its complexity O(N3), direct approaches become in-
feasible when N is significant (i.e., N � 1, 000). Thus, we propose a novel
solution to manage this issue.

Let us recall first the classical MUR method [9], which will be employed
to address this problem.

Proposition 6 (MUR distribution). Let η be an N-dimensional MVN ran-
dom vector with a prior distribution, characterized by a mean vector µ and
a covariance matrix Γ. Suppose that A ∈ Rn×N is a given matrix of rank n
and y ∈ Rn is an output vector. Then

{η s.t. Aη = y} d
= η + (AΓ)>

(
AΓA>

)−1
(y −Aη). (14)

The proof of Proposition 6 is provided in Appendix 6. As mentioned in
[21], a key difference with the standard approach (Proposition 5) is that we
now sample before conditioning, rather than after. This observation serves
as the foundation for the concept presented in this paper to update the

18



Algorithm 1: Sampling scheme by MUR of η ∼ N (µ,Γ) given {Aη =
y}

• sample η ∼ N (µ,Γ);

• return w = η + (AΓ)>(AΓA>)−1(y −Aη) which can be realized by

– solve α such that (AΓA>)α = y −Aη;

– return w = η + (AΓ)>α.

MUR in higher dimensions. Equation (14) can be seen as a deterministic
transformation of the Gaussian vector η.

The computational complexity of Algorithm 1 is provided in Appendix 7
(Table 5) for both diagonal and non-diagonal covariance matrix Γ.

Corollary 2. Suppose that w is simulated with Algorithm 1. In this case,
it follows a distribution η ∼ N (µ,Γ), subject to the constraint {Aη = y},
where A ∈ Rn×N , y ∈ Rn, and rank(A) = n < N .

Proof. The proof is a simple consequence of Proposition 6.

From Algorithm 1 and Proposition 6, simulating a hyperplane-truncated
MVN distribution using MUR consists of two steps: first, we draw η from
an unconstrained MVN as η ∼ N (µ,Γ), and second, we map it to a vector
w in the intersection of a set of hyperplanes by

w = η + (AΓ)>
(
AΓA>

)−1
(y −Aη).

Using the MUR, we sample from the unconstrained MVN distribution,
which offers several advantages. For instance, in the case where the uncon-
strained covariance (precision) matrix Γ is diagonal, we can exploit this prop-
erty. Additionally, if Γ is generated from a stationary covariance function, we
can preserve the stationary property in the sampling process, unlike in the
direct approach, where sampling from the posterior distribution would result
in a non-stationary posterior covariance. This advantage has been utilized
in the large-scale KLE approach developed in Sect. 2.2, where the coupling
matrix has been computed once for any arbitrary number of subdomains.
Furthermore, only the eigendecomposition of the first subdomain is used. In
this paper, we thus propose to combine both the large-scale KLE developed
in Sect. 2.2 and the MUR in order to drastically reduce the computational
complexity of sampling a hyperplane-truncated MVN distribution when N
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is too large (i.e, N � 1, 000). Let us mention that when the domain is split
into two subdomains, the proposed approach is exact, however, when the
domain is split into more than two subdomains (M > 2), an approximation
error is generated, as discussed in Proposition 4 in Sect. 2.2.

Algorithm 2 outlines the different steps for simulating a hyperplane-truncated
MVN distribution using the proposed approach when the domain is split into
only two subdomains (i.e., M = 2). Recall that the input domain D is dis-
cretized into N equally spaced points, with N/2 equally spaced points in
each subdomain.

Algorithm 2: Sampling scheme of η ∼ N (µ,Γ), subject to {Aη =
y} using the proposed approach when the domain is divided into two
subdomains (i.e., M = 2)

Initialization: A,Γ,y,µ, p, N1 and M .

• Generating η ∼ N (µ,Γ):

– sample ζ(1), ζ(2) ∼ N (0p, Ip);

– compute matrices K and L using (6) and (7), respectively;

– compute ξ(2) = K>ζ(1) +Lζ(2);

– compute η1 =
∑p

i=1

√
λiφiζ

(1)
i and η2 =

∑p
i=1

√
λiφiξ

(2)
i ;

– bind η = µ+ [η1,η2]
>;

• return w = η + (AΓ)>(AΓA>)−1(y −Aη) which can be realized by

– solve α such that (AΓA>)α = y −Aη;

– return w = η + (AΓ)>α.

The computational complexity of Algorithm 2 is given in Table 6 in Ap-
pendix 7 when the domain D is split into two subdomains (M = 2). Let
us recall that in this case, Algorithm 2 is an exact method for generating
hyperplane-truncated MVN distributions. However, for M > 2, the proposed
approach introduces a global block error, which is provided in Proposition 4.

Table 4 presents a summary of the computational complexity of both
the naive MUR Algorithm 1 and the proposed large-scale approach, namely
LS.KLE.MUR when the domain D is split into M arbitrary subdomains. The
parameter n represents the dimension of the set of constraints, while N rep-
resents the dimension of the prior Gaussian vector η. As can be observed, the
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Table 4: The computational complexity of Algorithms 1 and 2 when the
domain D is split into M arbitrary subdomains. The dimension of the set of
constraints is denoted by n, the dimension of the prior Gaussian vector η is
denoted by N , and the number of subdomains is denoted by M

Operation
Computational complexity

naive MUR Proposed approach
Summary O(N3) O(max(n3, (N/M)3))

proposed approach leads to a reduction in complexity, which is particularly
significant when n is small.

3.3 Application to nonparametric function estimation

In this section, we explore the application of the algorithm developed in this
paper to the GP regression problem [20]. The following regression problem
is considered:

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2), (15)

i = 1, . . . , n, where f represents an unknown latent function that generates
the data y = [y1, . . . , yn]> ∈ Rn. Each xi ∈ Rd is a design point of dimension
d, and εi is an additive independent and identically distributed (i.i.d.) zero-
mean Gaussian noise with a constant variance of σ2. A GP prior distribution
on the unknown function is assumed. Let (Y (x))x∈Rd be a zero-mean GP with
covariance function k, i.e., Y ∼ GP(0, C). Conditionally on the observations
y = [y1, . . . , yn]>, the conditional process remains a GP [20]

{Y (·) s.t. y} ∼ GP
(
µ̃(·), C̃(·, ·)

)
,

where µ̃ and C̃ are the conditional mean and covariance, respectively, given
as follows:

µ̃(x) = E [Y (x) s.t.y] = C(x,X)>
(
C(X,X) + σ2In

)−1
y; (16)

C̃(x,x′) = C(x,x′)− C(x,X)>(C(X,X) + σ2In)−1C(x′,X);

for any x,x′ ∈ Rd, with In the n×n identity matrix andX = [x1, . . . ,xn]> ∈
Rn×d the design matrix. Let us recall that C(X,X) is the covariance matrix
of Y (X) of dimension n×n, and C(x,X) = [C(x,x1), . . . , C(x,xn)]> is the
vector of covariance between Y (x) and Y (X) of dimension n.

Figure 9 depicts an application of the proposed approach to nonpara-
metric function estimation using GP regression. The finite-dimensional GP
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Figure 9: Nonparametric function estimation using GP regression. The black
stars represent the data. The proposed approach LS.KLE.MUR is utilized in
the left panel, while the naive MUR method is employed in the right panel.
The average running time (in seconds) of sampling 5,000 MCMC posterior
MVN over 25 replicates is displayed in the main part of each panel

approximation developed in [13] is employed. The simulation studies are
based on a dataset of size n = 50 generated from (15) and the true func-
tion f(x) = x cos(2x), with a true standard deviation noise of σ = 0.05.
The dataset is randomly split into training set of size 30 and testing set
of size 20. The black stars in Figure 9 represent ntr = 30 training data.
The input domain D is discretized into N = 1, 500 equally spaced points.
The Matérn covariance function with a smoothness parameter ν = 5/2 was
employed, along with a length-scale parameter θ chosen such that the corre-
lation at the maximum separation between covariates equals 0.2. The black
solid curve represents the true unknown function, while the black dashed
curve represents the posterior mean (16). The gray shaded area represents
the posterior 95% credible interval of f based on 5,000 MCMC simulations.
In the left panel, the proposed large-scale KLE and MUR approach, namely
LS.KLE.MUR is utilized, where the domain D is split into just M = 5 sub-
domains. In the right panel, the naive MUR method is employed, where the
sampling of the prior η (first step in Algorithm 1) is performed using the
standard KLE approach. The average running time (in seconds) of sampling
5,000 MCMC posterior MVN over 25 replicates is displayed in the main part
of each panel.

3.4 Real-world data applications

In this section, the proposed large-scale approach (LS.KLE.MUR) developed
in this paper has been evaluated through two real-world data studies. The
age-income dataset consisting of age (in years) and the logarithm of income

22



(log.income) for 205 Canadian workers from a 1971 Canadian Census Public
Use Tape. The aim is to estimate the logarithm of income as function of
age. This real-life data will be used to showcase the superior computational
running time of the proposed approach.
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Figure 10: Nonparametric function estimation is performed through GP re-
gression applied to the age-income dataset. The black stars represent the
training noisy data. The black dashed curve represents the posterior mean,
while the gray shaded area represents the 95% posterior coverage interval.
The proposed approach is utilized in the left panel, while the naive MUR is
employed in the right panel. The average running time (in seconds) over 25
replicates of sampling 5,000 MCMC posterior sample paths is displayed in
the main part of each panel

Figure 10 presents a computational comparison between the proposed
large-scale approach (LS.KLE.MUR) and the naive MUR for age-income real-
world data application. The input domain is discretized into N = 1, 500
equally spaced points. The dataset is randomly split into an 80% training
set and a 20% testing set. The black stars in Fig. 10 represent the 164 train-
ing data points. The black dashed curve represents the posterior mean (16),
while the gray shaded area represents the posterior 95% credible interval
based on 5,000 MCMC simulations. In the left panel, the proposed approach
(LS.KLE.MUR) is utilized, where the input domain is divided into M = 10
subdomains. Consequently, each subdomain is discretized into N1 = 150
equally spaced points. In the right panel, the naive MUR method is em-
ployed, where the sampling of the prior η (first step in Algorithm 1) is
performed using the standard KLE approach. In these cases, the average
running time (in seconds) over 25 replicates of sampling 5,000 MCMC pos-
terior sample paths is 1.8 seconds for the proposed approach, while it takes
5.1 seconds when using the naive MUR.

In Fig. 11, nonparametric function estimation is performed through GP
regression applied to fossil data, which consists of 164 observations on fossil
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Figure 11: Nonparametric function estimation is performed through GP re-
gression applied to fossil data. The panel description is the same as in Fig. 10

shells. The objective is to estimate the ratios of strontium isotopes as a
function of age in million of years. Similar to the age-income application, the
dataset is randomly divided into an 80% training dataset (represented by
black stars) and a 20% testing dataset. The input domain is discretized into
N = 1, 500 equally spaced points. The proposed LS.KLE.MUR approach
has been employed in the left panel, while the naive MUR is utilized in
the right panel. The average running time (in seconds) for 25 replicates of
sampling 5,000 MCMC posterior sample paths is of order 1.2 for the proposed
approach, whereas it takes 4.5 seconds for the naive MUR.

4 Conclusion

This paper presents a highly efficient approach to simulate a large multivari-
ate normal distribution truncated on the intersection of a set of hyperplanes.
This problem is closely related to nonparametric function estimation through
Gaussian process regression. The main idea is to combine both Karhunen-
Loève expansion and Matheron’s update rule. The proposed method is spe-
cific for cases where the prior multivariate normal variable is extracted from
a stationary Gaussian process. The simulation process involves two steps.
Firstly, we efficiently simulate from the unconstrained MVN distribution us-
ing a large-scale Karhunen-Loève expansion. We demonstrate that, due to
the stationary property, only the eigendecomposition of the first subdomain
is necessary. Secondly, we map the samples onto the intersection of a set
of hyperplanes using Matheron’s update rule. The proposed approach sig-
nificantly reduces computational complexity. Mean-square truncation and
global block errors have been calculated, and a comparison with competitor
approaches is included. The performance of the proposed approach has been
evaluated using both synthetic and real data studies.
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Appendix

5 Subdomains with different lengths

The methodology presented in Sect. 2.2 can also be extended to cases where
the domain is split into subdomains with different lengths. In such cases,
the eigendecomposition and the coupling matrix must be computed at each
subdomain. For example, suppose that the domain D = [0, 1] is divided into
two subdomains [0, S] ∪ [S, 1] as illustrated in Fig. 12 below, where S = 0.7.
The only modification in the methodology presented before is in computing
both the coupling matrix K and the lower triangle L. Let us denote these
two matrices respectively by K1,2 and L1,2 since they depend on the two
connected subdomains. The elements of K1,2 ∈ Rp×p are defined as

K1,2
i,j =

1√
λ
(1)
i λ

(2)
j

∫ S

x=0

∫ 1

t=S

C(|x− t|)φ(1)
i (x)φ

(2)
j (t)dxdt,

where {λ(1)i , φ
(1)
i }

p
i=1 and {λ(2)j , φ

(2)
j }

p
j=1 are the eigendecomposition of C on

[0, S] and (S, 1], respectively. The lower triangle matrix L1,2 is computed as
follows

Ip −
(
K1,2

)>
K1,2 = L1,2

(
L1,2

)>
.

As before, the second KLE conditional coefficients set is generated as follows:

ξ(2) =
(
K1,2

)>
ξ(1) +L1,2ζ(2),

where ξ(1) = ζ(1) ∈ Rp and ζ(2) ∈ Rp are two replicates following a standard
MVN distribution. Finally, the random process defined on the entire domain
D = [0, 1] is given by Y ⊥1 (x) =

∑p
i=1

√
λ
(1)
i ζ

(1)
i φ

(1)
i (x), if x ∈ [0, S]

Y p
2 (x) =

∑p
j=1

√
λ
(2)
j ξ

(2)
j φ

(2)
j (x), if x ∈ (S, 1].

The correlation between any two coefficients sets ξ(m) and ξ(m
′) for any

m′ > m is equal to

Km,m′
= Cov

(
ξ(m), ξ(m

′)
)

= Km,m+1 ×Km+1,m+2 × . . .×Km′−1,m′

=
m′−1∏
`=m

K`,`+1,
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Figure 12: GP sample paths when the domain is split in two (left panel) and
three (right panel) subdomains with different lengths

where K`,`+1 = Cov
(
ξ(`), ξ(`+1)

)
, for any ` ∈ {m, . . . ,m′ − 1}.

In Fig. 12, the domain D is split in two (resp. three) subdomains in the
left (resp. right) panel with different lengths. The solid curves (resp. dashed
curves) represent the paths before (resp. after) conditioning. The Matérn
covariance function with a smoothness parameter ν = 5/2 has been utilized,
where the length-scale parameter θ is fixed at 0.2.

6 Proofs of Propositions

This appendix contains the proofs of the propositions presented in the main
body of the manuscript.

Proof of Proposition 1. We have for any x, x′ ∈ D

C(x, x′) = E[Y (x)Y (x′)] =
+∞∑
i=1

+∞∑
j=1

√
γiγjϕi(x)ϕj(x

′)E[ξiξj]

=
+∞∑
i=1

+∞∑
j=1

√
γiγjϕi(x)ϕj(x

′)δij =
+∞∑
i=1

γiϕi(x)ϕi(x
′),

which concludes the proof of the proposition.

Proof of Proposition 2.

(i) From right to left: suppose that {ξ(m)
i } are independent and identically

distributed N (0, 1). The two processes Y and Ym are zero-mean Gaus-
sian. Firstly, from Proposition 1 and the stationary property of the

26



covariance function, we have for any t, t′ ∈ D(m)

C(t, t′) = Cov(Y (t), Y (t′)) = Cov (Y (t− (m− 1)S), Y (t′ − (m− 1)S))

= Cov(Y (x), Y (x′)) =
+∞∑
i=1

λiφi(x)φi(x
′),

where x = t− (m− 1)S and x′ = t′ − (m− 1)S are in D(1). Secondly,
we have for any t, t′ ∈ D(m)

Cov(Ym(t), Ym(t′)) =
+∞∑
i,j=1

√
λiλjφi(t− (m− 1)S)φj(t

′ − (m− 1)S)δij

=
+∞∑
i=1

λiφi(t− (m− 1)S)φi(t
′ − (m− 1)S)

=
+∞∑
i=1

λiφi(x)φi(x
′),

where x = t − (m − 1)S and x′ = t′ − (m − 1)S are in D(1). Now,
from left to right: suppose that Ym and Y have the same distribution
on D(m). This means that for any x, x′ ∈ D(m)

Cov (Ym(x), Ym(x′)) = Cov(Y (x), Y (x′)) = C(|x− x′|).

Therefore, for any i, j

Cov(ξ
(m)
i , ξ

(m)
j ) =

1√
λiλj

∫∫
D(1)

φi(t)φj(t
′)C(|t− t′|)dtdt′

=
λj√
λiλj

∫
D(1)

φi(t)φj(t)dt = δij,

which concludes the proof of the first item of the proposition.

(ii) Let us consider the simple case when m′ = m + 1. For example, let
m = 1 then m′ = 2. From right to left: on the one hand, we have for
any (s, t) ∈ D(1) ×D(2),

Cov(Y (s), Y (t)) = E[Y (s)Y (t)] = C(|s− t|).
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On the other hand, we have

E[Y1(s)Y2(t)] =
+∞∑
i,j=1

√
λiλjφi(s)φj(t− S)E[ξ

(1)
i ξ

(2)
j ]

=
+∞∑
i,j=1

φi(s)φj(t− S)

∫ S

x=0

∫ 2S

x′=S

φi(x)φj(x
′ − S)C(|x− x′|)dxdx′

=

∫ S

0

∫ 2S

S

+∞∑
i=1

φi(s)φi(x)
+∞∑
j=1

φj(t− S)φj(x
′ − S)C(|x− x′|)dxdx′

=

∫ S

0

∫ 2S

S

δ(s− x)δ(t− x′)C(|x− x′|)dxdx′ = C(|s− t|).

From left to right: we have

Cov
(
ξ
(1)
i , ξ

(2)
j

)
= Cov

(
1√
λi

∫ S

0

φi(x)Y1(x)dx,
1√
λj

∫ 2S

t=S

φj(t− S)Y2(t)dt

)

=
1√
λiλj

∫ S

x=0

∫ 2S

t=S

C(|x− t|)φi(x)φj(t− S)dxdt

=
1√
λiλj

∫ S

x=0

∫ S

x′=0

C (|x− x′ − S|)φi(x)φj (x′) dxdx′.

The general case can be proved in a similar way.

Proof of Proposition 3.

• From Equation (8), the correlation between ξ(m−1) and ξ(m) is imposed
in order to satisfy the correlation structure between the connected sub-
domains D(m−1) and D(m)

Km−1,m = Cov
(
ξ(m−1), ξ(m)

)
= K, ∀m ∈ {2, . . . ,M}. (17)

For example, when m = 3, we get

K2,3 = Cov
(
ξ(2), ξ(3)

)
= Cov

(
K>ζ(1) +Lζ(2),K>ξ(2) +Lζ(3)

)
= K>Cov

(
ζ(1), ξ(2)

)
K +LCov

(
ζ(2), ξ(2)

)
K

= K>KK +LL>K = (K>K +LL>)K = K.

The general case can be proved in a similar way. The second item of
Proposition 2 concludes the proof.
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• The second item is a simple consequence of Equations (8) and (17).
For example, when m = 1 and m′ = 3, we get

K1,3 = Cov
(
ξ(1), ξ(3)

)
= Cov

(
ξ(1),K>ξ(2) +Lζ(3)

)
= Cov

(
ξ(1), ξ(2)

)
K = K2.

In particular, for any m ∈ {2, . . . ,M}

Km,m = Cov
(
ξ(m)

)
= Cov

(
K>ξ(m−1) +Lζ(m)

)
= K>Cov(ξ(m−1))K +LCov(ζ(m))L>

= K>K +LL> = Ip,

and it is evident for m = 1. This concludes the proof of the second
item and thus of the proposition.

Proof of Proposition 4. For the mean-square truncation error (11), on the
one hand,

E

[∫
D(m)

Ym(x)2dx

]
= E

[∫
D(m)

+∞∑
i,j=1

√
λiλjφi(x− (m− 1)S)φj(x− (m− 1)S)ξ

(m)
i ξ

(m)
j

]

=
+∞∑
i,j=1

√
λiλjE[ξ

(m)
i ξ

(m)
j ]

∫
D(m)

φi(x− (m− 1)S)φj(x− (m− 1)S)dx

=
+∞∑
i,j=1

√
λiλjE[ξ

(m)
i ξ

(m)
j ]δi,j =

+∞∑
i=1

λi.

On the other hand,

E

[∫
D(m)

(Ym(x)− Y p
m(x))2dx

]
= E

∫
D(m)

(
+∞∑
i=p+1

√
λiφi(x− (m− 1)S)ξ

(m)
i

)2


=
+∞∑
i=p+1

√
λiλjE[ξ

(m)
i ξ

(m)
j ]δi,j =

+∞∑
i=p+1

λi.

Thus,

ε2T =

∑+∞
i=p+1 λi∑+∞
i=1 λi

=

∑+∞
i=1 λi −

∑p
i=1 λi∑+∞

i=1 λi
= 1−

∑p
i=1 λi∑+∞
i=1 λi

.
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For the mean-square global block error, the result is a simple consequence of
the fact that any Gaussian vector can be written as follows [14]Y (x1)

...
Y (xN)

 = SY × ε and

Y1:M(x1)
...

Y1:M(xN)

 = SY1:M × ε,

where ε is a N -dimensional standard Gaussian vector chosen the same for Y
and Y1:M to get a specific dependence structure. The two matrices SY and
SY1:M are the Cholesky factorization of the covariance of Y and Y1:M on the
grid G = {x1, . . . , xN} respectively.

The following Lemma is presented before proving Proposition 6.

Lemma 1. Let W1,W2 and W3 be three Gaussian random vectors such that
W2 is independent of W3 verifying:

W1
d
= f(W2) +W3,

where f is a measurable function of W2. Then

{W1 s.t. W2 = β} d
= f(β) +W3.

Proof of Lemma 1. The proof is given in [21].

Proof of Proposition 6. We have E[η s.t. Aη] = Ση,AηΣ−1Aη,AηAη. Let W3 =

η − Ση,AηΣ−1Aη,AηAη. The two vectors Aη and W3 are uncorrelated:

Cov(Aη,W3) = Cov(Aη,W3) = Cov(Aη,η − Ση,AηΣ−1Aη,AηAη)

= Cov(Aη,η)− Cov(Aη,ΓA>(AΓA>)−1Aη)

= AΓ−AΓA>(AΓA>)−1AΓ = AΓ−AΓ = 0n,N .

Thus, Aη and W3 are independent (since Gaussian). Applying Lemma 1, we
get

{η s.t. Aη = y} d
= f(y) +W3 = Ση,AηΣ−1Aη,Aηy + η − Ση,AηΣ−1Aη,AηAη

d
= η + Ση,AηΣ−1Aη,Aη(y −Aη)

d
= η + ΓA>(AΓA>)−1(y −Aη)

d
= η + (AΓ)>(AΓA>)−1(y −Aη)

where Ση,Aη = Cov(η,Aη) = Cov(η,η)A> = ΓA> = (AΓ)> and ΣAη,Aη =
Cov(Aη,Aη) = ACov(η,η)A> = AΓA>.
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Table 5: The computational complexity of Algorithm 1. The parameters n
and N are respectively the dimension of the set of constraints and of the
prior MVN η

Operation
Computational complexity

Non-diagonal Γ Diagonal Γ
η O(N3) O(N)

AΓA> O(nN2) O(n2N)
α O(max(nN, n3)) O(max(nN, n3))
w O(nN) O(nN)

Summary O(N3) O(n2N)

Table 6: The computational complexity of Algorithm 2 when the domain D
is split into two subdomains M = 2. The parameters n and N represent the
dimension of the set of constraints and the prior MVN η, respectively, while
p denotes the number of terms retained in the expansion

Operation Computational complexity

ζ(1), ζ(2) O(p)
{λi, φi} O((N/2)3)
K and L O(p(N/2)2) and O(p3)

ξ(2) O(p2)
w1 and w2 O(pN/2)
AΓA> O(nN2)
α O(max(nN, n3))
w O(nN)

Summary O(max(n3, (N/2)3))

7 Computational complexity of Algorithms 1

and 2
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