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Abstract Generating multivariate normal distributions is widely used in
many fields (such as engineering). In this paper, simulating large multivari-
ate normal distributions truncated on the intersection of a set of hyperplanes
is investigated. The proposed methodology focuses on Gaussian vectors ex-
tracted from a Gaussian process (GP) in one dimension. It is based on
combining both Karhunen-Loève expansions (KLE) and Matheron’s update
rules (MUR). The KLE requires the computation of the decomposition of
the covariance matrix of the random variables. This step becomes expen-
sive when the random vector is too large. To deal with this issue, the input
domain is split in smallest subdomains where the eigendecomposition can
be computed. By this strategy, the computational complexity is drastically
reduced. The mean-square truncation and block errors have been calculated.
Some numerical experiments are presented in order to study the efficiency of
the proposed approach.
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1 Introduction

In this paper, simulating large multivariate normal (MVN) distributions
truncated on the intersection of a set of hyperplanes is studied. This problem
is widely used in Bayesian regression and quite related to simulate conditional
Gaussian processes (GPs) [2, 5, 12, 18]. The standard approach is based
on simulating from the posterior distribution using the location-scale trans-
formation. One can compute a scaling matrix of the posterior covariance
matrix and sample from a standard MVN distribution [13]. Computing a
scaling matrix becomes expensive in higher dimensions. The computational
complexity scales cubically with the dimension of the MVN random variable
[8]. To handle with this, computing a polynomial or Lanczos approximation
of a scaling matrix of the covariance matrix is possible [1, 6]. By simulating
from the posterior distribution, we lost the information on the unconditional
(precision or prior) covariance matrix.

The proposed methodology is quite different, where we do not need to
compute the posterior covariance matrix and its decomposition. It is based
on combining Karhunen-Loève expansion (KLE) and Matheron’s update rule
(MUR). It is however specific to Gaussian vectors extracted from a GP in
dimension one.

In the first hand, the KLE can be seen as an efficient way to simulate
random fields, which it is based on computing the eigendecomposition of
the covariance operator [11]. In higher dimensions, the eigendecomposition
becomes numerically heavy. To address this issue, one can split the input
domain in smallest subdomains and conditioning the KLE coefficients in
order to satisfy the given correlation between subdomains, as proposed in
[3, 15].

In the other hand, the MUR which first appeared in geostatistics [10] and
then in astrophysics [9] can be summarized in two steps. First, we simulate
from the unconstrained MVN distribution. Second, we project into the in-
tersection of a set of hyperplanes. In [4], the MUR algorithm is generalized
to efficiently simulate random variables from a MVN distribution whose co-
variance (precision) matrix can be decomposed as a positive-definite matrix
minus (plus) a low-rank symmetric matrix. The idea is to simulate from a
block diagonal covariance matrix and use the MUR. Recently, the authors
in [19] use the MUR for simulating conditional Gaussian processes. This
method is called pathwise conditioning, which has been applied to global
optimization problems.

In the present paper, the main idea is to focus on the first step of the
MUR algorithm. The large scale KLE is developed for simulating the uncon-
strained MVN distribution. Then, we map into the intersection of a set of
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hyperplanes using the second step of the MUR. By this approach, one can
simulate efficiently a large hyperplane-truncated MVN distribution.

The article is structured as follows: In Section 2, the KLE is briefly re-
called. Additionally, the large scale KLE technique is presented with some
numerical illustrations. The truncation as well as the global block errors be-
tween the proposed approach and the original random field are computed.
Moreover, the extension to different lengths of subdomains is included. Sec-
tion 3 is devoted to sampling hyperplane-truncated MVN distributions. The
MUR and its extension to higher dimensions are presented. Numerical results
to study the performance of the proposed approach are included.

2 Karhunen-Loève expansion

In this section, the Karhunen-Loève expansion is briefly recalled. Without
loss of generality, we suppose that D is the interval [0, 1] in R.

2.1 Standard Karhunen-Loève expansion

Without loss of generality, let (Y (x))x∈D be a zero-mean stationary Gaussian
random fields, whose covariance function C(|x− x′|) is equal to

C(|x− x′|) = Cov(Y (x), Y (x′)) = E[Y (x)Y (x′)], ∀x, x′ ∈ D.

Table 1: Some popular stationary covariance functions with their degree of
smoothness used in the Machine Learning community [18].

Name Expression Class

Squared Exponential exp
(
− (x−x′)2

2θ2

)
C∞

Matérn ν = 5/2
(

1 +
√
5|x−x′|
θ

+ 5(x−x′)2
3θ2

)
exp

(
−
√
5|x−x′|
θ

)
C2

Matérn ν = 3/2
(

1 +
√
3|x−x′|
θ

)
exp

(
−
√
3|x−x′|
θ

)
C1

Exponential exp
(
− |x−x

′|
θ

)
C0
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Figure 1: Some covariance functions (left) and associated GP sample paths
(right). The correlation length θ is fixed to 0.3.

Table 1 shows some popular stationary covariance functions, ordered by
decreasing degree of smoothness. These kernels have been widely used in the
Machine Learning community [18]. In Figure 1, three covariance functions
have been illustrated with the associated random process sample paths.

The eigendecomposition of the covariance function on the domain D [11]
is: ∫

D
C(|x− x′|)ϕi(x)dx = γiϕi(x

′), ∀i, ∀x, x′ ∈ D. (1)

The deterministic functions ϕi(x) and the coefficients γi are respectively the
eigen-functions and eigen-values of the covariance function C(|x − x′|) on
the domain D. Equation (1) is well known in mathematics as the Fredholm
integral equation. The analytic solution of (1) is possible only for particular
covariance functions such as Brownian motion covariance function. Numeri-
cal solutions are often used in applications. Let us recall that the eigen-values
are real and non-negative since the covariance is symmetric and positive semi-
definite: ∫∫

D2

C(|x− x′|)f(x)f(x′)dxdx′ ≥ 0

for any f having finite L2 norm on D. Let us recall also that the eigen-
functions ϕi(x) form a complete orthonormal basis functions set [17]. This
means that ∫

D
ϕi(x)ϕj(x)dx = δij;

+∞∑
i=1

ϕi(x)ϕi(x
′) = δ(x− x′),

where δij represents the Kronecker delta (equal one if i = j and zero other-
wise) and δ(x) is the Dirac distribution function.
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The random field (Y (x)) can be written as:

Y (x) =
+∞∑
i=1

√
γiξiϕi(x), ∀x ∈ D (2)

where the KLE coefficients ξi are zero-mean uncorrelated Gaussian random
variables (independent) with unit variance. The KLE coefficients are de-
fined as the projection of the Gaussian random process onto the KLE eigen-
functions:

ξi =
1
√
γi

∫
D
ϕi(x)Y (x)dx, (3)

E[ξi] = 0 and E[ξiξj] = δij.

We have the following well-known result (see for instance [17]):

Proposition 1 (Covariance decomposition). If (Y (x)) is the random field
defined as in (2), then the associated covariance function can be expressed as
follows:

C(x, x′) = E[Y (x)Y (x′)] =
+∞∑
i=1

γiϕi(x)ϕi(x
′), ∀x, x′ ∈ D.

Proof. We have for any x, x′ ∈ D

C(x, x′) = E[Y (x)Y (x′)] =
+∞∑
i=1

+∞∑
j=1

√
γiγjϕi(x)ϕj(x

′)E[ξiξj]

=
+∞∑
i=1

+∞∑
j=1

√
γiγjϕi(x)ϕj(x

′)δij =
+∞∑
i=1

γiϕi(x)ϕi(x
′),

which concludes the proof of the proposition.

In practice, the process (Y (x))x∈D is approximated by the truncated sum
of p terms on the domain D as follows:

Y (x) ≈
p∑
i=1

√
γiξiϕi(x) = Y p(x), ∀x ∈ D.

This approximation with a finite number of terms is called truncated Karhunen-
Loève expansion. Let us recall that the mean-square truncation error ε2KL is
related to the sum of the eigen-values:

ε2KL =

∫
D

E
[
(Y (x)− Y p(x))2

]
dx∫

D
E[Y (x)2]dx

= 1−
∑p

i=1 γi∑+∞
i=1 γi

. (4)
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This mean-square truncation error decreases with the number of terms p
retained in the expansion.

When the Gaussian random field (Y (x)) is discretized into N equally
spaced points over D, the eigendecomposition leads to a N ×N eigen-value
problem. When the domain is huge and a fine discretization of the field is
used, the eigendecomposition problem becomes expensive to solve, having
O(N3) complexity. The idea in the following sections is to split the domain
D in smallest subdomains in order to reduce the complexity of the eigende-
composition problem. For instance, when the domain is split into two sub-
domains, the complexity becomes of order O((N/2)3). Instead of resolving
an eigendecomposition problem of order N , we only resolve an eigendecom-
position of order N/2. By the stationary property of the random field, we
show that the eigendecomposition of the first subdomain is only needed for
any number of subdomains.

2.2 Large scale Karhunen-Loève expansion

To the best of our knowledge, the methodology presented in this section
has first appeared in [3] and then in [15]. In this section, the random field
(Y (x))x∈D is assumed stationary. For simplicity, the domain D = [0,MS]
is split in M equal sized subdomains D(m) = ((m − 1)S,mS] for any block
parameter m ∈ {1, . . . ,M}. The extension to subdomains with different
lengths has been investigated in Section 2.3. The analytic expression of the
covariance function C(|x−x′|) of the field (Y (x)) is known for x, x′ ∈ D. For
any m ∈ {1, . . . ,M} and x ∈ D(m), let

Ym(x) :=
+∞∑
i=1

√
λiξ

(m)
i φi(x− (m− 1)S) (5)

be the standard KLE covering the mth subdomain D(m), where the deter-
ministic functions φi(x) and the coefficients λi are respectively the eigen-
functions and eigen-values of the covariance function C(|x− x′|) on the first

subdomain D(1) = [0, S], and where ξ
(m)
i are random coefficients following a

normal distribution (see Proposition 2 below).
Let us mention that the following notation will be used in the entire

paper:
(Ym ∪ Ym′) (x) = Ym(x)1D(m)(x) + Ym′(x)1D(m′)(x),

for any x ∈ D and m,m′ ∈ {1, . . . ,M}, where 1D(m)(x) is the indicator
function equal one if x ∈ D(m) and zero otherwise.
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Proposition 2 (Distribution on blocks). In the setting of the stationary
property of the covariance function C, we have the following results:

(i) For a given m ∈ {1, . . . ,M}, the process Ym defined in (5) and Y have
the same distribution on D(m) if and only if the elements of the sequence
{ξ(m)

i } are independent and identically distributed N (0, 1).

(ii) For any m′ > m, (Ym ∪ Ym′) and Y have the same distribution on

D(m)∪D(m′) if and only if the sequences {ξ(m)
i } and {ξ(m

′)
j } are normal

distributed N (0, 1) and the correlations between ξ
(m)
i and ξ

(m′)
j is

Cov
(
ξ
(m)
i , ξ

(m′)
j

)
=

1√
λiλj

∫ S

x=0

∫ S

x′=0

C (|x− x′ − (m′ −m)S|)φi(x)φj(x
′)dxdx′.

Proof.

(i) From right to left: suppose that {ξ(m)
i } are independent and identically

distributed N (0, 1). The two processes Y and Ym are zero-mean Gaus-
sian. In the first hand, from Proposition 1 and the stationary property
of the covariance function, we have for any t, t′ ∈ D(m)

C(t, t′) = Cov(Y (t), Y (t′)) = Cov (Y (t− (m− 1)S), Y (t′ − (m− 1)S))

= Cov(Y (x), Y (x′)) =
+∞∑
i=1

λiφi(x)φi(x
′),

where x = t− (m−1)S and x′ = t′− (m−1)S are in D(1). In the other
hand, we have for any t, t′ ∈ D(m)

Cov(Ym(t), Ym(t′)) =
+∞∑
i,j=1

√
λiλjφi(t− (m− 1)S)φj(t

′ − (m− 1)S)δij

=
+∞∑
i=1

λiφi(t− (m− 1)S)φi(t
′ − (m− 1)S)

=
+∞∑
i=1

λiφi(x)φi(x
′),

where x = t − (m − 1)S and x′ = t′ − (m − 1)S are in D(1). Now,
from left to right: suppose that Ym and Y have the same distribution
on D(m). This means that for any x, x′ ∈ D(m)

Cov (Ym(x), Ym(x′)) = Cov(Y (x), Y (x′)) = C(|x− x′|).
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Therefore, for any i, j

Cov(ξ
(m)
i , ξ

(m)
j ) =

1√
λiλj

∫∫
D(1)

φi(t)φj(t
′)C(|t− t′|)dtdt′

=
λj√
λiλj

∫
D(1)

φi(t)φj(t)dt = δij,

which concludes the proof of the first item of the proposition.

(ii) Let us consider the simple case when m′ = m + 1. For example, let
m = 1 then m′ = 2. From right to left: in the first hand, we have for
any (s, t) ∈ D(1) ×D(2),

Cov(Y (s), Y (t)) = E[Y (s)Y (t)] = C(|s− t|).

In the second one, we have

E[Y1(s)Y2(t)] =
+∞∑
i,j=1

√
λiλjφi(s)φj(t− S)E[ξ

(1)
i ξ

(2)
j ]

=
+∞∑
i,j=1

φi(s)φj(t− S)

∫ S

x=0

∫ 2S

x′=S

φi(x)φj(x
′ − S)C(|x− x′|)dxdx′

=

∫ S

0

∫ 2S

S

+∞∑
i=1

φi(s)φi(x)
+∞∑
j=1

φj(t− S)φj(x
′ − S)C(|x− x′|)dxdx′

=

∫ S

0

∫ 2S

S

δ(s− x)δ(t− x′)C(|x− x′|)dxdx′

= C(|s− t|).

From left to right: we have

Cov
(
ξ
(1)
i , ξ

(2)
j

)
= Cov

(
1√
λi

∫ S

0

φi(x)Y1(x)dx,
1√
λj

∫ 2S

t=S

φj(t− S)Y2(t)dt

)

=
1√
λiλj

∫ S

x=0

∫ 2S

t=S

C(|x− t|)φi(x)φj(t− S)dxdt

=
1√
λiλj

∫ S

x=0

∫ S

x′=0

C (|x− x′ − S|)φi(x)φj (x′) dxdx′.

The general case can be proved in a similar way.
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In practice, we assume that p terms have been retained in the expansion

Y p
m(x) :=

p∑
i=1

√
λiξ

(m)
i φi(x− (m− 1)S), ∀x ∈ D(m).

Let us consider the so-called coupling matrix which has been defined in [21]
and used in [3, 15]. The coupling matrix Km,m′

represents the correlation
between the KLE coefficients sets of any two subdomains D(m) and D(m′) for
m < m′. For any i, j = 1, . . . , p

Km,m′

i,j = Cov
(
ξ
(m)
i , ξ

(m′)
j

)
.

When m′ = m+1, we denote by K the coupling matrix of any two connected
subdomains. Let us recall that since the random field is assumed stationary
and an equal sized subdomains with a uniform subdivision is used, the cou-
pling matrix K is defined once between any two connected subdomains. In
fact, we have for any i, j = 1, . . . , p

Ki,j := Km,m+1
i,j

=
1√
λiλj

∫ S

x=0

∫ S

x′=0

C (|x− x′ − S|)φi(x)φj(x
′)dxdx′, (6)

for all m in {1, . . . ,M − 1}. The coupling matrix K can be seen as the
projection of C(|x− t|), for x ∈ [0, S] and t ∈ [S, 2S], onto the basis φi.

The main idea is to generate M independent samples, each covering the
corresponding subdomain, and then impose a correlation between the KLE
coefficients of the two connected samples. This means that the second item
of Proposition 2 will be used when m′ = m+ 1.

Let (Y ⊥m (x)) and (Y ⊥m+1(x)) are two independent sets covering respectively
the D(m) and D(m+1) subdomains, for any m ∈ {1, . . . ,M − 1}. Thus,

Y ⊥m (x) =

p∑
i=1

√
λiζ

(m)
i φi(x− (m− 1)S), with x ∈ ((m− 1)S,mS];

Y ⊥m+1(x) =

p∑
i=1

√
λiζ

(m+1)
i φi(x−mS), with x ∈ (mS, (m+ 1)S],

where the KLE coefficients ζ
(m)
i and ζ

(m+1)
i are two independent replicates

following a standard normal distribution N (0, 1). Since the two sets ζ(m) ={
ζ
(m)
i

}
i

and ζ(m+1) =
{
ζ
(m+1)
i

}
i

are independently generated, the two Gaus-

sian random fields are uncorrelated:

E
[
ζ
(m)
i ζ

(m+1)
j

]
= 0, ∀i, j ⇒ E

[
Y ⊥m (x)Y ⊥m+1(t)

]
= 0,
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for all x ∈ D(m) and t ∈ D(m+1).
Let us define the lower triangle matrix L of the Cholesky factorization as

follows:
Ip −K>K = LL>,

where Ip is the p× p identity matrix and K> is the transpose of K.

Proposition 3 (Construction of conditional coefficients). Under the station-
ary property of the random process Y , if the mth conditional coefficients set
ξ(m) is computed as follows:

ξ(m) = K>ξ(m−1) +Lζ(m), ∀m ∈ {2, . . . ,M}, (7)

where ξ(1) = ζ(1) and {ζ(m)} is an independent and identically distributed
sequence of standard Gaussian vectors, then

• the two processes Y and (Ym−1 ∪ Ym) have the same distribution on
D(m−1) ∪ D(m), for any m ∈ {2, . . . ,M}.

• For any m′ ≥ m Km,m′
= Cov

(
ξ(m), ξ(m

′)
)

= Km′−m,

Km,m = Cov
(
ξ(m)

)
= Ip,

(8)

where K0 is the identity matrix and K is the coupling matrix defined
in Equation (6).

Proof.

• From Equation (7), the correlation between ξ(m−1) and ξ(m) is imposed
in order to satisfy the correlation structure between the connected sub-
domains D(m−1) and D(m)

Km−1,m = Cov
(
ξ(m−1), ξ(m)

)
= K, ∀m ∈ {2, . . . ,M}. (9)

For example, when m = 3, we get

K2,3 = Cov
(
ξ(2), ξ(3)

)
= Cov

(
K>ζ(1) +Lζ(2),K>ξ(2) +Lζ(3)

)
= K>Cov

(
ζ(1), ξ(2)

)
K +LCov

(
ζ(2), ξ(2)

)
K

= K>KK +LL>K = (K>K +LL>)K = K.

The general case can be proved in a similar way. The second item of
Proposition 2 concludes the proof.
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• The second item is a simple consequence of Equations (7) and (9). For
example, when m = 1 and m′ = 3, we get

K1,3 = Cov
(
ξ(1), ξ(3)

)
= Cov

(
ξ(1),K>ξ(2) +Lζ(3)

)
= Cov

(
ξ(1), ξ(2)

)
K = K2.

In particular, for any m ∈ {2, . . . ,M}

Km,m = Cov
(
ξ(m)

)
= Cov

(
K>ξ(m−1) +Lζ(m)

)
= K>Cov(ξ(m−1))K +LCov(ζ(m))L>

= K>K +LL> = Ip,

and it is evident for m = 1. This concludes the proof of the second
item and thus of the proposition.

Corollary 1 (Correlation between blocks). For any (x, x′) ∈ D(m) ×D(m′)

Cov (Y p
m(x), Y p

m′(x
′)) =

p∑
i,j=1

√
λiλjφi(x−(m−1)S)φj(x

′−(m′−1)S)(Km′−m)ij.

(10)

Proof. The covariance between Ym(x) and Ym′(x′) is a simple consequence of
Equation (8).

By construction, at each subdomain (except the two first ones), the con-
ditional coefficients set is computed using the left-hand side previous con-
ditional coefficients set and the right-hand side non conditional coefficients
set. From (8), when m′ = m + 1, we get the coupling matrix K between
the connected subdomains. In fact, the matrix Km′−m is interpreted as the
coupling matrix between any two subdomains D(m) and D(m′). To be more
precise, the matrix Km′−m represents the correlation between any two con-
ditional coefficients sets ξ(m) and ξ(m

′). From Proposition 3, the elements of
ξ(m) are uncorrelated and then independent (since Gaussian). The elements

of ξ(m) are the conditional coefficients ξ
(m)
i which are used in order to sample

the random process defined on the entire domain D:{
Y ⊥1 (x) =

∑p
i=1

√
λiζ

(1)
i φi(x), if x ∈ D(1)

Y p
m(x) :=

∑p
i=1

√
λiξ

(m)
i φi(x− (m− 1)S), if x ∈ D(m)

where m ∈ {2, . . . ,M}. Let us recall that for any m ∈ {2, . . . ,M}, λi and
φi are respectively the eigen-values and eigen-functions of the correlation
function C on the first subdomain D(1) = [0, S].
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Remark 1. The methodology presented in this section can also be applied
to the family of stationary covariance functions with compact support. As
said in [18], ‘compact support means that the covariance between points be-
come exactly zero when their distance exceeds a certain threshold’. This is an
interesting class of covariance function since the covariance matrix will be-
come sparse by construction which lead to computational advantages. Let us
mention that some piecewise polynomial covariance functions with compact
support are given in [18] Section 4.2. In this paper, the triangular correlation
function will be used:

C(|h|) = max

(
1− |h|

θ
, 0

)
, ∀h ∈ D

where θ is the correlation length parameter. However, in the proposed ap-
proach case this class of covariance functions with compact support does not
resolve the problem of correlation error between the coefficients sets of un-
connected subdomains. This is because with the proposed approach, the corre-
lations between the conditioning coefficients sets of unconnected subdomains
Km,m′

for m′ > m+ 1 are not zero anymore.

Proposition 4 (Truncation and block errors). In the setting of Proposi-
tion 3, we have the following mean-square truncation and global block errors
respectively:

ε2T =

E

[∫
D(m)

(Ym(x)− Y p
m(x))2dx

]
E

[∫
D(m)

Ym(x)2dx

] = 1−
∑p

i=1 λi∑+∞
i=1 λi

; (11)

ε2B,M =

E

[∫
D

(Y (x)− Y1:M(x))2dG(x)

]
E

[∫
D
Y (x)2dG(x)

] =
Trace

(
(SY − SY1:M )(SY − SY1:M )>

)
Trace(SY S>Y )

,(12)

for any m ∈ {1, . . . ,M}, where Y1:M = ∪Mm=1Ym and SY and SY1:M are the
Cholesky matrices of the covariance functions of Y and Y1:M on the grid
G = {x1, . . . , xN} respectively and G is the cumulative distribution function
(CDF) of the Uniform discrete random variable on G.
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Proof. For the mean-square truncation error (11), in the first hand, we have

E

[∫
D(m)

Ym(x)2dx

]
= E

[∫
D(m)

+∞∑
i,j=1

√
λiλjφi(x− (m− 1)S)φj(x− (m− 1)S)ξ

(m)
i ξ

(m)
j

]

=
+∞∑
i,j=1

√
λiλjE[ξ

(m)
i ξ

(m)
j ]

∫
D(m)

φi(x− (m− 1)S)φj(x− (m− 1)S)dx

=
+∞∑
i,j=1

√
λiλjE[ξ

(m)
i ξ

(m)
j ]δi,j =

+∞∑
i=1

λi.

In the second hand,

E

[∫
D(m)

(Ym(x)− Y p
m(x))2dx

]
= E

∫
D(m)

(
+∞∑
i=p+1

√
λiφi(x− (m− 1)S)ξ

(m)
i

)2


=
+∞∑
i=p+1

√
λiλjE[ξ

(m)
i ξ

(m)
j ]δi,j =

+∞∑
i=p+1

λi.

Thus,

ε2T =

∑+∞
i=p+1 λi∑+∞
i=1 λi

=

∑+∞
i=1 λi −

∑p
i=1 λi∑+∞

i=1 λi
= 1−

∑p
i=1 λi∑+∞
i=1 λi

.

For the mean-square global block error, the result is a simple consequence of
the fact that any Gaussian vector can be written as follows [13]Y (x1)

...
Y (xN)

 = SY × ε and

Y1:M(x1)
...

Y1:M(xN)

 = SY1:M × ε,

where ε is a N -dimensional standard Gaussian vector chosen the same for Y
and Y1:M to get a specific dependence structure. The two matrices SY and
SY1:M are the Cholesky factorization of the covariance of Y and Y1:M on the
grid G = {x1, . . . , xN} respectively.

Generally speaking, in the numerical examples of this paper and without
loss of generality, the domain D is the interval [0, 1]. The Matérn covariance
function with regularity parameter ν = 5/2 (see Table 1) has been used [14],
where the correlation length θ is fixed at 0.2 (except when mentioned). In
that case, the mean-square truncation error (4) is equal to ε2KL = 9.7× 10−6

when p = 30 (terms retained in the expansion). Other covariance functions
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can be used such us Squared Exponential (SE), exponential covariance func-
tion (see Table 1).
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Figure 2: GP sample paths when the domain is split in two subdomains.
Solid lines (before) and dashed lines (after) conditioning. p = 5 terms are
retained in the expansion (left) versus p = 30 terms (right).

In Figure 2, the domain D = [0, 1] is decomposed into two subdomains
with equal size, i.e., M = 2 and S = 0.5. It is discretized into N = 100
uniformly spaced points. Thus, each subdomain is discretized into fifty uni-
formly spaced points. The black dashed lines represent the path of Y p

2 (x)
on (S, 2S] (i.e., the random process path after conditioning). The gray lines
represents the paths of Y ⊥1 (x) for any x ∈ [0, S] (i.e., random process before
conditioning). In the left panel, p = 5 terms are retained in the expansion
versus p = 30 terms in the right panel. Let us mention that in the second part
of the domain, the realizations are adjusted in order to follow the generation
in the first part of the domain (see Figure 3 for more details).
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Figure 3: True and simulated correlation functions between t = 0.5 (resp.
t = 0) and t ∈ D(2) left panel (resp. right panel) when the domain is split into
two subdomains. The simulated correlation is based on 1,000,000 replicates.

Figure 3 shows the true correlation function C(|h|) at a distance h ∈
[0, 0.5] (left solid line) and h ∈ [0.5, 1] (right solid line) together with the
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simulated correlation (dashed line) between Y p
2 (0.5) (resp. Y p

1 (0)) and Y p
2 (t)

for t ∈ D(2) left panel (resp. right panel) whenD is split into two subdomains.
The simulated correlation function has been computed using 1,000,000 repli-
cates. The left (resp. right) panel verifies the theoretical result obtain in
the first (resp. second) item of Proposition 2. Let us recall that the true
correlation function C is the Matérn covariance with regularity parameter
ν = 5/2. Furthermore, p = 30 terms have been retained in the expansion,
where the domain D is discretized into N = 100 equally spaced points. Thus,
each subdomain is discretized into fifty equally spaced points.
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Figure 4: GP sample paths when the domain is split in three subdomains.
Dashed (resp. solid) lines represent the paths after (resp. before) condition-
ing. One replicate (left) versus 5 replicates (right).

In Figure 4, the domain D = [0, 1] is decomposed into three subdomains
(M=3) with equal lengths. It is discretized into N = 150 uniformly spaced
points. So each subdomain is discretized into fifty uniformly spaced points.
As before, p = 30 terms are retained in the expansion which lead to a trun-
cation error of order ε2KL = 9.7× 10−6 . The solid lines (resp. dashed lines)
represent the paths of the Gaussian process before (resp. after) conditioning.
In the second and in the third subdomain, the realizations are adjusted in
order to follow the generation in the first subdomain (see Figure 5 for more
details).
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Figure 5: The correlation functions between t = 0 and t ∈ D(2) (resp. t ∈
D(3)) left (resp. right) panel. The simulated correlation is based on 1,000,000
replicates. The theoretical correlation is computed from Equation (10).

In Figure 5, the domain D is decomposed into three subdomains. It is
discretized into N = 150 equally spaced points. Thus, each subdomain is dis-
cretized into fifty equally spaced points. Furthermore, the number of terms
retained in the expansion is fixed at p = 30. The black solid line represents
the true correlation C(|h|) for h ∈ D(2) (left panel) and h ∈ D(3) (right
panel). Let us recall that the true correlation function is the Matérn covari-
ance with regularity parameter ν = 5/2, where the length parameter is fixed
at θ = 0.2. The black dashed line represents the simulated correlation using
1,000,000 replicates. The red dash-dotted line in the right panel represents
the theoretical correlation between Y p

1 (0) and Y p
3 (t) for t ∈ D(3) using Equa-

tion (10) in Proposition 3. As expected, the simulated correlation between
the first two subdomains coincides with the true one contrarily to the case
between the first and the last subdomain. This is because by construction,
the correlation between the first coefficients set ξ(1) and the third one ξ(3) is
estimated by the coupling matrix square, i.e., Cov(ξ(1), ξ(3)) = K2 accord-
ing to the second item of Proposition 3. For the clarity of the left panel,
the theoretical correlation between Y p

1 (0) and Y p
2 (t) for t ∈ D(2) has been

omitted.
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Figure 6: The true correlation function together with the theoretical one
obtained from Equation (10) using the proposed approach on D.

In the same setting of Figure 5, the black solid line in Figure 6 represents
the true correlation function C on D. However, the red dashed line represents
the correlation function using the proposed approach and Equation (10).
One can remark that the two correlation functions are very close with a
root-mean-square error (RMSE) equal to 1.02× 10−4.
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Figure 7: The correlation functions between t = 0 and t ∈ D(3) with (resp.
without) truncation in the left (resp. right) panel. The length parameter is
fixed at θ = 0.1. The theoretical correlation is obtained from Equation (10).

In Figure 7, the domain D is decomposed into three subdomains. It is
discretized into N = 150 equally spaced points. Thus, each subdomain is
discretized into fifty equally spaced points. The black solid line represents
the true correlation function C(|h|) for h ∈ D(3). However, the red dash-
dotted line represents the theoretical correlation between Y p

1 (0) and Y p
3 (t)

for t ∈ D(3) obtained from Equation (10) in Proposition 3. In the left panel,
p = 30 terms have been retained in the expansion (i.e., truncated expansion).
However, in the right panel, all terms p = 50 have been retained in the
expansion (i.e., expansion without truncation). When the proposed approach
is used without truncation, the correlation between unconnected subdomains
follows the true correlation function C. Let us recall that the true correlation
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function is the Matérn covariance with regularity parameter ν = 5/2 and
length parameter θ fixed at 0.1.

Table 2: Root-mean-square error on D between the true correlation function
and the approximated one using the proposed approach.

θ = 0.1 θ = 0.5 θ = 1
Triangular 3.02× 10−16 8.26× 10−2 7.56× 10−2

Matérn ν = 5/2 5.96× 10−13 4.64× 10−9 1.65× 10−8

Matérn ν = 3/2 3.47× 10−16 4.17× 10−13 5.02× 10−12

Exponential 7.86× 10−16 8.54× 10−16 1.75× 10−15

Table 2 shows the RMSE on D between the true correlation function
C and the approximated correlation function obtained from the proposed
approach. The domain D is decomposed into four subdomains and it is
discretized into N = 200 equally spaced points. Thus, each subdomain is
discretized into fifty equally spaced points. Furthermore, the proposed ap-
proach without truncation has been used, this means that p = 50. The
RMSE decreases when the length parameter θ decreases as well as when the
degree of smoothness ν of the Matérn family of correlation functions de-
creases. Let us mention that the Markovian Exponential covariance function
(see [18], Section 4.5 page 102) provides negligible errors compared to other
covariance kernels for different values of θ as well as for different number of
subdomains M . In this numerical example, the triangular covariance func-
tion represents the class of kernels with a compact support (see Remark 1).
When θ = 1, we get C(|h|) = 1− |h| > 0 for any h ∈ [0, 1[.

Table 3: Root-mean-square global block error (12) on D between the original
random process Y and the approximated one Y1:M with M = 4.

θ = 0.1 θ = 0.5 θ = 1
Triangular 1.27× 10−2 2.29× 10−1 9.0× 10−2

Matérn ν = 5/2 3.63× 10−19 5.84× 10−12 9.68× 10−10

Matérn ν = 3/2 3.24× 10−24 2.56× 10−19 1.31× 10−17

Exponential 3.17× 10−28 7.22× 10−27 3.23× 10−26

Under the same setting of Table 2, Table 3 shows the mean-square global
block error (12) on D between the original random process Y and the pro-
posed one Y1:M with M = 4. As for the RMSE of the correlation function,
the global block error decreases when the length parameter decreases as well
as when the degree of smoothness ν of the Matérn family of correlation
functions decreases. Again, the Markovian Exponential covariance function
provides negligible errors for different values of θ and for different number of
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subdomains M . Let us mention that the domain D is decomposed into four
subdomains (i.e. M = 4). The global block error decreases also when the
number of subdomains decreases. For instance, with only two subdomains
(M = 2), this error ε2B,M is of order 5.24 × 10−23 in the case of Matérn co-
variance function with regularity parameter ν = 5/2 and length parameter
θ = 0.1. In the same setting, when M = 10, we get ε2B,M = 2.89× 10−14.

2.3 Subdomains with different lengths

The methodology presented in Section 2.2 can also be extended to the case
when the domain is split in subdomains with different lengths. In that case,
the eigendecomposition and the coupling matrix should be computed at each
subdomain. For example, suppose that the domain D = [0, 1] is split in
two subdomains [0, S] ∪ [S, 1] as shown in Figure 8 below, where S = 0.7.
The only modification in the methodology presented before is in computing
both the coupling matrix K and the lower triangle L. Let us denote these
two matrices respectively by K1,2 and L1,2 since they depend on the two
connected subdomains. The elements of K1,2 ∈ Rp×p are defined as

K1,2
i,j =

1√
λ
(1)
i λ

(2)
j

∫ S

x=0

∫ 1

t=S

C(|x− t|)φ(1)
i (x)φ

(2)
j (t)dxdt,

where {λ(1)i , φ
(1)
i }

p
i=1 and {λ(2)j , φ

(2)
j }

p
j=1 are the eigendecomposition of C on

[0, S] and (S, 1] respectively. The lower triangle matrix L1,2 is computed as
follows

Ip −
(
K1,2

)>
K1,2 = L1,2

(
L1,2

)>
.

As before, the second KLE conditional coefficients set is generated as:

ξ(2) =
(
K1,2

)>
ξ(1) +L1,2ζ(2),

where ξ(1) = ζ(1) ∈ Rp and ζ(2) ∈ Rp are two replicates following a standard
MVN distribution. Finally, the random process defined on the entire domain
D = [0, 1] is given by Y ⊥1 (x) =

∑p
i=1

√
λ
(1)
i ζ

(1)
i φ

(1)
i (x), if x ∈ [0, S]

Y p
2 (x) :=

∑p
j=1

√
λ
(2)
j ξ

(2)
j φ

(2)
j (x), if x ∈ (S, 1].

The correlation between any two coefficients sets ξ(m) and ξ(m
′) for any
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m′ > m is equal to

Km,m′
= Cov

(
ξ(m), ξ(m

′)
)

= Km,m+1 ×Km+1,m+2 × . . .×Km′−1,m′

=
m′−1∏
`=m

K`,`+1,

where K`,`+1 = Cov
(
ξ(`), ξ(`+1)

)
, for any ` ∈ {m, . . . ,m′ − 1}.
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Figure 8: GP sample paths when the domain is split in two (left panel) and
three (right panel) subdomains with different lengths.

In Figure 8, the domain D is split in two (resp. three) subdomains in the
left (resp. right) panel with different lengths. The solid lines (resp. dashed
lines) represent the paths before (resp. after) conditioning. The Matérn co-
variance function with regularity parameter ν = 5/2 has been used where
the length parameter θ is fixed at 0.2.

In the next section, the problem of sampling hyperplane-truncated MVN
distributions is considered and the MUR with the results obtained in Sec-
tion 2 is used to simulate from the posterior distribution without computing
the posterior covariance matrix and its decomposition.

3 Hyperplane-truncated MVN distributions

3.1 Sampling in low dimensions

We consider the problem of simulating a N -dimensional MVN vector η ∼
N (µ,Γ) truncated on the intersection of a set of n < N hyperplanes, denoted

η ∼ NT (µ,Γ), T = {x ∈ RN |Ax = y},

20



where A ∈ Rn×N , y ∈ Rn and rank(A) = n.
The well-known result for computing the posterior distribution of con-

ditional Gaussian vectors with linear equality constraints is recalled in the
following proposition.

Proposition 5 (Posterior distribution). The conditional distribution of η ∼
N (µ,Γ) given Aη = y follows a multidimensional normal distribution

{η|Aη = y} ∼ N (µc,C), where{
µc = µ+ (AΓ)>(AΓA>)−1(y −Aµ);
C = Γ− (AΓ)>(AΓA>)−1AΓ,

are the conditional mean and covariance matrix respectively.

Proof. See for instance [13].

The standard (or direct) approach that simulate N (µc,C) consists of
computing a scaling matrix of the posterior covariance matrix C denoted
here S ∈ RN×k, for any k ∈ N∗ verifying SS> = C and using

X = µc + Sε,

where ε ∼ N (0N , IN) is a N -dimensional standard Gaussian vector. To com-
pute a scaling matrix S, one can use Cholesky factorization [16] or eigen-
decomposition. In general, the computational complexity of computing a
scaling matrix is of order O(N3) [8].

Hereafter we show how simulating hyperplane-truncated MVN distribu-
tions is possible without computing the covariance matrix of the posterior
distribution and its decomposition. This allows to sample hyperplane trun-
cated MVN distributions when the dimension N of the prior Gaussian vector
η is high.

3.2 Sampling in high-dimensions

The term ‘high-dimension’ refers to the case when the dimension N of the
prior Gaussian vector η is too high. We have seen that due to complexity
O(N3), the use of direct approaches was difficult when N is large. Thus, we
propose here an original method to cope with this problem.

Let us recall first the classical Matheron update rule [10].

Proposition 6 (MUR distribution). Let η be a N-dimensional MVN random
vector with mean µ and covariance matrix Γ. Suppose that A ∈ Rn×N is a
given matrix of rank n and y ∈ Rn is an output vector. Then

{η|Aη = y} d
= η + (AΓ)>(AΓA>)−1(y −Aη). (13)
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The proof of Proposition 6 is given in the Appendix. As mentioned in
[19], a key difference with the standard approach (Proposition 5) is that we
now sample before conditioning, rather than after. This remark is the key
of the idea presented in this paper in order to update the MUR in higher
dimensions. Equation (13) can be seen as a deterministic transformation of
the Gaussian vector η.

Algorithm 1: Sampling scheme by MUR of η ∼ NT (µ,Γ), where T =
{x ∈ RN |Ax = y}.

• sample w ∼ N (µ,Γ);

• return η = w + (AΓ)>(AΓA>)−1(y −Aw) which can be realized by

– solve α such that (AΓA>)α = y −Aw;

– return η = w + (AΓ)>α.

The computational complexity of Algorithm 1 is given in the Appendix
(Table 5) for diagonal and non-diagonal covariance (precision) matrix Γ.

Corollary 2. Suppose η is simulated with Algorithm 1, then it is distributed
as η ∼ NT (µ,Γ), where T = {x ∈ RN |Ax = y}, A ∈ Rn×N , y ∈ Rn, and
rank(A) = n < N .

Proof. The proof is a simple consequence of Proposition 6.

From Algorithm 1 and Proposition 2, simulating an hyperplane-truncated
MVN distribution using MUR is made by two steps: first, we draw w from
unconstrained MVN as w ∼ N (µ,Γ) and second, we map it to η on the
intersection of a set of hyperplanes by

η = w + (AΓ)>(AΓA>)−1(y −Aw).

By the Matheron’s update rule, we sample from the unconstrained MVN
which is an advantage. For example, when the unconstrained covariance (pre-
cision) matrix Γ is diagonal (see the motivating Example 1 below). Moreover,
if Γ is generated from stationary covariance function, we preserve the sta-
tionary property in sampling unlike the direct approach based on sampling
from the posterior distribution where the posterior covariance is not station-
ary anymore. This advantage has been used in the block splitting approach
developed in Section 2.2, where the coupling matrix has been computed ones
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from any arbitrary sized subdivision. Furthermore, only the eigendecomposi-
tion of the first subdomain is used. In this paper, we thus propose to combine
both the KLE update (block splitting approach developed in Section 2.2) and
the MUR. By this new approach, the computational complexity of sampling
an hyperplane-truncated MVN distribution when N is large is drastically re-
duced. Let us mention that when the domain is split into two subdomains,
the proposed approach become exact. However, in the case when the domain
is split into more than two subdomains (M > 2), we get an error due to the
approximation (see Proposition 4 in Section 2.2).

Algorithm 2 shows the different steps to simulate an hyperplane-truncated
MVN distribution using the proposed approach when the domain is split in
only two subdomains (i.e., M = 2). Let us recall that this algorithm is
specific to the case where η is a Gaussian vector extracted from a stationary
GP.

Algorithm 2: Sampling scheme of η ∼ NT (µ,Γ), where T = {x ∈
RN |Ax = y} when the domain is split in two subdomains (i.e., M = 2).

Initialization: A,Γ,y,µ, p and N .

• Generating w ∼ N (µ,Γ):

– sample ζ(1), ζ(2) ∼ N (0p, Ip);

– compute matrices K and L;

– compute ξ(2) = K>ζ(1) +Lζ(2);

– compute w1 =
∑p

i=1

√
λiφiζ

(1)
i and w2 =

∑p
i=1

√
λiφiξ

(2)
i ;

– assemble w = µ+ [w1, w2]
>;

• return η = w + (AΓ)>(AΓA>)−1(y −Aw) which can be realized by

– solve α such that (AΓA>)α = y −Aw;

– return η = w + (AΓ)>α.

The computational complexity of Algorithm 2 when the domain D is split
into two subdoamins (M = 2) is given in the Appendix (Table 6). Let us
recall that in that case, Algorithm 2 provided an exact method for gener-
ating hyperplane-truncated MVN distributions. However, when M > 2 the
proposed approach induces a global bock error which is given in Proposition 4.
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Figure 9: The black dots represent the observations. Left : GP sample paths
prior where the domain is split in three subdomains. Solid lines (before) and
dashed-line (after) conditioning. Right : the posterior paths (gray solid lines)
obtained as in Equation (13). Each path is a deterministic transformation of
the (random) dashed-line on the left panel.

Figure 9 illustrates the sampling procedure using the proposed approach.
The black dots represent the observations. Left panel: one sample path of
the Gaussian prior together with the observations. As in the left panel of
Figure 4, the domain D is split into three subdomains. The solid (resp.
dashed) lines represent the prior before (resp. after) conditioning using the
block splitting approach developed in Section 2.2. Right panel: the posterior
sample paths (gray lines) are obtained using the MUR as in Equation (13).

Operation
Computational complexity

naive MUR Proposed approach
Summary O(N3) O(max(n3, (N/M)3))

Table 4: The computational complexity of Algorithm 1 and Algorithm 2
when the domain D is split into M arbitrary subdomains. n is the dimension
of the set of constraints, N is the dimension of the prior Gaussian vector η
and M is the number of subdomains.

Table 4 summarizes the computational complexity of the naive MUR
Algorithm 1 and the proposed approach Algorithm 2 when the domain D is
split into M arbitrary subdomains. One can see that the proposed approach
reduces the complexity. If M ≥ 3, the reduced of complexity is related to an
error due to the approximation (see Proposition 4 in Section 2.2).

3.3 Numerical illustrations

The aim of this section is to study the performance of the proposed approach.
The following example is a favorable case for simulating an hyperplane-
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truncated MVN distribution by the MUR instead of the direct approach
based on the posterior distribution as in Proposition 5.

Example 1 (Motivating example). Suppose that we need to simulate from
the following hyperplane-truncated MVN distribution:

η ∼ NT (µ, IN), T = {x ∈ RN : 1>x = 1},

where µ ∈ RN , 1>x =
∑N

j=1 xj and IN is the (N ×N) identity matrix. The
sampling scheme can be realized by the following two steps:

• sample w ∼ N (µ, IN);

• return η = w + (1− 1>w)1.

The two steps follow Algorithm 1 and Proposition 6, where Γ = IN , A =
1 ∈ RN and y = 1. In that case, the MUR is an efficient way to simulate
from the hyperplane-truncated MVN distribution. This is because we sample
from the standard normal distribution instead of computing the covariance
matrix of the posterior distribution and its decomposition.

Example 2 (Computational illustrations). Hereafter, the elements of µ, A
and y are sampled from N (0, 1). The unconditional covariance (precision)
matrix Γ is generated using the Matérn ν = 5/2 covariance function with
correlation length θ = 0.2. In that case, the covariance matrix Γ has no
special structure (dense matrix) and the Cholesky factorization has complexity
of order O(N3).
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Figure 10: Average time of simulating 5,000 hyperplane-truncated MVN sam-
ples over twenty random trials, when the number of the data dimension N
increases and the constraints dimension is fixed at n = 20.

The computation time of generating 5,000 hyperplane-truncated MVN dis-
tributions averaged over twenty random trials is shown in Figure 10. The
constraints dimension is fixed at n = 20 and the data dimension N increases.
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Left panel: the Cholesky factorization and the Matheron’s update rule have
been compared to the proposed approach when the domain is split in just two
subdomains. The later has a clear advantage over both the Cholesky factor-
ization and MUR. Right panel: the black solid line represents the average
time in second of simulating 5,000 hyperplane-truncated MVN distributions
using the proposed approach when the input domain is split into three sub-
domains. The black dashed (resp. dotted) line represents the average time
in second using the proposed approach with four subdomains (resp. five sub-
domains). The computational times decreases as function of the number of
subdomains. Let us finally recall that p = 30 terms have been retained in the
expansion. The proposed approach can be faster when p is less than 30. This
is related to the truncation error (see Proposition 4).
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Figure 11: Average time of simulating 5,000 hyperplane-truncated MVN sam-
ples over twenty random trials, when the number of data dimension N in-
creases and the dimension of the set of constraints is fixed at n = 20.

In Figure 11, the dimension of the set of constraints is fixed at n = 20
and the data dimension N increases from 2,000 to 10,500. In that case,
the naive MUR and Cholesky decomposition become numerically heavy. This
is because we just illustrate the average time in second of simulating 5,000
hyperplane-truncated MVN samples over twenty random trials using the pro-
posed approach when the domain is split in thirty subdomains (black solid
line) and fifty subdomains (black dashed line). By the proposed approach,
one can generate 5,000 Gaussian vectors of size 10,500 conditionally to an
hyperplane of dimension n = 20 in around five seconds. Let us mention
that we do not need a high decomposition of D to get a good performance in
terms of computational time. Indeed, when the domain is decomposed into
fifty subdomains the computational time is too close to the case when it is
decomposed into thirty subdomains.
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Conclusion

In this paper, a new efficient approach to simulate large multivariate normal
distribution truncated on the intersection of a set of hyperplanes is presented.
The main idea is to combine both Karhunen-Loève expansion and Matheron’s
update rule. The proposed method is specific to the case where the Gaus-
sian vector is extracted from a stationary GP. Firstly, we simulate efficiency
from the unconstrained MVN distribution using the cross-correlated splitting
subdomains. By the stationary property, only the eigendecomposition of the
first subdomain is needed. Secondly, we map on the intersection of a set of
hyperplanes using the Matheron’s update rule. By the proposed approach,
the computational complexity is drastically reduced. The mean-square trun-
cation and global block errors have been calculated. The performance of the
proposed approach has been studied through numerical examples.

Appendix

Before showing the proof of Proposition 6, let us give the following lemma.

Lemma 1. Let W1,W2 and W3 be three Gaussian random vectors such that
W2 is independent of W3 verifying:

W1
d
= f(W2) +W3,

where f is a measurable function of W2. Then

{W1|W2 = β} d
= f(β) +W3.

Proof of Lemma 1. The proof is given in [19].

Proof of Proposition 6. We have E[η|Aη] = Ση,AηΣ
−1
Aη,AηAη. Let W3 = η −

Ση,AηΣ
−1
Aη,AηAη. The two vectors Aη and W3 are uncorrelated:

Cov(Aη,W3) = Cov(Aη,W3) = Cov(Aη, η − Ση,AηΣ
−1
Aη,AηAη)

= Cov(Aη, η)− Cov(Aη,ΓA>(AΓA>)−1Aη)

= AΓ−AΓA>(AΓA>)−1AΓ

= AΓ−AΓ = 0n,N .

Thus, Aη and W3 are independent (since Gaussian). Applying Lemma 1, we
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get

{η|Aη = y} d
= f(y) +W3 = Ση,AηΣ

−1
Aη,Aηy + η − Ση,AηΣ

−1
Aη,AηAη

d
= η + Ση,AηΣ

−1
Aη,Aη(y −Aη)

d
= η + ΓA>(AΓA>)−1(y −Aη)
d
= η + (AΓ)>(AΓA>)−1(y −Aη)

where Ση,Aη = Cov(η,Aη) = Cov(η, η)A> = ΓA> = (AΓ)> and ΣAη,Aη =
Cov(Aη,Aη) = ACov(η, η)A> = AΓA>.

Operation
Computational complexity

Non-diagonal Γ Diagonal Γ
w O(N3) O(N)

AΓA> O(nN2) O(n2N)
α O(max(nN, n3)) O(max(nN, n3))
η O(nN) O(nN)

Summary O(N3) O(n2N)

Table 5: The computational complexity of Algorithm 1. The parameter n
and N represent respectively the dimension of the set of constraints and of
the prior Gaussian vector η.

Operation Computational complexity

ζ(1), ζ(2) O(p)
{λi, φi} O((N/2)3)
K and L O(p(N/2)2) and O(p3)

ξ(2) O(p2)
w1 and w2 O(pN/2)
AΓA> O(nN2)
α O(max(nN, n3))
η O(nN)

Summary O(max(n3, (N/2)3))

Table 6: The computational complexity of Algorithm 2 when the domain
D is split in two subdomains M = 2. The parameters n and N represent
respectively the dimension of the set of constraints and of the prior Gaussian
vector η.
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