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Abstract

We review different techniques to enforce essential boundary conditions, such as the
(nonhomogeneous) Dirichlet boundary condition, within a discrete variational frame-
work, and especially techniques that allow to account for them in a weak sense. Those
are of special interest for discretizations such as geometrically unfitted finite elements or
high order methods, for instance. Some of them remain primal, and add extra terms in
the discrete weak form without adding a new unknown: this is the case of the boundary
penalty and Nitsche techniques. Others are mixed, and involve a Lagrange multiplier
with or without stabilization terms. For a simple setting, we detail the different as-
sociated formulations, and recall what is known about their stability and convergence
properties.

Keywords: essential boundary conditions, Dirichlet boundary condition, finite ele-
ments, penalty, Nitsche, mixed finite elements, stabilized finite elements.

AMS Subject Classification: 65N12, 65N15, 65N30.

1 Introduction
Among the first papers that contributed to the mathematical theory of the finite ele-
ment method, some already proposed various techniques to handle essential boundary
conditions, such as the (nonhomogeneous) Dirichlet boundary conditions. Early contri-
butions have been made by I. Babuška in 1972 and 1973 with two seminal papers about
Lagrange multipliers [14] and penalty [15] formulations. In the same period, in 1971,
J.A. Nitsche published an alternative boundary penalty technique [118], consistent and
with no additional unknown.

These pioneering works were followed by studies that allowed to refine the first anal-
ysis, to extend these techniques to more complex problems, and to invent alternatives,
as well. The first motivation for some improvements in the approximation of essential
boundary conditions concerns discrete variational techniques for which the degrees of
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freedom on the boundary are not nodal values, and in which it is not direct to ap-
proximate a Dirichlet condition. This is notably the case for unfitted finite elements or
geometrically nonconforming finite elements, where the mesh boundary and the domain
boundary do not match, as it occurs in fictitious domain methods, the extended finite
element method or the cut finite element method: see, e.g., [47, 91, 98, 116, 119]. It is
also the case for IsoGeometric Analysis (IGA) [67] where degrees of freedom are control
poins of B-spline functions, and are not nodes on the boundary [25]. A similar situation
occurs in domain decomposition techniques with non-matching meshes, where the mortar
method [30, 33, 34, 133] or Nitsche’s method [28, 87, 104] have revealed their usefulness.
Another motivation has been the design of more and more sophisticated numerical meth-
ods to solve efficiently problems involving more complex essential boundary or interface
conditions, such as fluid-structure interaction [13, 84, 89], contact and friction [58, 134]
or even fluid-structure-contact now [10, 48, 72, 85, 114].

A survey on the topic has been published by R. Stenberg in 1995 [129], that presented
some mixed, stabilized and Nitsche’s formulations. Notably this survey presented in a
simplified form the stabilization technique of H. Barbosa and T.J.R. Hughes [17, 18],
and it revealed a fundamental relationship between Barbosa & Hughes stabilization and
Nitsche’s original symmetric formulation (see also [104] for domain decomposition). The
aim of the present survey is to complete and update this previous one with new techniques
that emerged since then, as for instance variants of Nitsche’s method or new stabilized
formulations. Moreover we include a short description of two common techniques: the
discrete lifting and boundary penalty formulations.

This paper is outlined as follows. In Section 2 we introduce Poisson’s problem with
a nonhomogeneous Dirichlet boundary condition as a model problem representing an
elliptic partial differential equation with an essential boundary condition. In Section 3
we describe primal methods for which the only unknown is the solution to Poisson’s
problem, and no extra unknown is introduced. In Section 4 we present methods coming
from a duality argument and introducing a Lagrange multiplier that represents the flux
on the boundary. We conclude in Section 5.

Let us introduce some useful notations. For D an open set in Rd, we denote by
Hs(D), s ∈ R, the Sobolev space of real-valued function on D (see, e.g., [2]). The
standard scalar product (resp. norm) of Hs(D) is denoted by (·, ·)s,D (resp. ∥ · ∥s,D).
When s = 0 we drop the index s and note (·, ·)D (resp. ∥ · ∥D) the scalar product (resp.
norm) in L2(D). The notations C > 0, c > 0 and β > 0 stand for arbitrary constants
(the value of which may vary from one place to another) independent of the mesh size.

2 Setting

Let Ω be an open and bounded polytope of Rd (d ≥ 1), of Lipschitz boundary Γ := ∂Ω.
The notation n stands for the unit outer normal to Γ. For a smooth enough function
v : Ω → R, ∂nv := ∇v · n stands for its normal derivative on Γ.

2.1 Poisson’s problem

As a model problem, we focus on Poisson’s problem with (nonhomogeneous) Dirichlet
boundary condition:

Find u : Ω → R solution to{
−∆u = f in Ω, (i)

u = g on Γ, (ii)
(1)
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with given source term f ∈ L2(Ω) and boundary datum g ∈ H
1
2 (Γ). The equivalent

weak form is:

Find u ∈ H1(Ω) with u|Γ = g and

a(u, v) = (f, v)Ω for all v ∈ H1
0 (Ω), (2)

where u|Γ is the trace of u on the boundary Γ, H1
0 (Ω) is the subspace of functions in

H1(Ω) with vanishing trace on Γ, and with the notation

a(v, w) := (∇v,∇w)Ω

for v, w ∈ H1(Ω). Problem (2) admits one unique solution u in H1(Ω) (see [124, Section
4.4] or [83, Proposition 31.12]) that is also the minimum on H1(Ω) of the quadratic
convex functional

J : H1(Ω) ∋ v 7→ 1

2
a(v, v)− (f, v)Ω ∈ R

under the equality constraint vΓ = g. Moreover, with Lg ∈ H1(Ω) a lifting of g [115],
Problem (2) can be reformulated equivalently:

Find u ∈ H1(Ω), u = Lg + u0, with u0 ∈ H1
0 (Ω) solution to

a(u0, v) = (f, v)Ω − a(Lg, v) for all v ∈ H1
0 (Ω). (3)

2.2 Finite element setting

We denote by Pk the vector space of d-variate real polynomials of maximal degree k ≥ 1.
Let (T h)h>0 be a family of simplicial meshes of the domain Ω. We define the mesh size
h as follows: h := maxT∈T h hT , where hT is the diameter of the simplex T . The mesh
is supposed to be regular in Ciarlet’s sense: there exists σ > 0 such that

hT

ρT
≤ σ, ∀T ∈ T h, (4)

where ρT is the radius of the largest ball contained in the simplex T . We call facets either
the edges of the triangles (when d = 2) or the faces of the tetrahedra (when d = 3). The
notation E is used for a generic facet in T h and the notation hE stands for the diameter
of the facet E. Remember that the regularity of the mesh implies there exists c, C > 0
(independent of the mesh size) such that

chT ≤ hE ≤ ChT

for any facet E that belongs to a simplex T ∈ Th. We suppose finally that the mesh
resolves the boundary Γ: for each simplex, each of its facets that intersects Γ is contained
completely in one and only one of the facets of Γ.

The Lagrange finite element space of degree k ≥ 1 is (see, e.g., [40, 63, 82]):

V h,k :=
{
vh ∈ C 0(Ω) | vh|T ∈ Pk(T ),∀T ∈ T h

}
. (5)

We will omit the subscript k when there is no ambiguity and note simply V h instead of
V h,k. We define also

V h
0 := V h ∩H1

0 (Ω) = {vh ∈ V h | vh|Γ = 0}

the vector space of functions with vanishing discrete trace.
For the analysis of some methods, it will be convenient to make use of the following

discrete norms. For this purpose let us take ζα (α ∈ R) as a piecewise constant function
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on the boundary Γ, that represents locally the power α of the boundary mesh size, and
which restriction is defined as

ζα|E = hα
E ,

for any boundary facet E. For v ∈ L2(Γ) we define

∥v∥−1/2,h,Γ := ∥ζ 1
2 v∥0,ΓC

, ∥v∥1/2,h,Γ := ∥ζ− 1
2 v∥0,ΓC

.

For v ∈ H1(Ω) we set

∥v∥h :=
(
∥∇v∥20,Ω + ∥v∥21/2,h,Γ

) 1
2

which is an equivalent norm of the H1(Ω)-norm.
For the stability and convergence analysis of some methods, the following discrete

trace inequality (often called discrete trace inverse inequality) will be needed

Lemma 2.1. There exists a constant cI > 0 independent of the mesh size h such that,
for any vh ∈ V h: ∥∥∂nvh∥∥2−1/2,h,Γ

≤ cI∥∇vh∥20,Ω. (6)

Moreover, for finite elements of degree k on a simplicial mesh in dimension d there holds:

cI ≤ cρ
d
(k + 1)(k + d) (7)

where cρ is a constant that depends only on ρ and is independent of the polynomial degree.

Proof. See [82, Lemma 12.8] for (6) (or also [130, Lemma 2.1] when the mesh is quasi-
uniform). The estimate (7) is established in [132] (see also [82, Lemma 12.2]). □

3 Primal methods

This section focuses on primal methods. Primal means that we do not use duality
techniques so as to reformulate the problem. Duality techniques introduce some extra
unknowns (here associated to fluxes on the boundary). So primal methods are charac-
terized by the fact that there is just one unknown, u, that is directly approximated. In
this framework, there are various possibilities to enforce the nonhomogeneous Dirichlet
boundary condition (1)–(ii). We describe first the most standard one, that is presented
in most of the basic textbooks and classnotes, and that is based upon a discrete lifting
operator. Then we focus on the penalty method, which is also widespread, and even
simpler in some sense than the discrete lifting technique, but with the fundamental issue
that consistency is lost. We end this presentation with Nitsche’s technique, in which
supplementary terms are added, that allow to recover consistency.

3.1 The discrete lifting

We summarize here the standard method for imposing nonhomogeneous Dirichlet bound-
ary condition, that relies on a discrete lifting or direct nodal imposition [24, 80, 83, 127].

3.1.1 Formulation

To simplify, we suppose that, in Equation (1)–(ii), the Dirichlet data g is continuous:
g ∈ C 0(Γ)∩H 1

2 (Γ). As a result, we can take its Lagrange interpolant: gh := Ih
Γ(g), where
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Ih
Γ denotes the Lagrange interpolant on the trace space of V h. A discrete counterpart

of Problem (2) is then:

Find uh ∈ V h that satisfies uh|Γ = gh and

a(uh, vh) = L(vh) for all vh ∈ V h
0 . (8)

As for the continuous case, it is equivalent to find the minimum on V h of the quadratic
convex functional J (·) under the equality constraint vh|Γ = gh.

Let Lhgh ∈ V h be a discrete lifting of gh. It can be obtained for instance by setting
Lhgh(ai) = g(ai) if ai is a boundary node (ai ∈ Γ), and Lhgh(ai) = 0 if ai is an interior
node (ai ∈ Ω). An equivalent formulation of Problem (8) is:

Find uh ∈ V h, uh = Lhgh + uh
0 , with uh

0 ∈ V h
0 (Ω) solution to

a(uh
0 , v

h) = (f, vh)Ω − a(Lhgh, vh) for all vh ∈ V h
0 (Ω). (9)

Problem (9) is a discrete counterpart of Problem (3).

3.1.2 Well-posedness and convergence

Problem (8) is well-posed and an optimal H1-error estimate can be derived [83, Lemma
33.1,Theorem 33.2]. More precisely, let u ∈ Hs(Ω) be the solution to Problem (2), with
d/2 < s ≤ k + 1 and let uh be the solution to Problem (8), there holds:

∥u− uh∥1,Ω ≤ Chs−1∥u∥s,Ω.

Moreover, an obvious bound can be obtained for the trace on the boundary. If we suppose
that g is in Hτ (Γ), with (d− 1)/2 < τ ≤ k and using the condition uh|Γ = gh, we get

∥u− uh∥0,Γ = ∥g − gh∥0,Γ = ∥g − Ih
Γ(g)∥0,Γ ≤ Chτ∥g∥τ,Γ

from the interpolation error of g.
Optimal error estimates in the L2-norm can be derived using the Aubin-Nitsche

duality trick, see for instance [24, 127] for the P1 Lagrange finite element, and [83] for
Pk, k ≥ 1. For a posteriori error estimates, the interested reader can refer for instance
to [3, 24, 123].

For the practical solution of the linear system associated to (8), see [83, Section
33.1.3]. For an estimate of the related condition number, followed by numerical experi-
ments, in the case of a quasi-uniform mesh and P1 finite elements, see [127].

Remark finally that the assumption of continuity on the boundary data g can be
alleviated, if one uses for instance a L2-projection operator (or local L2-projections)
instead of Lagrange interpolation. In this case, optimal H1- and L2-error estimates still
hold [24].

This first method, though simple and efficient, is not easy to generalize to more
complex boundary conditions. Furthermore, it is not suited to other discretization ap-
proaches, in which degrees of freedom are not directly linked to the value of the discrete
solution uh at some nodes located on the boundary Γ.

3.2 Boundary penalty

There are various possibilities to regularize the Dirichlet condition (1)-(ii) and the most
simple and widespread one is one of the earliest (see, e.g., [11, 15]).
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3.2.1 Continuous formulation

In its most widespread form, the penalty method, or boundary penalty method can be
formulated at the continuous level and reads (see, e.g., [11, 15]):

Find uε ∈ H1(Ω) solution to

a(uε, v) +
1

ε
(uε, v)Γ = (f, v)Ω +

1

ε
(g, v)Γ for all v ∈ H1(Ω), (10)

where the penalty parameter is denoted by ε > 0. When going back to strong form, we
verify that uε satisfies Poisson’s equation complemented with a Robin-Fourier boundary
condition

∂nuε = −1

ε
(uε − g) (11)

that approximates the Dirichlet boundary condition (1)–(ii) for ε small enough. The
above weak form (10) is also the first order optimality condition associated to the mini-
mization of the functional

Jε : V ∋ v 7→ J (v) +
1

2ε
∥v − g∥20,Γ ∈ R. (12)

So, for a symmetric weak form, we recover the usual technique from convex optimization,
which consists in reformulating the minimization problem under an equality constraint
into an unconstrained problem where the constraint is penalized.

Using a Poincaré-Friedrichs inequality, we check that the modified bilinear form in
(10) is elliptic on H1(Ω), so Problem (10) is well-posed by application of the Lax-Milgram
lemma. Moreover, if we suppose that u ∈ H2(Ω) we can derive the bound

∥u− uε∥1,Ω ≤ Cε∥u∥2,Ω

from which we conclude that uε tends to u when ε vanishes [23]. Remark also that
Problem (10) remains well-defined and well-posed even if we weaken the regularity as-
sumptions on the boundary datum g, that needs only to belong to L2(Ω).

3.2.2 Discrete formulation

The discrete boundary penalty formulation is a direct rewriting of (10) and reads:Find uh
ε ∈ V h such that:

a(uh
ε , v

h) +
1

ε
(uh

ε , v
h)Γ = (f, vh)Ω +

1

ε
(g, vh)Γ for all vh ∈ V h.

(13)

In such a formulation, it is usual to assume that the mesh is quasi-uniform and that the
the penalty parameter is of the form

ε = ε0h
λ (14)

where the coefficient ε0 > 0 and the power λ ≥ 0 are independent of the mesh and chosen
appropriately by the user (of course, for nonuniform meshes, ε can be set as a function
of the local edge size hE for each boundary edge E, as follows: ε = ε0ζ

λ).

Remark 3.1. Since conditions (11) and (1)–(ii) are not equivalent (uε ̸= u), the discrete
penalty method (13) is not consistent.
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3.2.3 Well-posedness and convergence

The same argument as for the continuous formulation ensures well-posedness of Prob-
lem (13). The numerical analysis of the boundary penalty method has been carried out
thoroughly in a paper of J.W. Barrett and C.M. Elliott [23] and error estimates for the
H1- and L2-norms on the domain, and for the L2-norm on the boundary have been
obtained as functions of the power λ in (14), the degree k of the finite element space and
the regularity of the solution u, in different situations. Notably, when the domain Ω is
a convex polyhedron, they manage to obtain the following bounds:

• If λ = k, there holds:

∥u− uh
ε∥0,Ω + h

1
2 ∥u− uh

ε∥1,Ω + ∥u− uh
ε∥0,Γ ≤ Chk∥u∥1+k,Ω, (15)

which ensure convergence but is suboptimal.
• If λ = k + 1

2 , there holds:

h− 1
2 ∥u− uh

ε∥0,Ω + ∥u− uh
ε∥1,Ω + h− 1

2 ∥u− uh
ε∥0,Γ ≤ Chk∥u∥1+k,Ω, (16)

which is optimal for the H1-norm but remains suboptimal for the L2-norm on the
domain.

• If λ = k + 1, there holds:

h−1∥u− uh
ε∥0,Ω + ∥u− uh

ε∥1,Ω + h−1∥u− uh
ε∥0,Γ ≤ Chk∥u∥2+k,Ω, (17)

which are the desired optimal convergence rates.

At first glance, the bound (17) seems to be satisfying but it requires more regularity
on the solution u than what is usually expected. Moreover, setting the power λ to
k + 1 instead of k has an impact on the conditioning on the linear system and to the
convergence of iterative solvers, especially for fine meshes. Nevertheless, it is the best
available results in such a configuration to the best of our knowledge, and it improves
the first result obtained by I. Babuška in [14], for which no value of λ provided optimal
estimates for polynomial degree k ≥ 2. Note however that I. Babuška obtained an almost
optimal convergence rate in the H1 norm for the lowest polynomial degree k = 1 and
λ = 1, which is the usual choice in practice. Nevertheless, the error estimate in L2 norm
of the domain was suboptimal. Under some restrictive assumptions on the regularity
of the solution, Z.C. Shi [126] provided also an optimal bound for the lower polynomial
degree k = 1. The case of a curved boundary with variational crimes due to the geometric
approximation of the boundary and numerical integration is also studied thoroughly in
the paper of J.W. Barrett and C.M. Elliott. In such a situation, some improved results
have been published recently by I. Dione [71].

Remark 3.2. Since it imposes weakly the Dirichlet boundary condition, the penalty
method has been considered for fictitious domains techniques, see, e.g., [7, 113].

In practice, a critical issue about the boundary penalty method is the best choice of
the penalty parameter ε0. If its value is too small, the Dirichlet condition is approxi-
mated accurately but the conditioning of the global stiffness matrix deteriorates, and if
the value is too large, the Dirichlet condition is approximated poorely. As a result, a
compromise between these two situations must be adopted. Another issue is an accurate
prediction of the boundary flux ∂nu

h
ε , which can be inaccurate and depends on ε0. This

is fundamentally due to (11). This point has been object of recent work by V. Garg and
S. Prudhomme [88].

Remark 3.3. A penalty technique can also be performed directly at the algebraic level,
after assembly of the stiffness matrix corresponding to pure (homogeneous) Neumann
boundary conditions. This technique is sometimes called exact penalty: see [99] for
more details or also [83, Remark 33.5].
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3.3 Nitsche

We present now a consistent boundary penalty technique to incorporate the nonhomoge-
neous Dirichlet boundary condition (1)–(ii). This technique has been originally proposed
by J.A Nitsche in 1971 [118]. It has gained first its popularity in the Discontinuous
Galerkin community, see, e.g., [9, 70], and later on in the finite element community as
a method to treat various boundary and interface conditions [95]. As we will see, there
is in fact a whole family of methods that can be derived systematically and share some
common features of well-posedness and optimal accuracy (but with different conditions
on the numerical parameter). The most widespread member of this family is the original
one of J.A. Nitsche, that derives of a functional and preserves the symmetry of the
original weak form (2). Nonsymmetric variants have been derived since then. For the
symmetric variant, there are various references that present the method and detail its
numerical analysis, particularly the survey of R. Stenberg [129] already mentioned in the
introduction, a chapter of P. Hansbo [95] and the book of V. Thomée [130, Chapter 2].
A detailed presentation of two variants, the symmetric and the incomplete ones, can be
found in the second volume of A. Ern & J.L. Guermond [83, Chapter 37].

3.3.1 Formulation

Let us first derive the method formally, and for this purpose take γ > 0 a positive
function on the boundary Γ and θ ∈ R a fixed parameter. As a starting point to obtain
a Nitsche’s method for (1), we can reformulate the Dirichlet boundary condition (1)–(ii)
as:

∂nu = −γ((u− g)− γ−1∂nu). (18)

Note that, in opposition to (11), the reformulation (18) is formally equivalent to (1)–(ii),
provided that γ > 0.

Let u be the solution to (1), and v a test function, that we suppose both regular
enough so that the following calculations make sense. From (1)–(i) and using Green
formula we get first:

a(u, v)− (∂nu, v)Γ = (f, v)Ω.

Then we rewrite v = (v − θγ−1∂nv) + θγ−1∂nv and obtain:

a(u, v)− θ(γ−1∂nu, ∂nv)Γ − (∂nu, v − θγ−1∂nv)Γ = (f, v)Ω.

Now the reformulation (18) yields

a(u, v)− θ(γ−1∂nu, ∂nv)Γ + (γ(u− γ−1∂nu), v − θγ−1∂nv)Γ

= (f, v)Ω + (γg, v − θγ−1∂nv)Γ.

We develop the second boundary term and simplify. We get

a(u, v)− (∂nu, v)Γ − θ(u, ∂nv)Γ + (u, γv)Γ

= (f, v)Ω + (g, γv − θ∂nv)Γ. (19)

The above weak form may have no meaning at the continuous level but has a well-defined
discrete counterpart. For this purpose let us take γ as a piecewise constant function on
the boundary Γ:

γ = γ0ζ
−1,

where γ0 is a positive constant. To lighten the writing of the weak form (19) we introduce
the bilinear form

AN (uh, vh) := a(uh, vh)− (∂nu
h, vh)Γ − θ(uh, ∂nv

h)Γ + (γuh, vh)Γ

8



and the linear form
lN (vh) := (f, vh)Ω + (g, γvh − θ∂nv

h)Γ.

Nitsche’s method for Poisson’s problem (1) reads:{
Find uh ∈ V h solution to

AN (uh, vh) = lN (vh), ∀ vh ∈ V h.
(20)

Three notable variants of the method, for different values of the parameter θ can be
obtained, as for the discontinuous Galerkin Interior Penalty (dGIP) method [70]:

1. For θ = 1, the formulation (20) is symmetric and identical to Nitsche’s original for-
mulation [118]. It can be obtained as the first order optimality condition associated
to the functional

JN : V h ∋ vh 7→ J (vh)− (vh − g, ∂nv
h)Γ +

1

2
∥γ 1

2 (vh − g)∥2Γ ∈ R.

It can be obtained alternatively from an augmented lagrangian formalism, see [52,
Section 5.2.2]
Remark that the expression of the Nitsche’s functional JN (·) is indeed similar to
that of an augmented lagrangian, and that it includes an extra term in compari-
son to the functional Jε(·) of the boundary penalty. This term allows to recover
consistency.

2. For θ = 0, we get the simplest, incomplete, formulation, that has the less terms,
and that is presented for instance in [83, Section 37.1].

3. For θ = −1, we recover the skew-symmetric formulation of J. Freund and R. Sten-
berg [86], where discrete ellipticity is ensured whatever the value of γ0 > 0 is.

Remark 3.4. The steps above can be generalized to derive Nitsche’s method for other
essential boundary conditions and other differential operators, see [101] for more details.

For u ∈ Hs(Ω) with s > 3
2 , it is direct to check that Nitsche’s method (20) is

consistent, and, from this point, it differs drastically from the boundary penalty method
(13). Fundamentally this difference comes from the fact that the reformulation (18) is
not a regularization of the Dirichlet boundary condition.

3.3.2 Well-posedness and convergence

Thanks to the discrete trace inequality (6) we deduce that Problem (20) is well-posed
provided that

1 ≥ (1 + θ)2cI
γ0

, (21)

where cI is the constant of the discrete trace inequality (6). The complete statement
for well-posedness and its proof are provided in the Appendix A. See also [56, 83,
95, 118, 129, 130] for specific values of θ (and sometimes of k), and the generalization
to an arbitrary θ makes no specific difficulty. For the symmetric variant θ = 1 this
result implies notably the strong convexity of Nitsche’s functional JN (·) when γ0 is large
enough. As a result for the skew-symmetric variant θ = −1, well-posedness is ensured
irrespectively of the value of γ0 > 0, and, otherwise, γ0 needs to be large enough.

Remark 3.5. For more complex problems, a similar condition as (21) holds, but with
a constant that depends for instance of the physical parameters. It can be interesting
to establish precise quantitative bounds for this constant to fix the value of γ0 as low
as possible (for θ ̸= 1). It can be done through solving eigenvalue problems (see, e.g.,
[95, 101]) or obtained by other methods (such as dimensional studies). In case of small
strain elasticity, see for instance [57, 96].
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Nitsche’s method converges optimally in the H1-norm, or equivalently in the discrete
norm defined above, provided that γ0 be large enough (γ0 > 0 when θ ̸= −1). So for
u ∈ Hs(Ω) with 3

2 < s ≤ 1 + k, we have

∥u− uh∥h +
∥∥∂nu− ∂nu

h
∥∥
−1/2,h,Γ

≤ Chs∥u∥s,Ω. (22)

The complete statement and its proof are given in Appendix B. See also [56, 83,
95, 118, 129, 130] for alternative proofs for some specific values of θ (and sometimes of
k). Remark that the above estimate provides also an optimal convergence rate for the
boundary flux.

Error estimates in the L2-norm can also be obtained, see, e.g., [83, 130]. Recently
optimal error estimates in the H1-norm have been obtained even for solutions with low
regularity 1 ≤ s ≤ 3/2, see, e.g., [81, 94]. For residual a posteriori error estimates, see
for instance [28, 94]: the results are for interface problems but it can be straightforwardly
adapted for a Dirichlet boundary condition.

Of course, the value of γ0 influences the condition number of the global stiffness
matrix associated to AN (·, ·), and for this reason it does not have to be taken too large.
Anyway, since the method is consistent, the impact of the numerical parameter γ0 has
on the approximation of the Dirichlet condition is not as important as for the boundary
penalty method (13). Moreover, since the function γ scales as O(h−1) whatever the
polynomial order k is, this does not deteriorate too much the conditioning, that remains
in O(h−2) [95]. This is not the case for the boundary penalty (see Section 3.2). This
property makes Nitsche’s method particularly relevant for high order discretizations, and
for this reason it has been considered for isogeometric analysis (IGA) [8, 55, 101] or also
for Hybrid High Order (HHO) [54, 57] variational approximations.

Remark finally that, as it was already the case for the boundary penalty method,
Nitsche’s method enforces weakly the Dirichlet condition and is also a candidate for
fictitious domain methods. Various works have been dedicated to this topic: see for
instance [47, 49, 110], to mention just a few.

Remark 3.6. Nitsche’s method can be adapted as well for Robin boundary conditions.
Of course Robin boundary conditions are not difficult to take into account in a weak
formulation, but the Nitsche formulation of [105] is robust irrespectively of the value of
the Robin coefficient, that can be arbitrarily large, and this is its main interest. Recently
the first analysis of [105] has been improved and extended for solutions with low regularity
[112].

3.4 New variants of Nitsche
We present here some other Nitsche-type methods that emerged in the last decade.

3.4.1 A penalty free Nitsche method

Note that the skew-symmetric version θ = −1 still makes sense if we set γ0 = 0 and in
this case we get from (20):{

Find uh ∈ V h solution to

a(uh, vh)− (∂nu
h, vh)Γ + (uh, ∂nv

h)Γ = (f, vh)Ω + (g, ∂nv
h)Γ, ∀ vh ∈ V h.

This version has no extra numerical parameter and is called penalty-free Nitsche. In this
case the method remains stable, since a discrete inf-sup condition holds, and converges
optimally in the H1 norm, see [45]. In reference [45] an estimate in the L2 norm is
also proven. It is suboptimal of order O(h

1
2 ) since this nonsymmetric variant is not

consistent for the adjoint problem. Various extensions of this variant have been made
later on, for fictitious domains with cut elements [38], for elasticity [37], for Signorini
[51], for Brinkman [35] and for isogeometric analysis [101, 125].
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3.4.2 Other Nitsche-type methods

In [39, 76] a variant of Nitsche has been suggested, that adds an extra term involving
the Laplace-Beltrami differential operator on the boundary. In [107] another variant of
Nitsche has been suggested, where another variable is added for the approximation of
the gradient, and later on eliminated by static condensation. This approach is close in
some sense to mixed methods.

In [26] a variant of Nitsche that does not involve any boundary term has been sug-
gested. The idea, is, roughly speaking, to use a representation of the boundary flux
with help of a variational residual. More precisely, the first step is to rewrite V h as the
following direct sum

V h = V h
i ⊕ V h

b ,

where V h
i is the subspace of functions with vanishing trace on Γ and V h

b is the comple-
mentary subspace. Take ghb ∈ V h

b an approximation of the boundary data g (it can be
the discrete lifting, but also other kind of reconstruction). We want to find uh = uh

i +uh
b

that minimizes the following modified Nitsche’s energy functional

JB : V h ∋ uh 7→ J (uh) + (f, uh
b − ghb )Ω − (∇uh,∇(uh

b − ghb ))Ω + ∥∇(uh
b − ghb )∥2Ω ∈ R.

Note that it mimics exactly the original functional JN but involves only integral terms
on the domain Ω. Moreover there is no discrete parameter. The discrete weak problem
comes from the first order optimality condition of the above functional and reads:

Find (uh
i , u

h
b ) ∈ V h

i × V h
b solution to

a(uh
i , v

h
i ) = (f, vhi )Ω − a(ghb , v

h
i ) for all vhi ∈ V h

i ,

a(uh
b , v

h
b ) = a(ghb , v

h
b ) for all vhb ∈ V h

b .

Some nonsymmetric variants can also be obtained. The main interest of this method
is for singularly perturbed problems such as reaction-diffusion or convection-diffusion,
where it becomes nonconforming [26]. Numerical results in [26] illustrate indeed that it
performs as Nitsche’s method and better than the discrete lifting in the limit cases.

4 Methods with Lagrange multipliers

In mixed methods, the boundary condition in (1) is treated weakly thanks to a Lagrange
multiplier λ that represents either the normal derivative ∂nu or its opposite −∂nu [14,
41, 120, 121] (see also [36, 80, 82, 83] for general references about the discretization
of mixed and hybrid methods). The continuous weak problem that serves for further
numerical approximations is

Find (u, λ) ∈ H1(Ω)×H− 1
2 (Γ) solution to

B((u, λ), (v, µ)) = L(v, µ) for all (v, µ) ∈ H1(Ω)×H− 1
2 (Γ), (23)

with the notations

B((u, λ), (v, µ)) := a(u, v) + ⟨λ, v⟩Γ + ⟨µ, u⟩Γ, L(v, µ) := (f, v)Ω + ⟨µ, g⟩Γ,

where ⟨·, ·⟩Γ is the duality product H− 1
2 (Γ)×H

1
2 (Γ). Note that we used a sign convention

that allows to preserve symmetry, and that corresponds to λ = −∂nu. Problem (23) is
well-posed and a continuous inf-sup condition holds

inf
µ∈H− 1

2 (Γ)

sup
v∈H1(Ω)

⟨µ, v⟩Γ
∥µ∥− 1

2 ,Γ
∥v∥1,Ω

≥ β, (24)
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with β > 0 [124, Section 10.3]. Problem (23) is equivalent to the original problem (2).
Moreover, its solution is the unique saddle-point of the following Lagrangian:

L(v, µ) := J (v) + ⟨µ, v − g⟩Γ, (25)

i.e. it verifies
L(u, µ) ≤ L(u, λ) ≤ L(v, λ)

for all (v, µ) ∈ H1(Ω) × H− 1
2 (Γ). See for instance [124, Section 10.3] for a detailed

presentation of the above setting.

4.1 Compatible pairs of spaces

The most simple technique to approximate Problem (23) consists in chosing a finite
element space for the Lagrange multiplier on the boundary, that we denote by

MH ⊂ H− 1
2 (Γ).

The notation H > 0 stands for the mesh size for the boundary mesh. The discrete
counterpart of (23) reads then:

Find (uh, λH) ∈ V h ×MH solution to

B((uh, λH), (vh, µH)) = L(vh, µH) for all (vh, µH) ∈ V h ×MH . (26)

From this point, we see the first advantages of this approach: 1) as it was already the case
for the boundary penalty and for Nitsche, the weak treatment of the Dirichlet boundary
condition allows extensions for fictitious domains, see for instance [91, 92, 93] or more
recently [98] for a framework based on the extended finite element method; 2) there
is more flexibility to approximate the boundary flux, since it is related to the choice
of MH . Particularly, the boundary mesh, that we denote by EH , does not need to be
the trace mesh of the global mesh Th, and can be chosen independently, as well as the
polynomial order for the approximation of λH , that can be different from k−1. Moreover,
since MH ⊂ H− 1

2 (Γ), the dual space for the Lagrange multiplier can be made either of
continuous or discontinuous functions while preserving conformity. This flexibility is
however limited, since a discrete inf-sup compatibility condition between V h and MH

needs to be satisfied to recover stability and optimal accuracy, and to avoid spurious
modes in the solution.

4.1.1 Some simple particular cases

Let us discuss the above point in detail, first in the particular case where the boundary
mesh is the trace mesh of Th, i.e. when h = H and

EH = Eh = Th|Γ.

A first natural and simple choice consists in taking V h = V h,1 (finite elements with
polynomial order k = 1) and to approximate the dual space with piecewise constant
discontinuous functions on the trace mesh:

Mh,d
0 :=

{
µh ∈ L2(Ω) | µh|E ∈ P0(E),∀E ∈ Eh

}
. (27)

With this choice (MH = Mh,d
0 ) we get a well-posed discrete problem (26). Indeed, since

we can easily verify

{µh ∈ Mh
0 | ⟨µh, vh⟩Γ = 0, ∀vh ∈ V h} = {0} (28)
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and since a(·, ·) is elliptic on {vh ∈ V h | ⟨µh, vh⟩Γ = 0, ∀µh ∈ Mh
0 } = V h

0 , we can apply
for instance Proposition 2.42 from [80] to ensure well-posedness. In fact, condition (28)
is equivalent to:

inf
µh∈Mh

0

sup
vh∈V h

⟨µh, vh⟩Γ
∥µh∥− 1

2 ,Γ
∥vh∥1,Ω

≥ βh, (29)

with βh > 0 a constant that possibly depends of the mesh. The above condition is
sometimes called rank condition [120] or an inf-sup condition nonuniform in h (or even a
weak inf-sup condition). Though it is enough for well-posedness, it leads to suboptimal
error estimates unless we can show that βh > 0 can be set independently of h, i.e., if
we can exhibit an inf-sup condition uniform in h (or strong inf-sup condition) that is a
discrete counterpart of (24). Unfortunately, it can be shown that βh necessarily tends to
0 when h vanishes [134, Lemma 3.1], so the choice MH = Mh

0 is not numerically correct.

Remark 4.1. Alternatively, other spaces with discontinuous functions can be considered:

Mh,d
l :=

{
µh ∈ L2(Ω) | µh|E ∈ Pl(E),∀E ∈ Eh

}
,

with l ≥ 0, but the pair V h×Mh,d
l does not satisfy necessarily a discrete inf-sup condition,

even weak, especially for the lowest values of k (k = 1, 2).

Another natural choice is to set the discrete dual space as the trace space of V h, and
to use continuous piecewise polynomial functions on the trace mesh. So for l ≥ 1 the
polynomial order of the dual variables, we set

Mh
l :=

{
µh ∈ C 0(Ω) | µh|T ∈ Pl(E),∀E ∈ Eh

}
. (30)

Let us focus first on the simplest situation when k = l = 1. In this case, it is still
straightforward to verify the rank condition

{µh ∈ Mh
1 | ⟨µh, vh⟩Γ = 0, ∀vh ∈ V h} = {0} (31)

and thus a non-uniform inf-sup condition and well-posedness of the discrete problem.
Moreover, under an extra assumption on the trace mesh, that needs to satisfy the
Crouzeix-Thomée criterion [68], it is possible to establish a uniform inf-sup condition [32,
Lemma 3.1]:

inf
µh∈Mh

1

sup
vh∈V h

⟨µh, vh⟩Γ
∥µh∥− 1

2 ,Γ
∥vh∥1,Ω

≥ β, (32)

where this time, β > 0 is independent of h. Notably, when the trace mesh is quasi-
uniform, it satisfies the Crouzeix-Thomée criterion, but this is one of the most restrictive
situations, and a large class of non quasi-uniform meshes satisfies this criterion.

4.1.2 The general situation

For the more general case, I. Babuška proved that, under the assumption of quasi-uniform
meshes on the boundary and under the geometric condition

H ≥ Ch,

where C > 0 is independent of H and h, there holds a strong discrete inf-sup condi-
tion [14]

inf
µH∈MH

sup
vh∈V h

⟨µH , vh⟩Γ
∥µH∥− 1

2 ,Γ
∥vh∥1,Ω

≥ β, (33)

with β > 0 independent of h and H, for the pair V h ×MH
l , k, l ≥ 1, where MH

l is the
space of continuous piecewise polynomial functions of degree l on the boundary mesh
EH .
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Since the conditions provided by I. Babuška are only sufficient and may be too re-
strictive in practice, notably because the constant C is not easy to determine, much
effort has been devoted later on to characterize compatible pairs of spaces, particularly
it has been the object of a serie of papers by J. Pitkäranta [120, 121, 122]. Among the
contributions of J. Pitkäranta, there is also an error analysis using the mesh-dependent
norm introduced previously in the finite element setting, and the following result can be
proven [121] (see also [129, Theorem 1B]): assume that the mesh sizes h and H are such
that ch ≤ H ≤ Ch, and assume that

inf
µH∈MH

sup
vh∈V h

⟨µH , vh⟩Γ
∥µH∥−1/2,h,Γ ∥vh∥h

≥ β,

with β > 0 independent of h. Then there holds, for u ∈ H1+k(Ω) and λ ∈ ΠJ
j=1H

1+l(Γj):

∥u− uh∥h + ∥λ− λh∥−1/2,h,Γ ≤ C(hk∥u∥1+k,Ω + hl+ 3
2 ∥λ∥1+l,Γ).

Above we denoted by Γj , j = 1, . . . , J the boundary facets of Γ, and ∥ · ∥1+l,Γ should be
understood as a broken Sobolev norm (this technical point disappears when the boundary
is smooth, but then the estimate does not take into account the approximation error for
the curved boundary). A similar result holds when using the natural norms [14]. Note
the similarity of the above error estimate with those of Nitsche’s method, and that there
is again an optimal error bound on the flux (Lagrange multiplier).

Remark 4.2. In the case of the fictitious domain formulation [91], and for the pair
P1/P0, a similar sufficient condition H ≥ Ch (with C ≥ 3) needs to be satisfied to
ensure a strong inf-sup condition, as proven in [90].

There are also other possibilities to design compatible pairs of spaces, for instance in-
troducing bubble functions [32] or using biorthogonal basis for the dual space [134]. This
last approach can be successfully extended for domain decomposition with nonmatching
meshes [133] or contact and friction problems [134].

4.2 Barbosa & Hughes stabilization
Stabilized mixed methods start from the mixed formulation (23), that they complement
with extra terms at the discrete level. These terms allow to preserve well-posedness
and optimal accuracy, even for pairs of finite element spaces that do not satisfy the
discrete inf-sup compatibility condition (33). For the original idea of stabilized mixed
methods, see for instance the seminal paper of L. Franca and T.J.R. Hughes [103], where
these ideas were applied first to the Stokes equations. In this category, the stabilized
method of H. Barbosa and T.J.R. Hughes [17, 18] introduces a residual-least squares
stabilization (see also [131] for Navier-Stokes with slip boundary conditions and [16] for
domain decomposition). The Barbosa & Hughes method can be formulated as:

Find (uh, λH) ∈ V h ×MH solution to

Bh((u
h, λH), (vh, µH)) = L(vh, µH) for all (vh, µH) ∈ V h ×MH , (34)

where

Bh((u
h, λH), (vh, µH)) := B((uh, λH), (vh, µH))

−(δ(λh + ∂nu
h), µh + ∂nv

h)Γ.

In the above definition, δ is a piecewise constant function on the boundary Γ:

δ = δ0ζ
1,
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where δ0 ≥ 0 is the stabilization parameter, that needs to be small enough. The original
formulation [17, 18] contains some extra terms, but that are not necessary for stability
and optimal convergence. The formulation (34) above comes from R. Stenberg [129].

A stability and convergence analysis of the above formulation is done in [129], when
the boundary mesh is the trace mesh and when the space of Lagrange multipliers is the
space Mh

l introduced previously. Under the condition

0 < δ0 < cI ,

where cI is the discrete trace constant already involved in Nitsche’s method, well-
posedness with a uniform stability bound can be obtained [129, Lemma 6] and the same
optimal convergence rates as the mixed method with a compatible pair follow. Again
assume that the mesh sizes h and H are such that ch ≤ H ≤ Ch, then, for u ∈ H1+k(Ω)
and λ ∈ ΠJ

j=1H
1+l(Γj):

∥u− uh∥h + ∥λ− λh∥−1/2,h,Γ ≤ C(hk∥u∥1+k,Ω + hl+ 3
2 ∥λ∥1+l,Γ).

Moreover if we eliminate the discrete multiplier through static condensation, we get the
symmetric variant of Nitsche’s method [129], in which the stabilization parameter δ0
plays the same role as the inverse of the Nitsche parameter γ0. See also Appendix C for
a detailed proof in a simple situation.

This formulation allows any choice for the pair of discrete spaces: see for instance
some numerical examples in [100] in the case of Signorini contact.

Remark 4.3. In [22] is suggested a simplification of Barbosa & Hughes stabilization,
where some terms have been removed, in the context of a fictitious domain method for
a perfored domain. This modification makes the method nonconsistent, but still well-
posedness and error estimates can be proven.

Remark 4.4. The Barbosa & Hughes stabilization technique has been extended for vari-
ational inequalities in [19]. This allowed further extensions for Signorini contact [100],
friction [109] and contact with extended finite elements for a crack [4]. The relation-
ship between Barbosa and Hughes stabilization and Nitsche’s method allowed later on to
design Nitsche’s methods for contact and friction [58, 59, 60].

Remark 4.5. Recently augmented lagrangian formulations have been considered, not
as a solution technique, as usual, but as a discretization technique per se [50, 52]. In
[52] for instance, the link between augmented lagrangian formulations and residual-least
squares stabilization is studied, and in case of Dirichlet boundary condition, this allows
to recover the symmetric variant of Nitsche’s formulation (see also Section 3.3.1).

4.3 Minimal stabilization
Many other stabilization techniques have been designed to relax the inf-sup compatibility
condition. In the 2000s, minimal stabilization procedures have been proposed and stud-
ied, see, e.g., [27, 42, 43]. The adaptation of such techniques to treat essential boundary
conditions has been carried out later on, in the 2010s, and has been thoroughly studied
by E. Burman [46]. For Problem (23), minimal stabilization methods can be formulated,
in a very general form, as:

Find (uh, λH) ∈ V h ×MH solution to

B̃h((u
h, λH), (vh, µH)) = L(vh, µH) for all (vh, µH) ∈ V h ×MH , (35)

where

B̃h((u
h, λH), (vh, µH)) := B((uh, λH), (vh, µH))− δ0s(λH , µH).

15



Above the numerical parameter δ0 > 0 is still the stabilization parameter. Conversely to
Barbosa & Hughes stabilization (34) presented previously, the stabilization term s(·, ·)
involves solely the Lagrange multiplier λH , and does not requires the primal variable uh

or its normal derivative.
Broadly speaking, s(·, ·) is designed to penalize the gap between the Lagrange mul-

tiplier and an underlying stable space. More fundamentally this class of methods relies
on the following observation [46, Lemma 2.1]:

sup
vh∈V h

⟨µH , vh⟩Γ
∥vh∥1,Ω

≥ β∥µH∥− 1
2 ,Γ

− c
∥∥µH − π̃µH

∥∥
−1/2,h,Γ

, (36)

where π̃ is the (global) L2-projection onto a discrete space, M̃H , coarser than the space
MH and for which the discrete (strong) inf-sup compatibility condition (33) is verified.

There are various possibilities to write the stabilization term. For instance it can be

s(λH , µH) = (ζ1(I − π̃H)λH , (I − π̃H)µH)Γ,

where π̃H is a local projection operator, easier to compute in practice. When such choice
is made, the corresponding method is usually named local projection stabilization (LPS).
More conveniently, under appropriate conditions, we can use a term that involves only
the jumps of the multiplier and its derivative at the interface between the facets [46,
Section III]. Notably, we have seen above that the pair V h,1 ×Mh

0 is not uniformly inf-
sup stable. In two dimensions, if we denote by Xh the set of boundary nodes, at the
exception of corner nodes, let us consider the term:

s(λH , µH) = h2
∑
x∈Xh

JλH(x)KJµH(x)K,

where we used the notation J·(x)K to denote the jump of a quantity between the two
neighbouring edges of each node x. With such an appropriate stabilization term, still
for the pair V h,1 ×Mh

0 , formulation (35) is well-posed and the optimal accuracy of the
solution can be recovered [46].

Some fictitious domains methods have been designed accordingly to this paradigm.
From the analysis of V. Girault and R. Glowinski [90] where a geometric condition has
been exhibited between the global mesh and the mesh for the Lagrange multiplier (see
Remark 4.2 above), a fictitious domain method with the Lagrange multiplier on the trace
of the global mesh combined with a local projection stabilization term has been designed
in [20] (see also [21] for an extension to time-dependent parabolic problems). A fictitious
domain method based on extended finite elements and a minimal stabilization procedure
has been made in [5], and later on extended for a crack geometry with Tresca friction
condition [6].

Remark 4.6. In [46, Section C] it is shown that the framework of minimal stabilization
allows to interpret the unsymmetric version of Barbosa & Hughes method as a minimal
stabilization with respect to the penalty-free Nitsche method, seen as an inf-sup stable
mixed method.

5 Conclusion
There are no longer problems that are solved and others that are not, there
are only problems that are more or less solved. Henri Poincaré1

1Il n’y a plus des problèmes résolus et d’autres qui ne le sont pas, il y a seulement des problèmes plus ou
moins résolus. (Henri Poincaré, Conférence prononcée au Congrès international des Mathématiciens, Rome,
1908 ; t. I, p. 173 des Actes du Congrès.)
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There is now an embarrassingly choice of mathematically sound technologies to in-
corporate essential boundary conditions within a variational discretization such as the
finite element method (or its extensions or its alternatives). An important motivation
for the design of most of these methods has been to incorporate essential boundary con-
ditions in a weak sense, in order to mimic in some way what happens with Neumann
or Robin boundary conditions. This weak treatment can not be done directly, and this
explains why different pathes have been explored to do this. This weak incorporation has
however some major advantages in terms of flexibility to account the essential boundary
conditions at the discrete level.

At first glance, the boundary penalty method seems to be the most attractive since it
may be the easiest to understand and to implement. For this reason, it is still widespread,
particularly in some industrial codes. Nevertheless, when applied to some specific prob-
lems, its performance in terms of accuracy may not always be satisfactory: see for
instance some numerical evidence in [134] for static contact and friction problems or in
[61, 73] for contact in elastodynamics. Nitsche method may represent a better alterna-
tive, and remains simple to implement. It still involves a numerical parameter, but which
does not play the same role as a regularization parameter and is closest to a stabilization
parameter. Particularly, it does not need to be very large to ensure the stability and
optimal accuracy, but it needs only to be fixed above a threshold. Alternatively, mixed
methods with compatible pairs can be relevant to represent accurately the boundary flux,
and do not need an extra numerical parameter. However ensuring in practice the strong
discrete inf-sup condition needed for stability and accuracy is not always an easy task,
particularly for complex geometries and nonlinear problems. Stabilized mixed method
allow to circumvent this issue. However, once again an extra numerical parameter ap-
pears. Some families of least squares stabilized mixed methods are closely related to
Nitsche’s method and perform the same way.

A major field of applications is concerned, broadly speaking, with, on one side, high
order discretization techniques such as isogeometric analysis [67] or polytopal methods
[29, 64, 69, 65, 108, 111], and, on the other side, geometrically unfitted finite element
methods, such as fictitious domains, extended or cut finite element methods. In this last
case the interested reader may refer to, e.g., [12, 117] for some surveys with numerical
comparisons. In order to make this presentation as simple as possible, we restricted
the setting to a mesh conforming to the exact boundary, and did not mentioned the
difficulties and specificities of dissociating the physical and the numerical boundaries.
These difficulties are mostly related to numerical integration on cut elements, and also to
the preservation of a reasonable condition number (see, e.g., [44]). Note that, in the last
years, have emerged new methods, called phi-FEM, that allow to incorporate very easily
essential boundary conditions with help of the level set function that defines the boundary
[79]. One major advantage of this strategy is that it requires no numerical integration on
cut elements. However it requires special care to take into account Neumann or Robin
boundary conditions [78].

Furthermore, various techniques we reviewed have been extended for more challeng-
ing problems, particularly interface problems with unfitted meshes, and problems with
nonlinear boundary conditions associated with variational inequalities. For the emblem-
atic Signorini contact problem where boundary conditions are inequations and a com-
plementarity condition, penalized and mixed methods have been suggested very early
[97, 106]. In the last two decades, there have been some improvements for mixed tech-
niques [1, 31, 32, 66, 75, 102, 134], but also the first adaptation of stabilized formulations
[100] and Nitsche formulations to contact conditions [58, 59, 60]. For variational inequal-
ities, the numerical analysis may be much more challenging, and for instance, optimal
error estimates in the H1-norm have been obtained only a few years ago for the Signorini
problem [59, 74], and the obtention of optimal error estimates in the L2-norm is still an
open issue [53, 62, 66, 128].
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Most of the techniques presented here have in common some kind of genericity and
an ability to be extended to many settings. Particularly they do not depend that much
of the differential operator under consideration. When the weak form is symmetric and
can be obtained as the first order optimality condition associated to the minimization
of a functional, there is a systematic way to recover some of the methods thanks to
a minimization argument, after having added extra terms to the original functional.
Otherwise we shown there is another path for nonsymmetric problems. Most of the
discretizations preserve symmetry when needed, but for Nitsche’s method, we presented
unsymmetric variants that can be of interest for nonsymmetric problems and allow more
freedom to choose the numerical parameter.

A Well-posedness of Nitsche’s method
We provide here the precise statement of well-posedness for Nitsche’s method, and a
detailed proof.

Lemma A.1. Suppose that

1 ≥ (1 + θ)2cI
γ0

, (37)

where cI is the constant of the discrete trace inequality (6), then the bilinear form AN (·, ·)
is elliptic on V h:

AN (vh, vh) ≥ c∥vh∥2h, (38)

for any vh ∈ V h and where c > 0 does not depend on h. As a result, Problem (20) is
well-posed.

Proof. Take vh in V h and write

AN (vh, vh) = a(vh, vh)− (1 + θ)(∂nv
h, vh)Γ + (γvh, vh)Γ

= ∥∇vh∥20,Ω − (1 + θ)(γ− 1
2 ∂nv

h, γ
1
2 vh)Γ + γ0

∥∥vh∥∥2
1/2,h,Γ

≥ ∥∇vh∥20,Ω − |1 + θ|∥γ− 1
2 ∂nv

h∥0,Γ∥γ
1
2 vh∥0,Γ + γ0

∥∥vh∥∥2
1/2,h,Γ

≥ ∥∇vh∥20,Ω − (1 + θ)2

2γ0

∥∥∂nvh∥∥2−1/2,h,Γ
+

1

2
γ0

∥∥vh∥∥2
1/2,h,Γ

.

We applied Cauchy-Schwarz inequality on the third line and Young inequality on the
fourth. It remains to use the discrete trace inequality (6) to bound the remining boundary
term:

AN (vh, vh) ≥
(
1− cI(1 + θ)2

2γ0

)
∥∇vh∥20,Ω +

1

2
γ0

∥∥vh∥∥2
1/2,h,Γ

.

So provided that (
1− cI(1 + θ)2

2γ0

)
≥ 1

2

we get (38). Well-posedness of Problem (20) follows from the Lax-Milgram lemma. □

B Error estimate for Nitsche’s method
We detail here the convergence result for Nitsche’s method.

Theorem B.1. Let u ∈ Hs(Ω) with 3/2 < s ≤ 1 + k, be the solution to Problem (2)
and let uh ∈ V h be the solution to Problem (20). Suppose that the Nitsche’s parameter
γ0 is large, or that γ0 > 0 when θ ̸= −1. Then there holds:

∥u− uh∥h +
∥∥∂nu− ∂nu

h
∥∥
−1/2,h,Γ

≤ Chs∥u∥s,Ω. (39)
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where the constant C > 0 does not depend on h, but depends on θ and γ0.

Proof. The proof is in fact an adaptation from [60, Theorem 3.6 and Theorem 3.8] in
case of Signorini contact with elasticity. Let u ∈ H1(Ω) be the solution to Problem (2)
and uh ∈ V h be the solution to Nitsche formulation (20). For any vh ∈ V h there holds:

∥∇u−∇uh∥20,Ω = a(u− uh, u(−vh + vh)− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

≤ ∥∇u−∇uh∥0,Ω∥∇u−∇vh∥0,Ω + a(u− uh, vh − uh),

where we used Cauchy-Schwarz inequality at the last line. Then with Young inequality
we get

1

2
∥∇u−∇uh∥20,Ω ≤ 1

2
∥∇u−∇vh∥20,Ω + a(u− uh, vh − uh). (40)

We now focus on the discretization error term a(u − uh, vh − uh) and we use both
formulations (1) and (20), the Green formula as well as the properties

vh − uh ⊂ V h ⊂ H1(Ω)

to get

a(u− uh, vh − uh) = a(u, vh − uh)− a(uh, vh − uh)

= (f, vh − uh)Ω + (∂nu, v
h − uh)Γ

−(f, vh − uh)Ω − (g, γ(vh − uh)− θ(∂nv
h − ∂nu

h))Γ.

−(∂nu
h, vh − uh)Γ − θ(uh, ∂nv

h − ∂nu
h)Γ + (γuh, vh − uh)Γ.

Note that, because of the regularity assumptions on u, there holds ∂nu ∈ L2(Γ) and the
corresponding boundary term does not need to be a duality product but an integral. We
can simplify the above expression as follows

a(u− uh, vh − uh)

= (∂nu− ∂nu
h, vh − uh)Γ − θ(uh − g, ∂nv

h − ∂nu
h)Γ︸ ︷︷ ︸

T1

+(γ(uh − g), vh − uh)Γ︸ ︷︷ ︸
T2

.

(41)

The last term is rewritten, using the condition u = g from (1) and the splitting vh−uh =
vh − u+ u− uh:

T2 = (γ(uh − u), vh − u)Γ − (γ(uh − u), uh − u)Γ.

Let ω1 > 0 be an arbitrary weight, the value of which will be fixed later on, and let us
use Cauchy-Schwarz and Young inequalities:

T2 ≤ ω1

2
γ0

∥∥vh − u
∥∥2
1/2,h,Γ

+ γ0

(
1

2ω1
− 1

)∥∥uh − u
∥∥2
1/2,h,Γ

. (42)

There remains to treat the other term T1 and, using once again the Dirichlet condition
u = g from (1) we transform it as below:

T1 = (∂nu− ∂nu
h, vh − uh)Γ − θ(uh − g, ∂nv

h − ∂nu
h)Γ

= (∂nu− ∂nu
h, vh − u)Γ + (∂nu− ∂nu

h, u− uh)Γ

−θ(uh − g, ∂nv
h − ∂nu)Γ − θ(uh − g, ∂nu− ∂nu

h)Γ

= (∂nu− ∂nu
h, vh − u)Γ + (1 + θ)(∂nu− ∂nu

h, u− uh)Γ

+θ(u− uh, ∂nv
h − ∂nu)Γ.
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With ω2, ω3, ω4 > 0 other weights and still with Cauchy-Schwarz and Young inequalities,
we bound:

T1 ≤ ω2

2

∥∥vh − u
∥∥2
1/2,h,Γ

+
1

2ω2

∥∥∂nu− ∂nu
h
∥∥2
−1/2,h,Γ

+
|θ|ω3

2

∥∥∂nvh − ∂nu
∥∥2
−1/2,h,Γ

+
|θ|
2ω3

∥∥u− uh
∥∥2
1/2,h,Γ

+
|1 + θ|ω4

2

∥∥∂nuh − ∂nu
∥∥2
−1/2,h,Γ

+
|1 + θ|
2ω4

∥∥u− uh
∥∥2
1/2,h,Γ

. (43)

Now we rewrite
∂nu− ∂nu

h = ∂nu− ∂nv
h + ∂nv

h − ∂nu
h,

and then use the discrete trace inequality (6) as well as a triangular inequality as follows∥∥∂nvh − ∂nu
h
∥∥
−1/2,h,Γ

≤ c
1
2

I ∥∇vh −∇uh∥0,Ω ≤ C(∥∇vh −∇u∥0,Ω + ∥∇u−∇uh∥0,Ω).

We combine the above bounds with (40)–(43) and get:(
1

2
− C

2ω2
− C|1 + θ|ω4

2

)
∥∇u−∇uh∥20,Ω

+

[
γ0

(
1− 1

2ω1

)
− |θ|

2ω3
− |1 + θ|

2ω4

] ∥∥uh − u
∥∥2
1/2,h,Γ

≤
(
1

2
+

C

2ω2
+

C|1 + θ|ω4

2

)
∥∇u−∇vh∥20,Ω

+
(ω1

2
γ0 +

ω2

2

)∥∥vh − u
∥∥2
1/2,h,Γ

+

(
C

2ω2
+

|θ|ω3

2
+

C|1 + θ|ω4

2

)∥∥∂nu− ∂nv
h
∥∥2
−1/2,h,Γ

.

Now take for instance ω1 = 1, ω2 = 4C and ω4 small enough. For θ arbitrary, take
moreover ω3 = 1 for instance and γ0 large enough. For θ = −1 and any value of γ0, take
ω3 large enough. With the above choices, we get the abstract estimate:

∥∇u−∇uh∥20,Ω +
∥∥uh − u

∥∥2
1/2,h,Γ

≤ C
(
∥∇u−∇vh∥20,Ω +

∥∥vh − u
∥∥2
1/2,h,Γ

+
∥∥∂nu− ∂nv

h
∥∥2
−1/2,h,Γ

)
. (44)

We then use standard interpolation estimates for the Lagrange operator [77] (for the
estimate associated to the interpolation of the normal derivative, see for instance [60, 87]).
The estimate on the normal derivative comes from∥∥∂nu− ∂nu

h
∥∥
−1/2,h,Γ

≤
∥∥∂nu− ∂nv

h
∥∥
−1/2,h,Γ

+
∥∥∂nvh − ∂nu

h
∥∥
−1/2,h,Γ

≤
∥∥∂nu− ∂nv

h
∥∥
−1/2,h,Γ

+ C(∥∇vh −∇u∥0,Ω + ∥∇u−∇uh∥0,Ω).

This ends the proof. □

C Barbosa & Hughes and Nitsche
Following [104, 129] we detail the equivalence between the Barbosa & Hughes stabilized
method (34) and Nitsche’s formulation (20), but in a simple situation where we suppose
g = 0 and take the pair V h = V h,1 (k = 1) and Mh = Mh,d

1 (l = 1) for the solution and
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the multiplier. In (34) take vh = 0 ∈ V h and, for an arbitrary boundary facet E ∈ Eh,
and an arbitrary polynomial µE ∈ P1(E), take µh|E = µE and µh = 0 elsewhere. We
get then:

(µE , u
h)E − (δ(λh + ∂nu

h), µE)E = 0.

We reformulate
(µE , u

h − δ(λh + ∂nu
h))E = 0.

Remark that, since uh − δ(λh + ∂nu
h) ∈ P1(E), this implies the equality

uh − δ(λh + ∂nu
h) = 0

or, identically:

uh = δ(λh + ∂nu
h), λh =

1

δ
uh − ∂nu

h. (45)

Now from (34) which is

a(uh, vh) + (λh, vh)Γ + (µh, uh)Γ − (δ(λh + ∂nu
h), µh + ∂nv

h)Γ = (f, vh)Ω

we use (45) and we recover

a(uh, vh) + (λh, v)Γ + (µh, uh)Γ − (uh, µh + ∂nv
h)Γ = (f, vh)Ω.

We develop and the two terms in (µh, uh)Γ cancel:

a(uh, vh) + (λh, vh)Γ − (uh, ∂nv
h)Γ = (f, vh)Ω.

We replace λ with the expression above in (45) and get

a(uh, vh)− (∂nu
h, vh)Γ − (uh, ∂nv

h)Γ + (δ−1uh, vh)Γ = (f, vh)Ω.

This is exactly the symmetric Nitsche’s formulation (20), with θ = 1 and γ0 = δ−1
0 . Let

us do this the other way round. Let us start from the Nitsche’s formulation (20) (with
θ = 1):

a(uh, vh)− (∂nu
h, vh)Γ − (uh, ∂nv

h)Γ + (γuh, vh)Γ = (f, vh)Ω.

We define λh as in (45) (still with γ0 = δ−1
0 ), we check that λh ∈ Mh and rewrite (45)

as
(δ(λh + ∂nu

h), µh + ∂nv
h)Γ = (uh, µh + ∂nv

h)Γ

for all µh (note that ∂nv
h ∈ Mh). Nitsche formulation is rewritten

a(uh, vh) + (γuh − ∂nu
h︸ ︷︷ ︸

λh

, vh)Γ − (uh, ∂nv
h)Γ︸ ︷︷ ︸

(δ(λh+∂nuh),µh+∂nvh)Γ−(uh,µh)Γ

= (f, vh)Ω.

And we recover

a(uh, vh) + (λh, vh)Γ + (uh, µh)Γ − (δ(λh + ∂nu
h), µh + ∂nv

h)Γ = (f, vh)Ω.

This is exactly Barbosa & Hughes formulation (34). When θ = −1, we proceed the
same way and we recover another consistent, but skewsymmetric stabilized formulation
equivalent to skewsymmetric Nitsche:

a(uh, vh) + (λh, vh)Γ − (uh, µh)Γ + (δ(λh + ∂nu
h), µh + ∂nv

h)Γ = (f, vh)Ω.

For different spaces of functions, of if g ̸= 0 the equivalence between the two formu-
lation may not be exact anymore and some projection operators need to be introduced
[104, 129].
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Remark C.1. Alternatively, for any value of θ, we can do as follows: we rewrite (45)
as

(δ(λh + ∂nu
h), µh + θ∂nv

h)Γ = (uh, µh + θ∂nv
h)Γ

for all µh. Nitsche’s formulation is rewritten

a(uh, vh) + (γuh − ∂nu
h︸ ︷︷ ︸

λh

, vh)Γ − (uh, θ∂nv
h)Γ︸ ︷︷ ︸

(δ(λh+∂nuh),µh+θ∂nvh)Γ−(uh,µh)Γ

= (f, vh)Ω.

We find

a(uh, vh) + (λh, vh)Γ + (uh, µh)Γ − (δ(λh + ∂nu
h), µh + θ∂nv

h)Γ = (f, vh)Ω.

For θ = 1 it is still the symmetric Barbosa & Hughes formulation, and for other values
of θ, it is a consistent, but unsymmetric stabilized method.

Acknowledgements
The author would like to thank the CNRS, the CI2MA and the CMM for his stay
as a visiting researcher, as well as all the collaborators with which he had fruitfuil
discussions on this topic. The author’s work is partially supported by the I-Site BFC
project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002).

References
[1] M. Abbas, G. Drouet, and P. Hild, The local average contact (LAC) method,

Comput. Methods Appl. Mech. Engrg., 339 (2018), pp. 488–513.

[2] R.-A. Adams, Sobolev spaces, vol. 65 of Pure and Applied Mathematics, Academic
Press, New York-London, 1975.

[3] M. Ainsworth and D. W. Kelly, A posteriori error estimators and adaptivity
for finite element approximation of the non-homogeneous Dirichlet problem, Adv.
Comput. Math., 15 (2001), pp. 3–23 (2002).

[4] S. Amdouni, P. Hild, V. Lleras, M. Moakher, and Y. Renard, A stabi-
lized Lagrange multiplier method for the enriched finite-element approximation of
contact problems of cracked elastic bodies, ESAIM Math. Model. Numer. Anal., 46
(2012), pp. 813–839.

[5] S. Amdouni, M. Moakher, and Y. Renard, A local projection stabilization
of fictitious domain method for elliptic boundary value problems, Appl. Numer.
Math., 76 (2014), pp. 60–75.

[6] , A stabilized Lagrange multiplier method for the enriched finite-element ap-
proximation of Tresca contact problems of cracked elastic bodies, Comput. Methods
Appl. Mech. Engrg., 270 (2014), pp. 178–200.

[7] P. Angot, Analysis of singular perturbations on the Brinkman problem for fic-
titious domain models of viscous flows, Math. Methods Appl. Sci., 22 (1999),
pp. 1395–1412.

[8] A. Apostolatos, R. Schmidt, R. Wüchner, and K.-U. Bletzinger, A
Nitsche-type formulation and comparison of the most common domain decompo-
sition methods in isogeometric analysis, Internat. J. Numer. Methods Engrg., 97
(2014), pp. 473–504.

[9] D. N. Arnold, An interior penalty finite element method with discontinuous el-
ements, SIAM J. Numer. Anal., 19 (1982), pp. 742–760.

22



[10] M. Astorino, J.-F. Gerbeau, O. Pantz, and K.-F. Traoré, Fluid-structure
interaction and multi-body contact: application to aortic valves, Comput. Methods
Appl. Mech. Engrg., 198 (2009), pp. 3603–3612.

[11] J.-P. Aubin, Approximation of elliptic boundary-value problems, Pure and Applied
Mathematics, Vol. XXVI, Wiley-Interscience, New York-London-Sydney, 1972.

[12] F. Auricchio, D. Boffi, L. Gastaldi, A. Lefieux, and A. Reali, A study
on unfitted 1D finite element methods, Comput. Math. Appl., 68 (2014), pp. 2080–
2102.

[13] F. P. T. Baaijens, A fictitious domain/mortar element method for fluid-structure
interaction, Internat. J. Numer. Methods Fluids, 35 (2001), pp. 743–761.

[14] I. Babuška, The finite element method with Lagrangian multipliers, Numer.
Math., 20 (1972/73), pp. 179–192.

[15] , The finite element method with penalty, Math. Comp., 27 (1973), pp. 221–
228.

[16] C. Baiocchi, F. Brezzi, and L. D. Marini, Stabilization of Galerkin methods
and applications to domain decomposition, in Future tendencies in computer sci-
ence, control and applied mathematics (Paris, 1992), vol. 653 of Lecture Notes in
Comput. Sci., Springer, Berlin, 1992, pp. 345–355.

[17] H. J. C. Barbosa and T. J. R. Hughes, The finite element method with La-
grange multipliers on the boundary: circumventing the Babuška-Brezzi condition,
Comput. Methods Appl. Mech. Engrg., 85 (1991), pp. 109–128.

[18] , Boundary Lagrange multipliers in finite element methods: error analysis in
natural norms, Numer. Math., 62 (1992), pp. 1–15.

[19] , Circumventing the Babuška-Brezzi condition in mixed finite element approx-
imations of elliptic variational inequalities, Comput. Methods Appl. Mech. Engrg.,
97 (1992), pp. 193–210.

[20] G. R. Barrenechea and F. Chouly, A local projection stabilized method for
fictitious domains, Appl. Math. Lett., 25 (2012), pp. 2071–2076.

[21] G. R. Barrenechea, F. Chouly, and C. Gonzalez, A stabilised finite element
method for a time-dependent problem solved using a fictitious domain method. hal-
01596106, Sept. 2017.

[22] G. R. Barrenechea and C. González, A stabilized finite element method for
a fictitious domain problem allowing small inclusions, Numer. Methods Partial
Differential Equations, 34 (2018), pp. 167–183.

[23] J. W. Barrett and C. M. Elliott, Finite element approximation of the Dirich-
let problem using the boundary penalty method, Numer. Math., 49 (1986), pp. 343–
366.

[24] S. Bartels, C. Carstensen, and G. Dolzmann, Inhomogeneous Dirichlet
conditions in a priori and a posteriori finite element error analysis, Numer. Math.,
99 (2004), pp. 1–24.

[25] Y. Bazilevs and T. J. R. Hughes, Weak imposition of Dirichlet boundary
conditions in fluid mechanics, Comput. & Fluids, 36 (2007), pp. 12–26.

[26] R. Becker, A variant of Nitsche’s method, C. R. Math. Acad. Sci. Paris, 356
(2018), pp. 1236–1242.

[27] R. Becker and M. Braack, A finite element pressure gradient stabilization for
the Stokes equations based on local projections, Calcolo, 38 (2001), pp. 173–199.

[28] R. Becker, P. Hansbo, and R. Stenberg, A finite element method for domain
decomposition with non-matching grids, M2AN Math. Model. Numer. Anal., 37
(2003), pp. 209–225.

23



[29] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini,
and A. Russo, Basic principles of virtual element methods, Math. Models Meth-
ods Appl. Sci., 23 (2013), pp. 199–214.

[30] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers,
Numer. Math., 84 (1999), pp. 173–197.

[31] F. Ben Belgacem, P. Hild, and P. Laborde, Extension of the mortar fi-
nite element method to a variational inequality modeling unilateral contact, Math.
Models Methods Appl. Sci., 9 (1999), pp. 287–303.

[32] F. Ben Belgacem and Y. Renard, Hybrid finite element methods for the Sig-
norini problem, Math. Comp., 72 (2003), pp. 1117–1145.

[33] C. Bernardi, Y. Maday, and A. T. Patera, Domain decomposition by the
mortar element method, in Asymptotic and numerical methods for partial differ-
ential equations with critical parameters (Beaune, 1992), vol. 384 of NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 1993, pp. 269–
286.

[34] , A new nonconforming approach to domain decomposition: the mortar el-
ement method, in Nonlinear partial differential equations and their applications.
Collège de France Seminar, Vol. XI (Paris, 1989–1991), vol. 299 of Pitman Res.
Notes Math. Ser., Longman Sci. Tech., Harlow, 1994, pp. 13–51.

[35] L. Blank, A. Caiazzo, F. Chouly, A. Lozinski, and J. Mura, Analysis
of a stabilized penalty-free Nitsche method for the Brinkman, Stokes, and Darcy
problems, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 2149–2185.

[36] D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and ap-
plications, vol. 44 of Springer Series in Computational Mathematics, Springer,
Heidelberg, 2013.

[37] T. Boiveau and E. Burman, A penalty-free Nitsche method for the weak impo-
sition of boundary conditions in compressible and incompressible elasticity, IMA
J. Numer. Anal., 36 (2016), pp. 770–795.

[38] T. Boiveau, E. Burman, S. Claus, and M. Larson, Fictitious domain method
with boundary value correction using penalty-free Nitsche method, J. Numer. Math.,
26 (2018), pp. 77–95.

[39] J. P. Boufflet, M. Dambrine, G. Dupire, and P. Villon, On the necessity
of Nitsche term. Part II: An alternative approach, Appl. Numer. Math., 62 (2012),
pp. 521–535.

[40] S. C. Brenner and L. R. Scott, The mathematical theory of finite element
methods, vol. 15 of Texts in Applied Mathematics, Springer, New York, third ed.,
2008.

[41] F. Brezzi, On the existence, uniqueness and approximation of saddle-point prob-
lems arising from Lagrangian multipliers, Rev. Française Automat. Informat.
Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129–151.

[42] F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite
element methods, Numer. Math., 89 (2001), pp. 457–491.

[43] E. Burman, Pressure projection stabilizations for Galerkin approximations of
Stokes’ and Darcy’s problem, Numer. Methods Partial Differential Equations, 24
(2008), pp. 127–143.

[44] , Ghost penalty, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 1217–1220.

[45] , A penalty-free nonsymmetric Nitsche-type method for the weak imposition
of boundary conditions, SIAM J. Numer. Anal., 50 (2012), pp. 1959–1981.

24



[46] , Projection stabilization of Lagrange multipliers for the imposition of con-
straints on interfaces and boundaries, Numer. Methods Partial Differential Equa-
tions, 30 (2014), pp. 567–592.

[47] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, Cut-
FEM: discretizing geometry and partial differential equations, Internat. J. Numer.
Methods Engrg., 104 (2015), pp. 472–501.

[48] E. Burman, M. A. Fernández, and S. Frei, A Nitsche-based formulation for
fluid-structure interactions with contact, ESAIM Math. Model. Numer. Anal., 54
(2020), pp. 531–564.

[49] E. Burman and P. Hansbo, Fictitious domain finite element methods using
cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62 (2012),
pp. 328–341.

[50] , Deriving robust unfitted finite element methods from augmented Lagrangian
formulations, in Geometrically unfitted finite element methods and applications,
vol. 121 of Lect. Notes Comput. Sci. Eng., Springer, Cham, 2017, pp. 1–24.

[51] E. Burman, P. Hansbo, and M. G. Larson, The penalty-free Nitsche method
and nonconforming finite elements for the Signorini problem, SIAM J. Numer.
Anal., 55 (2017), pp. 2523–2539.

[52] , The augmented lagrangian method as a framework for stabilised methods in
computational mechanics, 2022. doi:10.48550/ARXIV.2207.00294.

[53] P. Cantin and P. Hild, Error analysis of the compliance model for the Signorini
problem, Calcolo, 58 (2021), pp. Paper No. 32, 21.

[54] K. L. Cascavita, F. Chouly, and A. Ern, Hybrid high-order discretizations
combined with Nitsche’s method for Dirichlet and Signorini boundary conditions,
IMA J. Numer. Anal., 40 (2020), pp. 2189–2226.

[55] T. Chen, R. Mo, N. Wan, and Z. W. Gong, Imposing displacement boundary
conditions with Nitsche’s method in isogeometric analysis, Chin. J. Theor. Appl.
Mech., 44 (2012), pp. 369–381.

[56] F. Chouly, Sur la prise en compte de quelques conditions aux limites avec la
méthode des éléments finis. Lecture notes. cel-01564693, Jan. 2017.

[57] F. Chouly, A. Ern, and N. Pignet, A hybrid high-order discretization combined
with Nitsche’s method for contact and Tresca friction in small strain elasticity,
SIAM J. Sci. Comput., 42 (2020), pp. A2300–A2324.

[58] F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin, and Y. Renard, An
overview of recent results on Nitsche’s method for contact problems, in Geomet-
rically unfitted finite element methods and applications, vol. 121 of Lect. Notes
Comput. Sci. Eng., Springer, Cham, 2017, pp. 93–141.

[59] F. Chouly and P. Hild, A Nitsche-based method for unilateral contact problems:
numerical analysis, SIAM J. Numer. Anal., 51 (2013), pp. 1295–1307.

[60] F. Chouly, P. Hild, and Y. Renard, Symmetric and non-symmetric vari-
ants of Nitsche’s method for contact problems in elasticity: theory and numerical
experiments, Math. Comp., 84 (2015), pp. 1089–1112.

[61] F. Chouly and Y. Renard, Explicit Verlet time–integration for a Nitsche–based
approximation of elastodynamic contact problems, Adv. Model. and Simul. in Eng.
Sci., 5 (2018), pp. 1–38.

[62] C. Christof and C. Haubner, Finite element error estimates in non-energy
norms for the two-dimensional scalar Signorini problem, Numer. Math., 145
(2020), pp. 513–551.

25



[63] P. G. Ciarlet, The finite element method for elliptic problems, vol. 40 of Classics
in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2002.

[64] M. Cicuttin, A. Ern, and N. Pignet, Hybrid high-order methods—a primer
with applications to solid mechanics, SpringerBriefs in Mathematics, Springer,
Cham, 2021.

[65] B. Cockburn, D. A. Di Pietro, and A. Ern, Bridging the hybrid high-order
and hybridizable discontinuous Galerkin methods, ESAIM Math. Model. Numer.
Anal., 50 (2016), pp. 635–650.

[66] P. Coorevits, P. Hild, K. Lhalouani, and T. Sassi, Mixed finite ele-
ment methods for unilateral problems: convergence analysis and numerical studies,
Math. Comp., 71 (2002), pp. 1–25.

[67] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric analysis,
John Wiley & Sons, Ltd., Chichester, 2009.

[68] M. Crouzeix and V. Thomée, The stability in Lp and W 1
p of the L2-projection

onto finite element function spaces, Math. Comp., 48 (1987), pp. 521–532.

[69] D. A. Di Pietro and J. Droniou, The hybrid high-order method for polytopal
meshes, vol. 19 of MS&A. Modeling, Simulation and Applications, Springer, Cham,
2020.

[70] D. A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin
methods, vol. 69 of Mathematics & Applications, Springer, Heidelberg, 2012.

[71] I. Dione, Towards optimal finite element error estimates for the penalized Dirichlet
problem in a domain with curved boundary, Comput. Math. Appl., 71 (2016),
pp. 76–84.

[72] N. D. dos Santos, J.-F. Gerbeau, and J.-F. Bourgat, A partitioned fluid-
structure algorithm for elastic thin valves with contact, Comput. Methods Appl.
Mech. Engrg., 197 (2008), pp. 1750–1761.

[73] D. Doyen, A. Ern, and S. Piperno, Time-integration schemes for the finite
element dynamic Signorini problem, SIAM J. Sci. Comput., 33 (2011), pp. 223–249.

[74] G. Drouet and P. Hild, Optimal convergence for discrete variational inequali-
ties modelling Signorini contact in 2D and 3D without additional assumptions on
the unknown contact set, SIAM J. Numer. Anal., 53 (2015), pp. 1488–1507.

[75] , An accurate local average contact method for nonmatching meshes, Numer.
Math., 136 (2017), pp. 467–502.

[76] G. Dupire, J. P. Boufflet, M. Dambrine, and P. Villon, On the necessity
of Nitsche term, Appl. Numer. Math., 60 (2010), pp. 888–902.

[77] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev
spaces, Math. Comp., 34 (1980), pp. 441–463.

[78] M. Duprez, V. Lleras, and A. Lozinski, A new ϕ-fem approach for problems
with natural boundary conditions, Numer. Methods Partial Differential Equations,
(2022). In press. https://doi.org/10.1002/num.22878.

[79] M. Duprez and A. Lozinski, ϕ-FEM: a finite element method on domains de-
fined by level-sets, SIAM J. Numer. Anal., 58 (2020), pp. 1008–1028.

[80] A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159
of Applied Mathematical Sciences, Springer-Verlag, New York, 2004.

[81] , Abstract nonconforming error estimates and application to boundary penalty
methods for diffusion equations and time-harmonic Maxwell’s equations, Comput.
Methods Appl. Math., 18 (2018), pp. 451–475.

26



[82] , Finite elements. I—Approximation and interpolation, vol. 72 of Texts in
Applied Mathematics, Springer, Cham, 2021.

[83] , Finite elements II—Galerkin approximation, elliptic and mixed PDEs,
vol. 73 of Texts in Applied Mathematics, Springer, Cham, 2021.

[84] M. A. Fernández, Coupling schemes for incompressible fluid-structure interac-
tion: implicit, semi-implicit and explicit, S⃗eMA Journal, no. 55, (2011), pp. 59–108.

[85] L. Formaggia, F. Gatti, and S. Zonca, An XFEM/DG approach for fluid-
structure interaction problems with contact, Appl. Math., 66 (2021), pp. 183–211.

[86] J. Freund and R. Stenberg, On weakly imposed boundary conditions for second
order problems, in Proceedings of the Ninth Int. Conf. Finite Elements in Fluids,
Venice, 1995, pp. 327–336.

[87] A. Fritz, S. Hüeber, and B. I. Wohlmuth, A comparison of mortar and
Nitsche techniques for linear elasticity, Calcolo, 41 (2004), pp. 115–137.

[88] V. V. Garg and S. Prudhomme, Enhanced functional evaluation for the finite
element penalty method, Comput. Math. Appl., 78 (2019), pp. 3821–3840.

[89] A. Gerstenberger and W. A. Wall, An extended finite element
method/Lagrange multiplier based approach for fluid-structure interaction, Com-
put. Methods Appl. Mech. Engrg., 197 (2008), pp. 1699–1714.

[90] V. Girault and R. Glowinski, Error analysis of a fictitious domain method
applied to a Dirichlet problem, Japan J. Indust. Appl. Math., 12 (1995), pp. 487–
514.

[91] R. Glowinski, T. Pan, and J. Périaux, A fictitious domain method for Dirich-
let problem and applications, Comput. Methods Appl. Mech. Engrg., 111 (1994),
pp. 283–303.

[92] R. Glowinski, T.-W. Pan, T. I. Hesla, and D. D. Joseph, A distributed
Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph.
Flow, 25 (1999), pp. 755–794.

[93] R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux,
A fictitious domain approach to the direct numerical simulation of incompressible
viscous flow past moving rigid bodies: application to particulate flow, J. Comput.
Phys., 169 (2001), pp. 363–426.

[94] T. Gustafsson, R. Stenberg, and J. Videman, Error analysis of Nitsche’s
mortar method, Numer. Math., 142 (2019), pp. 973–994.

[95] P. Hansbo, Nitsche’s method for interface problems in computational mechanics,
GAMM-Mitteilungen, 28 (2005), pp. 183–206.

[96] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompress-
ible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods
Appl. Mech. Engrg., 191 (2002), pp. 1895–1908.

[97] J. Haslinger, I. Hlaváček, and J. Nečas, Handbook of Numerical Analysis
(eds. P.G. Ciarlet and J.L. Lions), vol. IV, North Holland, 1996, ch. 2. “Numerical
methods for unilateral problems in solid mechanics”, pp. 313–385.

[98] J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the
extended finite element method, SIAM J. Numer. Anal., 47 (2009), pp. 1474–1499.

[99] F. Hecht, Quelques idées d’utilisation du C++ en calcul scientifique. 2014.

[100] P. Hild and Y. Renard, A stabilized Lagrange multiplier method for the finite
element approximation of contact problems in elastostatics, Numer. Math., 115
(2010), pp. 101–129.

27



[101] Q. Hu, F. Chouly, P. Hu, G. Cheng, and S. P. A. Bordas, Skew-symmetric
Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions,
patch coupling and frictionless contact, Comput. Methods Appl. Mech. Engrg., 341
(2018), pp. 188–220.

[102] S. Hüeber and B. I. Wohlmuth, A primal-dual active set strategy for non-
linear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194
(2005), pp. 3147–3166.

[103] T. J. R. Hughes and L. P. Franca, A new finite element formulation for com-
putational fluid dynamics. VII. The Stokes problem with various well-posed bound-
ary conditions: symmetric formulations that converge for all velocity/pressure
spaces, Comput. Methods Appl. Mech. Engrg., 65 (1987), pp. 85–96.

[104] M. Juntunen, On the connection between the stabilized Lagrange multiplier and
Nitsche’s methods, Numer. Math., 131 (2015), pp. 453–471.

[105] M. Juntunen and R. Stenberg, Nitsche’s method for general boundary condi-
tions, Math. Comp., 78 (2009), pp. 1353–1374.

[106] N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of varia-
tional inequalities and finite element methods, vol. 8 of SIAM Studies in Applied
Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 1988.

[107] S. Kollmannsberger, A. Özcan, J. Baiges, M. Ruess, E. Rank, and
A. Reali, Parameter-free, weak imposition of Dirichlet boundary conditions and
coupling of trimmed and non-conforming patches, Internat. J. Numer. Methods
Engrg., 101 (2015), pp. 670–699.

[108] S. Lemaire, Bridging the hybrid high-order and virtual element methods, IMA J.
Numer. Anal., 41 (2021), pp. 549–593.

[109] V. Lleras, A stabilized Lagrange multiplier method for the finite element approxi-
mation of frictional contact problems in elastostatics, Math. Model. Nat. Phenom.,
4 (2009), pp. 163–182.

[110] A. Lozinski, CutFEM without cutting the mesh cells: a new way to impose Dirich-
let and Neumann boundary conditions on unfitted meshes, Comput. Methods Appl.
Mech. Engrg., 356 (2019), pp. 75–100.

[111] , A primal discontinuous Galerkin method with static condensation on very
general meshes, Numer. Math., 143 (2019), pp. 583–604.

[112] N. Lüthen, M. Juntunen, and R. Stenberg, An improved a priori error
analysis of Nitsche’s method for Robin boundary conditions, Numer. Math., 138
(2018), pp. 1011–1026.

[113] B. Maury, Numerical analysis of a finite element/volume penalty method, SIAM
J. Numer. Anal., 47 (2009), pp. 1126–1148.

[114] U. M. Mayer, A. Popp, A. Gerstenberger, and W. A. Wall, 3D fluid-
structure-contact interaction based on a combined XFEM FSI and dual mortar
contact approach, Comput. Mech., 46 (2010), pp. 53–67.

[115] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge
University Press, Cambridge, 2000.

[116] N. Moës, E. Béchet, and M. Tourbier, Imposing Dirichlet boundary condi-
tions in the extended finite element method, Internat. J. Numer. Methods Engrg.,
67 (2006), pp. 1641–1669.

[117] V. P. Nguyen, T. Rabczuk, S. P. A. Bordas, and M. Duflot, Meshless
methods: a review and computer implementation aspects, Math. Comput. Simula-
tion, 79 (2008), pp. 763–813.

28



[118] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei
Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh.
Math. Sem. Univ. Hamburg, 36 (1971), pp. 9–15.

[119] C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), pp. 479–
517.

[120] J. Pitkäranta, Boundary subspaces for the finite element method with Lagrange
multipliers, Numer. Math., 33 (1979), pp. 273–289.

[121] , Local stability conditions for the Babuška method of Lagrange multipliers,
Math. Comp., 35 (1980), pp. 1113–1129.

[122] , The finite element method with Lagrange multipliers for domains with cor-
ners, Math. Comp., 37 (1981), pp. 13–30.

[123] S. Repin, S. Sauter, and A. Smolianski, A posteriori error estimation for
the Dirichlet problem with account of the error in the approximation of boundary
conditions, Computing, 70 (2003), pp. 205–233.

[124] F.-J. Sayas, T. S. Brown, and M. E. Hassell, Variational techniques for
elliptic partial differential equations, CRC Press, Boca Raton, FL, 2019.

[125] D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S. K. F. Stoter,
Y. Yu, and Y. Zhao, The non-symmetric Nitsche method for the parameter-free
imposition of weak boundary and coupling conditions in immersed finite elements,
Comput. Methods Appl. Mech. Engrg., 309 (2016), pp. 625–652.

[126] Z. C. Shi, On the convergence rate of the boundary penalty method, Internat. J.
Numer. Methods Engrg., 20 (1984), pp. 2027–2032.

[127] O. Steinbach, Numerical approximation methods for elliptic boundary value prob-
lems, Springer, New York, 2008.

[128] O. Steinbach, B. Wohlmuth, and L. Wunderlich, Trace and flux a priori
error estimates in finite-element approximations of Signorni-type problems, IMA
J. Numer. Anal., 36 (2016), pp. 1072–1095.

[129] R. Stenberg, On some techniques for approximating boundary conditions in the
finite element method, J. Comput. Appl. Math., 63 (1995), pp. 139–148.

[130] V. Thomée, Galerkin finite element methods for parabolic problems, vol. 25 of
Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1997.

[131] R. Verfürth, Finite element approximation of incompressible Navier-Stokes
equations with slip boundary condition. II, Numer. Math., 59 (1991), pp. 615–636.

[132] T. Warburton and J. S. Hesthaven, On the constants in hp-finite element
trace inverse inequalities, Comput. Methods Appl. Mech. Engrg., 192 (2003),
pp. 2765–2773.

[133] B. I. Wohlmuth, A mortar finite element method using dual spaces for the La-
grange multiplier, SIAM J. Numer. Anal., 38 (2000), pp. 989–1012.

[134] , Variationally consistent discretization schemes and numerical algorithms
for contact problems, Acta Numerica, (2011), pp. 569–734.

29


