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MEAN CURVATURE MOTION OF POINT CLOUD VARIFOLDS

Blanche Buet1,* and Martin Rumpf2

Abstract. This paper investigates a discretization scheme for mean curvature motion on point cloud
varifolds with particular emphasis on singular evolutions. To define the varifold a local covariance
analysis is applied to compute an approximate tangent plane for the points in the cloud. The core
ingredient of the mean curvature motion model is the regularization of the first variation of the varifold
via convolution with kernels with small stencil. Consistency with the evolution velocity for a smooth
surface is proven provided that a sufficiently small stencil and a regular sampling are considered.
Furthermore, an implicit and a semi-implicit time discretization are derived. The implicit scheme comes
with discrete barrier properties known for the smooth, continuous evolution, whereas the semi-implicit
still ensures in all our numerical experiments very good approximation properties while being easy
to implement. It is shown that the proposed method is robust with respect to noise and recovers the
evolution of smooth curves as well as the formation of singularities such as triple points in 2D or
minimal cones in 3D.
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1. Introduction

In this paper we study the discretization of mean curvature motion for point cloud varifolds. Point clouds
are the raw output data of 3D laser scanning devices and instead of applying a meshing algorithm which
approximates the point cloud with a triangular surface we aim for geometry processing methods directly on
the raw data. Particular emphasis is on a proper treatment of possibly noisy point distributions and geometric
singularities such as triple points or crease lines.

The direct processing of point clouds has intensively been studied in the literature. Using the normal cycle from
geometric measure theory Cohen-Steiner and Morvan [16] were able to robustly compute the shape operator
of a triangular mesh and they gave explicit error bounds. Yang and Qian [38] used a moving least square
approach to compute curvature quantities on point cloud surfaces. In Chazal et al. [13] investigated the curvature
estimation problem in particular for point cloud data. They showed that different curvature measures can stably
be computed for compact sets with positive 𝜇-reach using distance functions to the set and evaluating curvatures
on them. Mérigot et al. [31] used a covariance analysis based on the local Voronoi tesselation to compute a robust
discrete curvature for a point cloud surface. Yang et al. [39] used barycenters of spherical neighborhoods on
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multiple scales to derive formulas for the principle curvatures of a surface. This approach is based on the
observation that the vector offset between barycenters for different radii of the balls or spheres depends on the
surface curvature. Chazal et al. [13] followed the same approach and showed how this can be used to obtain
approximations of generalized notions of curvature proposed by Federer.

In the processing of discrete surfaces the evolution by mean curvature motion is a fundamental tool and one
of the basic fairing algorithms [18]. For the numerical discretization of mean curvature motion for hypersurfaces
there are three widespread approaches corresponding to the representation of the hypersurfaces as a triangular
surface [3, 17, 19], a level set [21, 30, 36], or a diffusive phase field interface [9, 23, 24]. For the representation of
surfaces by point clouds a mean curvature motion scheme has been derived in [15] based on the reconstruction
of a local triangulation. In [34] a special type of surface covering is defined for point clouds, which enable the
stable evaluation of surface Laplacians and associated evolution problems.

The varifold perspective has been used in the context of curve or surface matching in [27] based on earlier
work in [11]. Here, a set of simplices and simplex normals is encoded as a measure on R𝑛 × 𝑆𝑛−1 and equipped
with the structure of a reproducing kernel Hilbert space with suitable kernels for the position in R𝑛 and the
orientation in 𝑆𝑛−1. This approach is then used for the registration of curves and surfaces without point to
point correspondence. A recent overview of these tools in the context of diffeomorphic registration can be found
in [12].

In the context of this paper, we adopt a varifold perspective on point clouds and take advantage of the
framework developed in [10] to estimate mean curvature with theoretical convergence guarantees. More precisely,
we define a point cloud varifold by applying a local covariance analysis on the input set of points. This allows
us to assign an approximate tangent space as well as a weight to each point. This leads to a natural varifold
structure where point clouds are encoded through a weighted sum of Dirac masses plus orientation. We can
subsequently consider the first variation of such a varifold and apply a suitable regularization via the convolution
with a kernel with small stencil. The resulting regularized first variation is considered as the motion field for
the mean curvature flow and an implicit and a semi-implicit time discretization are derived.

A particularity when processing directly point clouds is that it allows topological changes, concentration and
merging of points very naturally. As consequence, while the formation of a triple point is a singularity at the
continuous level, it is not from the point of view of point cloud evolution. We take advantage of this feature
to recover some well–known minimizing sets like Steiner trees connecting the vertices of a square in 2D and
minimal cones over the edges of a tetrahedron, which is known to be one of the basic minimal cones in 3D
together with the plane and the triple junction of half-planes [37]. Furthermore, we compute minimal area sets
spanned by the edges of a cube. However, while we can compare the limit set for time tending to infinity with
sets that are known to be minimal (or at least with competitors with respect to surface area measures), the
theoretical context for the evolution is not clear.

As we are dealing with a mean curvature discretization derived thanks to varifolds tools, it is very natural to
think of Brakke flow that generalizes the notion of mean curvature flow to varifolds (see the seminal paper of
Brakke [6] and the existence theorem of Brakke flow moving with singularities established by Kim and Tonegawa
in [28]). Nevertheless, Brakke’s construction evolves the whole varifold structure, pushing the positions by the
mean curvature vector 𝐻 and updating the tangent planes using the differential of 𝐻. On the other hand, the
discrete flow under study only evolves positions of the points while tangents are updated from the positions,
which is actually an important difference. Furthermore, we do not propagate density along the flow but we rather
compute a weight for each point, again from the positions, in order to enforce a multiplicity 1 everywhere.
Assuming a unit multiplicity is reasonable when starting from a compact hypersurface, indeed, it has been
proven in [22] that for almost all neighboring level sets, there exists a unique Brakke flow, with unit multiplicity
for almost all times.

We stress that results on existence and uniqueness beyond the creation of singularities are mostly obtained
under the assumption that the set evolving by mean curvature can be represented as the boundary of some open
set (which is in general not the case for Brakke flow). We mention two major approaches: in [14,21] the issue is
tackled through so-called viscosity solutions while [25] is based on the Allen-Cahn phase field model. In the case
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of planar networks, the flow has been studied in [29] starting from a regular network, that is restricted to triple
point singularities, and more recently the case of more general junctions could be handled in [26]. Note that in
our simulations, we observe that four junctions in the initial data instantaneously split into two triple junctions,
consistently with what is expected for planar networks. On the numerical side, all parametric (mesh based)
approaches work with a fixed topology and enable under this constraint very good approximation results, e.g.
in [8,32,33] with the drawback that there is an a priori choice or a required combinatorial optimization among
all possible layouts of the smooth patches.

We emphasize two main contributions of this paper. First, we propose a numerical scheme that performs
mean curvature motion beyond the creation of singularities. Taking advantage of the flexibility of point cloud
representation, there is no a priori choice on the structure of singularities and expected minimal cones naturally
form as smooth portions collapse. We illustrate the strength of this approach in Figures 7–11 where we are able
to recover well-known singular soap films. Besides those conclusive numerical experiments, such a flow satisfies
discrete counterparts to comparison principles that hold for mean curvature flow as described in Section 5.3.
We also provide with Theorem 4.8 an improved convergence result for the approximate mean curvature. The
assumptions on the limit varifold are weak enough (recalling that we are dealing with curvature issues): we
require that the first variation is Radon and the mass of the varifold is Ahlfors regular. Introducing a divergence
(4.5) among varifolds, based on flat and Prokhorov type distances, we are able to prove the convergence under
the minimal assumption of weak star convergence of varifolds, with a quantitative and spatially uniform speed.
Former results stated in [10] required, in turn, technical assumption (5.24) adding up to weak star convergence.
We point out that proving a convergence result on curvature assuming only weak star convergence of discrete
objects allows to embrace a wide class of discretizations.

The paper is organized as follows. In Section 2 we recall classical facts concerning varifolds, focusing on
the so-called first variation and generalized mean curvature. Using a regularization via convolution, we define
in Section 3 the generalized mean curvature model for point clouds varifolds and establish its consistency in
Proposition 3.3. Its stability is then investigated in Section 4, resulting in Theorem 4.8 and convergence stated
in Corollary 4.9. Section 5 describes how we define a point cloud varifold from a set of points i.e. how we
compute tangent planes and weights for each point. Furthermore, we define time continuous curvature motion
of point clouds, study planar and spherical comparison principles, and derive implicit and semi-implicit time
discretization schemes. Finally in Section 6 we present numerical results and discuss properties of the derived
scheme.

2. Varifolds and generalized mean curvature

In this section we will review the basic notions of 𝑑-varifolds in R𝑛 and first variation of such varifolds. Of
particular interest for this paper will be the case of generalized curves in R2 (𝑑 = 1, 𝑛 = 2) and generalized
surfaces in R3 (𝑑 = 2, 𝑛 = 3). The 𝑑–dimensional Hausdorff measure in R𝑛 is denoted by ℋ𝑑, and the space
of continuous compactly supported function between two metric spaces by C𝑐(𝑋,𝑌 ) and C𝑐(𝑋) if 𝑌 = R. The
𝑑–Grassmannian

𝐺𝑑,𝑛 = {𝑑–vector subspace of R𝑛}.

is embedded into 𝑛× 𝑛 matrices via the mapping that associates with the 𝑑–subspace 𝑃 ∈ 𝐺𝑑,𝑛 the orthogonal
projector Π𝑃 onto 𝑃 . The operator norm on matrices consequently induces a distance on 𝐺𝑑,𝑛. With this
notation at hand let us give the definition of a 𝑑-varifold.

Definition 2.1 (Varifold). A 𝑑–varifold in an open set Ω ⊂ R𝑛 is a Radon measure in Ω×𝐺𝑑,𝑛.

For detailed discussions on varifolds and underlying geometric measure theory tools we refer to [1, 35]. We
thereafter consider 𝑑–varifolds in the whole space Ω = R𝑛. Such measures can be understood as a coupling of
spatial (in R𝑛) and directional (in 𝐺𝑑,𝑛) information. Integrating on all possible directions, that is on the whole
Grassmannian, allows to select the spatial information encoded in a 𝑑–varifold 𝑉 : the resulting Radon measure
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denoted by ‖𝑉 ‖ is called the mass of 𝑉 and is defined in R𝑛 as

‖𝑉 ‖(𝐴) = 𝑉 (𝐴×𝐺𝑑,𝑛).

for all Borel sets 𝐴 ⊂ R𝑛.
In this paper, we will focus on two types of varifolds: varifolds associated with a smooth 𝑑–submanifold of R𝑛

(referred to as smooth varifolds, see Def. 2.2) and varifolds associated with a finite set of points in R𝑛, positive
weights and tangent 𝑑–planes in 𝐺𝑑,𝑛 (referred to as point cloud varifolds, see Def. 2.4).

Definition 2.2 (Smooth varifold). The 𝑑–varifold 𝑉 associated with a 𝑑–submanifold 𝑀 ⊂ R𝑛 is defined by

𝑉 (𝐵) = ℋ𝑑 ({𝑥 ∈𝑀 : (𝑥, 𝑇𝑥𝑀) ∈ 𝐵}) , (2.1)

for every Borel set 𝐵 ⊂ R𝑛 × 𝐺𝑑,𝑛. Here, 𝑇𝑥𝑀 denotes the tangent plane at 𝑥. In this case, ‖𝑉 ‖ = ℋ𝑑
|𝑀 . We

will use the notation 𝑉 = ℋ𝑑
|𝑀 ⊗ 𝛿𝑇𝑥𝑀 for the varifold defined in (2.1).

Smooth varifolds are a particular case of rectifiable varifolds (see [35]).

Remark 2.3. As a 𝑑-varifold is a Radon measure, it can be equivalently defined by its action on continuous
compactly supported functions: 𝑉 is the smooth varifold associated with 𝑀 according to Definition 2.2 if and
only if for every 𝜙 ∈ C𝑐(R𝑛 ×𝐺𝑑,𝑛),∫︁

(𝑥,𝑆)∈R𝑛×𝐺𝑑,𝑛

𝜙(𝑥, 𝑆) 𝑑𝑉 (𝑥, 𝑆) =
∫︁

𝑥∈R𝑛∩𝑀

∫︁
𝑆∈𝐺𝑑,𝑛

𝜙(𝑥, 𝑆)𝑑𝛿𝑇𝑥𝑀 (𝑆) 𝑑ℋ𝑑(𝑥)

=
∫︁

𝑀

𝜙(𝑥, 𝑇𝑥𝑀) 𝑑ℋ𝑑(𝑥).

Definition 2.4 (Point cloud varifold). Given a finite set of points {𝑥𝑖}𝑁
𝑖=1 ⊂ R𝑛, masses (weights) {𝑚𝑖}𝑁

𝑖=1 ⊂
R*+ and space of directions {𝑃𝑖}𝑁

𝑖=1 ⊂ 𝐺𝑑,𝑛, we associate the 𝑑–varifold

𝑉 =
𝑁∑︁

𝑖=1

𝑚𝑖𝛿(𝑥𝑖,𝑃𝑖) and in this case ‖𝑉 ‖ =
𝑁∑︁

𝑖=1

𝑚𝑖𝛿𝑥𝑖 .

Note that 𝑃𝑖 can be any set of directions in 𝐺𝑑,𝑛, however if the points {𝑥𝑖}𝑖 sample some surface or
submanifold 𝑀 , then {𝑃𝑖}𝑖 can be thought of as tangent planes 𝑇𝑥𝑖

𝑀 .
As in the case of smooth varifolds, we can define a point cloud varifold through its action on compactly

supported continuous functions. Indeed, we have for 𝜙 ∈ C𝑐(R𝑛 ×𝐺𝑑,𝑛)∫︁
𝜙𝑑𝑉 =

𝑁∑︁
𝑖=1

𝑚𝑖𝜙(𝑥𝑖, 𝑃𝑖).

The set of 𝑑–varifolds is endowed with a weak notion of mean curvature which we eventually define in
Definition 2.7. At first, let us introduce the first variation, which is well–defined for any 𝑑–varifold. For this
purpose we need the following differential operators: let 𝑃 ∈ 𝐺𝑑,𝑛, Π𝑃 be the orthogonal projection onto 𝑃
and (𝜏1, . . . , 𝜏𝑑) be an orthonormal basis of 𝑃 , let 𝑋 = (𝑋1, . . . , 𝑋𝑛) ∈ C1(R𝑛,R𝑛) be a vector field of class C1,
𝜙 ∈ C1(R𝑛) and (𝑒1, . . . , 𝑒𝑛) be the canonical basis of R𝑛, then

∇𝑃𝜙 = Π𝑃 (∇𝜙) and div𝑃𝑋 =
𝑛∑︁

𝑖=1

Π𝑃 (∇𝑋𝑖) · 𝑒𝑖 =
𝑑∑︁

𝑖=1

𝐷𝑋𝜏𝑖 · 𝜏𝑖.

Now, with these differential operators at hand we can define the first variation:
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Definition 2.5 (First variation of a varifold, [2]). The first variation of a 𝑑–varifold 𝑉 in R𝑛 is the distribution
of order 1

𝛿𝑉 : C1
𝑐(R𝑛,R𝑛) → R

𝑋 ↦→
∫︁

R𝑛×𝐺𝑑,𝑛

div𝑆𝑋(𝑥) 𝑑𝑉 (𝑥, 𝑆).

Remark 2.6. We could equivalently define the first variation based on scalar test functions. Indeed, with a
slight misuse of notation define for 𝜙 ∈ C1

𝑐(R𝑛),

𝛿𝑉 (𝜙) := (𝛿𝑉 (𝜙𝑒1), . . . , 𝛿𝑉 (𝜙𝑒𝑛)) =
𝑛∑︁

𝑖=1

𝛿𝑉 (𝜙𝑒𝑖)𝑒𝑖 so that 𝛿𝑉 (𝑋) =
𝑛∑︁

𝑖=1

𝛿𝑉 (𝑋 · 𝑒𝑖) · 𝑒𝑖.

Moreover, div𝑆(𝜙𝑒𝑖) = ∇𝑆𝜙 · 𝑒𝑖 and finally 𝛿𝑉 (𝜙) =
∫︁

R𝑛×𝐺𝑑,𝑛

∇𝑆𝜙(𝑥) 𝑑𝑉 (𝑥, 𝑆).

Let 𝑀 ⊂ R𝑛 be a closed C2 𝑑–submanifold, if 𝑉 = ℋ𝑑
|𝑀 ⊗ 𝛿𝑇𝑥𝑀 is the smooth varifold naturally associated with

𝑀 , then by definition of 𝑉 (see Rem. 2.3),∫︁
R𝑛×𝐺𝑑,𝑛

div𝑆𝑋(𝑥) 𝑑𝑉 (𝑥, 𝑆) =
∫︁

𝑀

div𝑇𝑥𝑀𝑋(𝑥) 𝑑ℋ𝑑(𝑥),

and thus, thanks to the divergence theorem we obtain for every 𝑋 ∈ C1
𝑐(R𝑛,R𝑛),

𝛿𝑉 (𝑋) =
∫︁

𝑀

div𝑇𝑥𝑀𝑋(𝑥) 𝑑ℋ𝑑(𝑥) = −
∫︁

𝑀

𝐻(𝑥) ·𝑋(𝑥) 𝑑ℋ𝑑(𝑥),

where 𝐻 is the mean curvature vector of 𝑀 . In this case 𝛿𝑉 is more regular than a distribution of order 1, it is
a distribution of order 0 and can be identified thanks to Riesz theorem with the vector valued Radon measure

−𝐻(𝑥)ℋ𝑑
|𝑀 (𝑥) = −𝐻(𝑥) ‖𝑉 ‖(𝑥). (2.2)

Actually, as soon as 𝑉 is a 𝑑–varifold (not necessarily associated with a smooth submanifold) whose first
variation is a distribution of order 0 (𝑉 is then said to have locally bounded first variation), then there is a weak
counter-part to the divergence theorem. Indeed, for such a varifold, we can identify the distribution 𝛿𝑉 with
the associated Radon measure provided by Riesz theorem. Then, thanks to the Radon-Nikodym decomposition
of 𝛿𝑉 with respect to the mass ‖𝑉 ‖, there exist a vector field denoted 𝛿𝑉

‖𝑉 ‖ ∈ L1
𝑙𝑜𝑐(‖𝑉 ‖) and a Radon measure

(𝛿𝑉 )𝑠 singular with respect to ‖𝑉 ‖ (which might vanish) such that the decomposition

𝛿𝑉 =
𝛿𝑉

‖𝑉 ‖
(𝑥) ‖𝑉 ‖+ (𝛿𝑉 )𝑠 (2.3)

holds. Comparing (2.2) and (2.3) the generalized mean curvature vector naturally arises as the Radon-Nikodym

derivative 𝐻 = − 𝛿𝑉

‖𝑉 ‖
. Let us resume the previous observations in the following definition.

Definition 2.7 (Generalized mean curvature, [2]). Let 𝑉 be a 𝑑–varifold in R𝑛. Assume that 𝑉 has locally
bounded first variation, i.e. ∀𝐾 ⊂ R𝑛 compact set, ∃𝑐𝐾 > 0 such that for every 𝑋 ∈ C1

𝑐(R𝑛,R𝑛) supported in
𝐾,

|𝛿𝑉 (𝑋)| ≤ 𝑐𝐾 sup
𝐾
|𝑋|. (2.4)

Then 𝛿𝑉 can be identified with a Radon measure and the generalized mean curvature vector 𝐻 is defined as the
Radon-Nikodym derivative of 𝛿𝑉 with respect to ‖𝑉 ‖, moreover, for ‖𝑉 ‖–a.e. 𝑥 and for 𝐵(𝑥, 𝑟) denoting the
open ball of radius 𝑟 centered at 𝑥 we get

𝐻(𝑥) = − lim
𝑟→0+

𝛿𝑉 (𝐵(𝑥, 𝑟))
‖𝑉 ‖(𝐵(𝑥, 𝑟))

.
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See Section 2.4 in [1] for more details on differentiation of Radon measures. Notice that both classical and the
generalized mean curvature coincide in the case of a smooth varifold associated with a closed C2 manifold as
shown above (2.2).

Let us now consider an example involving a triple point singularity.

Example 2.8 (Junction of half-lines). Let 𝑢1, 𝑢2, 𝑢3 be unit vectors of R2 and 𝐷𝑖 for 𝑖 ∈ {1, 2, 3} be the half-line
{𝑡𝑢𝑖 : 𝑡 ∈ R+} and 𝑉𝑖 = ℋ1

|𝐷𝑖
⊗𝛿span(ui) be the smooth 1–varifold associated with 𝐷𝑖. Then 𝑉 = 𝑉1+𝑉2+𝑉3 is a

1–varifold spatially supported by the union of three half-lines meeting at 0 and by linearity 𝛿𝑉 = 𝛿𝑉1+𝛿𝑉2+𝛿𝑉3.
Now, we obtain 𝛿𝑉𝑖 = −𝑢𝑖𝛿0 for 𝑖 ∈ {1, 2, 3}. Indeed, for 𝑋 ∈ C1

𝑐(R2,R2) and for 𝑡 ∈ R+,

divspan(ui)𝑋(𝑡𝑢𝑖) = 𝐷𝑋(𝑡𝑢𝑖)𝑢𝑖 · 𝑢𝑖 and 𝐷𝑋(𝑡𝑢𝑖)𝑢𝑖 =
𝑑

𝑑𝑡
(𝑋(𝑡𝑢𝑖)), therefore:

𝛿𝑉𝑖(𝑋) =
∫︁

𝐷𝑖

divspan(ui)𝑋 𝑑ℋ1 =
∫︁ +∞

𝑡=0

𝑑

𝑑𝑡
(𝑋(𝑡𝑢𝑖)) 𝑑𝑡 · 𝑢𝑖 = −𝑋(0) · 𝑢𝑖 = −𝛿0(𝑋) · 𝑢𝑖.

We eventually obtain 𝛿𝑉 = −(𝑢1 + 𝑢2 + 𝑢3)𝛿0 and in particular 𝛿𝑉 = 0 if and only if 0 is a triple point with
angles 2

3𝜋 formed by the half-lines. Otherwise, if 𝑢1 + 𝑢2 + 𝑢3 ̸= 0, the singularity in 0 produces a non-zero
singular curvature (𝛿𝑉 )𝑠 = −(𝑢1 + 𝑢2 + 𝑢3)𝛿0.

We emphasize that the notion of first variation is well–defined for any 𝑑–varifold while the notion of generalized
mean curvature requires some additional regularity of the varifold: it can be defined only if 𝑉 has locally bounded
first variation in the sense of (2.4) that is equivalent to requiring that 𝛿𝑉 identifies with a (vector–valued) Radon
measure thanks to Riesz representation theorem. In the previous example, though singular with respect to the
mass measure ‖𝑉 ‖ = ℋ1

|𝐷1
+ℋ1

|𝐷2
+ℋ1

|𝐷3
, the first variation 𝛿𝑉 = −(𝑢1 + 𝑢2 + 𝑢3)𝛿0 is a Dirac mass that is,

in particular, a Radon measure. Unfortunately, the first variation of a point cloud varifold does not meet this
assumption, as we now explain. Let us consider a very simple point cloud 1–varifold in R consisting of one single
point 𝑥1 = 0 weighted by mass 𝑚1 = 1 and with 𝑃1 = R: 𝑉 = 𝛿(0,R). For 𝑋 ∈ C1

𝑐(R,R) we obtain in this case

𝛿𝑉 (𝑋) =
∫︁

R
divR𝑋 𝑑𝛿0 = divR𝑋(0) = 𝑋 ′(0) = 𝛿0(𝑋 ′) = −(𝛿0)′(𝑋).

It is well–known that the distributional derivative of a Dirac mass is not a Radon measure. In fact, this
observation directly extends to any point cloud varifold 𝑉 =

∑︀𝑁
𝑖=1𝑚𝑖𝛿(𝑥𝑖,𝑃𝑖) and the first variation of 𝑉 is

never locally bounded (take test functions whose support contains a single point 𝑥𝑖). This was the motivation for
introducing in [10] approximate counterparts of first variation and generalized mean curvature via convolution.
In this paper we will make extensive use of these notions. We hence summarize in the next section what is
needed within the scope of this paper.

3. Regularization VIA convolution

In the first part of this section we recall a regularization of the generalized mean curvature (see Def. 3.2) based
on the convolution of both first variation and mass with appropriately chosen kernels. The original definition
of this regularized mean curvature from [10] ensures consistency for a very large class of varifolds (rectifiable
varifolds with locally bounded first variation). In the second part of the section, we will introduce several variants
of a regularized mean curvature vector which are all consistent with the mean curvature vector of a smooth
hypersurface (see Prop. 3.3). The difference lays in the choice of a projection operator denoted by Π hereafter.
As we will see in Sections 5.3 and 6 the concrete choice of the projection operator Π matters on one hand in
the presence of singularities and on the other hand for the numerical stability of the time discrete scheme.

From now on and for the sake of simplicity, we only consider varifolds with finite mass, that is ‖𝑉 ‖(R𝑛) <∞
(as ‖𝑉 ‖ is a Radon measure, ‖𝑉 ‖ is finite when restricted to any bounded open set). We refer to [10] for
additional details on steps leading to the notion of approximate mean curvature (see Def. 3.2) that we now
briefly sketch.
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Let us consider fixed functions 𝜌, 𝜉 ∈ C∞(R), which are nonnegative even and compactly supported in [−1, 1].
We additionally assume that 𝜌 and 𝜉 are positive in ]0, 1[ and 𝜌 is nonincreasing in [0, 1].

Then we define associated mollifiers (𝜌𝜀)𝜀>0, (𝜉𝜀)𝜀>0 in R𝑛 as follows: for 𝑥 ∈ R𝑛, 𝜀 > 0, 𝜌𝜀(𝑥) = 𝜀−𝑛𝜌(|𝑥|/𝜀)
and 𝜉𝜀(𝑥) = 𝜀−𝑛𝜉(|𝑥|/𝜀). We additionally assume that for all 𝑠 ∈]− 1, 1[,

𝑛𝜉(𝑠) = −𝑠𝜌′(𝑠), (3.1)

that is, we can fix 𝜌 and then define 𝜉 satisfying the above equation. Note that such a choice (e.g. compared
with 𝜉 = 𝜌) improves numerical stability of the approximate mean curvature, as already detailed in Section 6 of
[10]. Interestingly, (3.1) appears to be a crucial point when stating comparison principle in Sections 5 and 5.3,
see for instance proof of Proposition 5.2.

For instance we can choose

𝜌(𝑠) = exp
(︂

1
𝑠2 − 1

)︂
and 𝜉(𝑠) =

2
𝑛

𝑠2

(𝑠2 − 1)2
exp

(︂
1

𝑠2 − 1

)︂
for 𝑠 ∈]− 1, 1[.

The 𝜀–regularized first variation is then defined as the convolution of 𝛿𝑉 with 𝜌𝜀: for 𝑋 ∈ C1
𝑐(R𝑛,R𝑛),

(𝛿𝑉 * 𝜌𝜀) (𝑋) := 𝛿𝑉 (𝑋 * 𝜌𝜀) with (𝑋 * 𝜌𝜀)(𝑥) :=
∫︁

𝑦∈R𝑛

𝜌𝜀(𝑥− 𝑦)𝑋(𝑦)𝑑𝑦.

Easy computations lead to (𝛿𝑉 * 𝜌𝜀) (𝑋) =
∫︁

R𝑛

𝑔𝜀(𝑥) ·𝑋(𝑥) 𝑑𝑥, where

𝑔𝜀(𝑥) =
1

𝜀𝑛+1

∫︁
R𝑛×𝐺𝑑,𝑛

𝜌′
(︂
|𝑦 − 𝑥|
𝜀

)︂
Π𝑆

(︂
𝑦 − 𝑥

|𝑦 − 𝑥|

)︂
𝑑𝑉 (𝑦, 𝑆) =: 𝛿𝑉 * 𝜌𝜀(𝑥) for 𝑥 ∈ R𝑛. (3.2)

Consequently 𝛿𝑉 * 𝜌𝜀 identifies with its Lebesgue L1–density 𝑔𝜀 ∈ L1
𝑙𝑜𝑐(R𝑛).

Remark 3.1. Note that 𝜌′(|𝑧|) 𝑧
|𝑧| −−−−→|𝑧|→0

0 thanks to 𝜌′(0) = 0.

In order to define a regularized generalized mean curvature, it remains to write the Radon-Nikodym decom-
position of the regularized first variation 𝛿𝑉 * 𝜌𝜀 with respect to the regularized mass ‖𝑉 ‖ * 𝜉𝜀. As for the first
variation, we identify ‖𝑉 ‖ * 𝜉𝜀 with the associated Lebesgue L1–density function defined as

‖𝑉 ‖ * 𝜉𝜀(𝑥) =
1
𝜀𝑛

∫︁
R𝑛

𝜉

(︂
|𝑦 − 𝑥|
𝜀

)︂
𝑑‖𝑉 ‖(𝑦), 𝑥 ∈ R𝑛.

Considered as Radon measures, both 𝛿𝑉 * 𝜌𝜀 and ‖𝑉 ‖ * 𝜉𝜀 are absolutely continuous with respect to Lebesgue
measure and consequently the Radon-Nikodym decomposition of 𝛿𝑉 * 𝜌𝜀 with respect to ‖𝑉 ‖ * 𝜉𝜀 is

𝛿𝑉 * 𝜌𝜀 =
𝛿𝑉 * 𝜌𝜀(𝑥)
‖𝑉 ‖ * 𝜉𝜀(𝑥)

(‖𝑉 ‖ * 𝜉𝜀) =
𝛿𝑉 * 𝜌𝜀(𝑥)
‖𝑉 ‖ * 𝜌𝜀(𝑥)⏟  ⏞  
→ 𝛿𝑉

‖𝑉 ‖

‖𝑉 ‖ * 𝜌𝜀(𝑥)
‖𝑉 ‖ * 𝜉𝜀(𝑥)⏟  ⏞  

→
∫︀ 1

0
𝜌(𝑠)𝑠𝑑−1𝑑𝑠∫︀ 1

0
𝜉(𝑠)𝑠𝑑−1𝑑𝑠

=
𝑛

𝑑

(‖𝑉 ‖ * 𝜉𝜀)

Finally, we obtain the following definition for the approximate mean curvature

Definition 3.2 (Approximate mean curvature ([10], 4.1)). Let 𝑉 be a 𝑑–varifold in R𝑛, for 𝑥 ∈ R𝑛, 𝜀 > 0, we
define

𝐻𝜀(𝑥, 𝑉 ) := − 𝑑
𝑛

𝛿𝑉 * 𝜌𝜀(𝑥)
‖𝑉 ‖ * 𝜉𝜀(𝑥)

(3.3)

which we refer to as 𝜀–approximate curvature.
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The ratio 𝑑
𝑛 is due to the particular choice of 𝜉 and 𝜌 fulfilling (3.1). Note that we could take other kernel

functions not necessarily satisfying relation (3.1)) to regularize the first variation 𝛿𝑉 and the mass ‖𝑉 ‖ (e.g.
the same kernel both for the variation and the mass). In this case the consistency when 𝜀 → 0 would still
hold replacing 𝑑/𝑛 in (3.3) by the appropriate constant. Nevertheless, (3.1) gives better numerical results that
can be understood by expanding |𝐻(𝑥) − 𝐻𝜀(𝑥, 𝑉 )| when 𝜀 → 0 (see [10]). We point out that this very same
assumption (3.1) on the kernels enables us to prove a discrete maximum principle on our time discrete scheme
(see Prop. 5.4).

Finally, let us remark that no assumption on 𝛿𝑉 is necessary to define 𝐻𝜀(·, 𝑉 ). It is well–defined even if 𝛿𝑉

is not locally bounded. In particular for a point cloud varifold 𝑉 =
𝑁∑︁

𝑗=1

𝑚𝑗𝛿(𝑥𝑗 ,𝑃𝑗) we obtain for 𝑖 ∈ {1, . . . , 𝑁}

𝐻𝜀(𝑥𝑖, 𝑉 ) = − 𝑑

𝑛𝜀

𝑁∑︁
𝑗=1,𝑗 ̸=𝑖

𝑚𝑗𝜌
′
(︂
|𝑥𝑗 − 𝑥𝑖|

𝜀

)︂
Π𝑃𝑗

(︂
𝑥𝑗 − 𝑥𝑖

|𝑥𝑗 − 𝑥𝑖|

)︂
𝑁∑︁

𝑗=1

𝑚𝑗𝜉

(︂
|𝑥𝑗 − 𝑥𝑖|

𝜀

)︂ .

In addition to consistency when 𝜀 → 0, it is furthermore possible to state stability and convergence results
with respect to a localized flat distance between varifolds (see [10], Thm. 4.3 and 4.5). When dealing with
smooth objects, expression (3.3) can be modified in various ways preserving its consistency. In the rest of this
section, we investigate several variants of approximate mean curvatures and establish their consistency with
the classical mean curvature for smooth hypersurfaces in Proposition 3.3. While their is no significant benefit
from considering those variants for computing an approximate curvature on a smooth hypersurface, they lead
to numerical schemes for curvature flow behaving quite differently as shown in Sections 5.3 and 6.

More precisely, replacing Π𝑆 in (3.2) by some linear operator Π : R𝑛 → R𝑛 that may depend on 𝑥0, 𝑥 ∈ R𝑛

and 𝑆 ∈ 𝐺𝑑,𝑛 we introduce

𝐻𝛱
𝜀 (𝑥0, 𝑉 ) = − 𝑑

𝑛𝜀

∫︁
R𝑛×𝐺𝑑,𝑛

𝜌′
(︂
|𝑥− 𝑥0|

𝜀

)︂
Π(𝑥− 𝑥0)
|𝑥− 𝑥0|

𝑑𝑉 (𝑥, 𝑆)∫︁
R𝑛

𝜉

(︂
|𝑥− 𝑥0|

𝜀

)︂
𝑑‖𝑉 ‖(𝑥)

. (3.4)

We will consider Π ∈ {Π𝑆 , −2 Π𝑆⊥ , 2 Id}, also post-composed with a projection onto the normal space at 𝑥0.
Notice that Π = Π𝑆 exactly corresponds to Definition 3.2. Moreover, the mean curvature of a C2–submanifold
𝑀 is a normal vector and post-composing with a projection onto the normal space (𝑇𝑥0𝑀)⊥ is then natural.
We add that Brakke proved in [6] this orthogonality of the mean curvature vector extends to integral varifolds
with locally bounded first variation.

Proposition 3.3 (Consistency for smooth varifolds). Assume 𝑑 = 𝑛 − 1 and let 𝑀 ⊂ R𝑛 be a 𝑑–submanifold
of class C2, whose mean curvature vector is denoted by 𝐻 : 𝑀 → R𝑛, and let 𝑉 = ℋ𝑑

|𝑀 ⊗ 𝛿𝑇𝑥𝑀 . Then, one
obtains that

𝐻𝛱
𝜀 (𝑥0, 𝑉 ) −−−→

𝜀→0
𝐻(𝑥0).

for all 𝑥0 ∈ 𝑀 and for Π ∈ {Π𝑆 , −2Π𝑆⊥ , 2Id}, and post-composed with Π(𝑇𝑥0𝑀)⊥ for Π ∈{︁
Π(𝑇𝑥0𝑀)⊥ ∘Π𝑆 , −2Π(𝑇𝑥0𝑀)⊥ ∘Π𝑆⊥ , 2Π(𝑇𝑥0𝑀)⊥

}︁
. If 𝑀 is at least C3 then

⃒⃒
𝐻𝛱

𝜀 (𝑥0, 𝑉 )−𝐻(𝑥0)
⃒⃒

= 𝑂(𝜀).
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Note that a corresponding result holds true for any codimension greater or equal than 1. Nevertheless, for the
sake of simplicity and because we consider only the codimension 1 case in our numerical applications we state
and prove the result only for 𝑑 = 𝑛− 1.

Before we prove this proposition in the general case, let us depict the simplest case of a quadratic curve in
R2. Taking into account 𝑛𝜉(𝑠) = −𝑠𝜌(𝑠) we obtain

𝐻𝜀(𝑥0, 𝑉 ) =

∫︀
𝑀
𝜉(𝑥−𝑥0

𝜀 ) 1
|𝑥−𝑥0|2 Π(𝑥− 𝑥0) dℋ1∫︀

𝑀
𝜉(𝑥−𝑥0

𝜀 ) dℋ1

We define 𝑀 = {𝑥 = (𝑦,−𝑎𝑦2) | 𝑦 ∈ R} and set 𝑥0 = 0. Then the normal on 𝑀 is 𝜈 = (2𝑎𝑦,1)√
1+4𝑎2𝑦2

. For

Π = 2Id we get 1
|𝑥|2 Π𝑥 = (2𝑦/𝑦2,−2𝑎)

(1+𝑎2𝑦2) and thus using the symmetry in 𝑦 we get 𝐻𝜀(𝑥0, 𝑉 ) = (0,−2𝑎) +𝑂(𝜀). For
Π = −2Π(𝑇𝑥𝑀)⊥ , one computes 1

|𝑥|2 Π𝑥 = 1
𝑦2+𝑎2𝑦4

−2
1+4𝑎2𝑦2 (4𝑎2𝑦3, 𝑎𝑦2) = 1

(1+𝑎2𝑦2)(1+4𝑎2𝑦2) (−8𝑎2𝑦,−2𝑎) which
again implies 𝐻𝜀(𝑥0, 𝑉 ) = (0,−2𝑎) + 𝑂(𝜀). For Π = Π𝑇𝑥𝑀 , we can use that it is the average of 2Id and
−2Π(𝑇𝑥𝑀)⊥ and for the other choices of Π listed in the proposition analogous and easy computations lead to
the same approximation result.

Proof. Up to an affine isometry, we can assume that 𝑥0 = 0 and 𝑇𝑥0𝑀 = R𝑛−1 × {0}. We locally parametrize
𝑀 by 𝑢 : 𝒰 ⊂ R𝑛−1 → R of class C2 on an open set 𝒰 containing 0. Consequently, for all 0 < 𝜀 < 𝜀0 ≤ 1 with
𝜀0 small enough,

𝑀 ∩𝐵(0, 𝜀) = {(𝑦, 𝑢(𝑦)) ∈ 𝒰 × R : |𝑦|2 + |𝑢(𝑦)|2 < 𝜀2}

and 𝑀 ∩𝐵(0, 𝜀) is the graph of 𝑢 over the open set 𝒱𝜀 = {𝑦 ∈ 𝒰 : |𝑦|2 + |𝑢(𝑦)|2 < 𝜀2} ⊂ R𝑛−1. Thereby we have
for the mean curvature 𝐻(0) = trace(𝐷2𝑢(0))𝑒𝑛 with 𝐷2𝑢 denoting the Hessian of 𝑢. Thanks to the following
expansions

𝑢(𝑦) =
1
2
𝐷2𝑢(0)𝑦 · 𝑦 + 𝑜(|𝑦|2) and ∇𝑢(𝑦) = 𝐷2𝑢(0)𝑦 + 𝑜(|𝑦|), (3.5)

we have for the normal vector 𝜈(𝑦) to 𝑀 at (𝑦, 𝑢(𝑦)) ∈𝑀 ∩𝐵(0, 𝜀),

𝜈(𝑦) =
(∇𝑢(𝑦),−1)√︀
1 + |∇𝑢(𝑦)|2

= (1 + 𝑜(|𝑦|))
(︂
𝐷2𝑢(0)𝑦 + 𝑜(|𝑦|)

−1

)︂
=
(︂
𝐷2𝑢(0)𝑦
−1

)︂
+ 𝑜(|𝑦|). (3.6)

By definition of the approximate mean curvature (3.4),

⃒⃒
𝐻𝛱

𝜀 (0, 𝑉 )−𝐻(0)
⃒⃒

=

⃒⃒⃒⃒∫︁
𝒱𝜀

𝑓𝜀(𝑦, 𝑢(𝑦))
√︀

1 + |∇𝑢(𝑦)|2𝑑𝑦
⃒⃒⃒⃒

∫︁
𝒱𝜀

𝜉

(︂
|(𝑦, 𝑢(𝑦))|

𝜀

)︂√︀
1 + |∇𝑢(𝑦)|2𝑑𝑦

(3.7)

with 𝑓𝜀(𝑧) =
−(𝑛− 1)

𝑛𝜀
𝜌′
(︂
|𝑧|
𝜀

)︂
Π𝑧
|𝑧|

−𝐻(0)𝜉
(︂
|𝑧|
𝜀

)︂
.

Up to decreasing 𝜀0 we can assume 𝐷(0, 𝜀0) := {𝑦 ∈ R𝑛−1 : |𝑦| < 𝜀0} ⊂ 𝒰 . At first, we simplify the nominator
and denominator via expansion of the area element and slightly enlarging the integration domain. Obviously,
𝒱𝜀 ⊂ 𝐷(0, 𝜀) and there exists 𝜅 > 0 such that for all 𝑦 ∈ 𝐷(0, 𝜀), |𝑢(𝑦)| ≤ 𝜅|𝑦|2. For 𝑦 ∈ 𝒰 and |𝑦| < 𝜂 with
𝜂 = 𝜀

√
1− 𝜅2𝜀2 we obtain

|𝑦|2 + |𝑢(𝑦)|2 < 𝜂2 + 𝜅2𝜂4 = 𝜀2(1− 𝜅2𝜀2) + 𝜅2𝜀4(1− 𝜅2𝜀2)2 ≤ 𝜀2,
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which implies that 𝐷(0, 𝜂) ⊂ 𝒱𝜀 . Moreover, notice that for 𝑔 bounded and continuous on 𝐷(0, 𝜀), and using
𝐷(0, 𝜂) ⊂ 𝒱𝜀 ⊂ 𝐷(0, 𝜀),⃒⃒⃒⃒

⃒
∫︁

𝐷(0,𝜀)

𝑔 −
∫︁
𝒱𝜀

𝑔

⃒⃒⃒⃒
⃒ ≤ sup

𝐷(0,𝜀)

|𝑔| |𝐷(0, 𝜀)− 𝒱𝜀| ≤ sup
𝐷(0,𝜀)

|𝑔| |𝐷(0, 𝜀)−𝐷(0, 𝜂)|

= sup
𝐷(0,𝜀)

|𝑔|𝜔𝑛−1𝜀
𝑛−1

(︁
1− (1− (𝜅𝜀)2)

𝑛−1
2

)︁
= 𝑂(𝜀𝑛+1). (3.8)

As 𝜌′(|𝑧|) 𝑧
|𝑧| = ∇(𝜌(|𝑧|)) is uniformly bounded and ‖Π‖ ≤ 2, we infer that the continuous map

𝜀𝑓𝜀((𝑦, 𝑢(𝑦)))
√︀

1 + |∇𝑢(𝑦)|2 is uniformly bounded in 𝐷(0, 𝜀). Now, we apply (3.8) and due to
√︀

1 + |∇𝑢(𝑦)|2 =
1 +𝑂(|𝑦|2) as well as 𝜀−1

∫︀
𝐷(0,𝜀)

𝑂(|𝑦|2)𝑑𝑦 = 𝑂(𝜀𝑛) deduce∫︁
𝒱𝜀

𝑓𝜀((𝑦, 𝑢(𝑦))
√︀

1 + |∇𝑢(𝑦)|2 𝑑𝑦 =
∫︁

𝐷(0,𝜀)

𝑓𝜀((𝑦, 𝑢(𝑦))
√︀

1 + |∇𝑢(𝑦)|2 𝑑𝑦 + 𝜀−1𝑂(𝜀𝑛+1)

=
∫︁

𝐷(0,𝜀)

𝑓𝜀((𝑦, 𝑢(𝑦)) 𝑑𝑦 +𝑂(𝜀𝑛). (3.9)

Analogously, we get for the denominator∫︁
𝒱𝜀

𝜉

(︂
|(𝑦, 𝑢(𝑦))|

𝜀

)︂√︀
1 + |∇𝑢(𝑦)|2 𝑑𝑦 =

∫︁
𝐷(0,𝜀)

𝜉

(︂
|(𝑦, 𝑢(𝑦))|

𝜀

)︂
𝑑𝑦 +𝑂(𝜀𝑛+1). (3.10)

Next, we perform the expansion of kernels involved in (3.7). Thanks to (3.5) we deduce

|𝑧| = |(𝑦, 𝑢(𝑦))| =
(︀
|𝑦|2 + |𝑢(𝑦)|2

)︀ 1
2 =

(︀
|𝑦|2 +𝑂(|𝑦|4)

)︀ 1
2 = |𝑦|(1 +𝑂(|𝑦|2))

so that for 𝑦 ∈ 𝐷(0, 𝜀),

𝜉

(︂
|𝑧|
𝜀

)︂
= 𝜉

(︂
|𝑦|
𝜀

+
|𝑦|
𝜀
𝑂(|𝑦|2)

)︂
= 𝜉

(︂
|𝑦|
𝜀

)︂
+
|𝑦|
𝜀
𝑂(|𝑦|2) = 𝜉

(︂
|𝑦|
𝜀

)︂
+𝑂(|𝑦|2) ,

1
|𝑧|
𝜌′
(︂
|𝑧|
𝜀

)︂
=

1
|𝑦|+𝑂(|𝑦|3)

(︂
𝜌′
(︂
|𝑦|
𝜀

)︂
+𝑂(|𝑦|2)

)︂
=

1
|𝑦|
𝜌′
(︂
|𝑦|
𝜀

)︂
+𝑂(|𝑦|).

It remains to expand Π𝑧 for 𝑧 = (𝑦, 𝑢(𝑦)).

Case Π = 2Id: We directly obtains Π𝑧 = 2(𝑦, 𝑢(𝑦)) =
(︂

2𝑦
𝐷2𝑢(0)𝑦 · 𝑦 + 𝑜(|𝑦|2)

)︂
.

Case Π = −2Π(𝑇𝑧𝑀)⊥ : Using the expansion of the normal 𝜈(𝑦) from (3.6) we obtain

Π𝑧 = −2(𝑧 · 𝜈(𝑦))𝜈(𝑦)

= −2
(︂(︂

𝑦
1
2𝐷

2𝑢(0)𝑦 · 𝑦 + 𝑜(|𝑦|2)

)︂
·
(︂
𝐷2𝑢(0)𝑦 + 𝑜(|𝑦|)
−1 + 𝑜(|𝑦|)

)︂)︂ (︂
𝐷2𝑢(0)𝑦 + 𝑜(|𝑦|)
−1 + 𝑜(|𝑦|)

)︂
= −

(︀
𝐷2𝑢(0)𝑦 · 𝑦 + 𝑜(|𝑦|2)

)︀(︂𝐷2𝑢(0)𝑦 + 𝑜(|𝑦|)
−1 + 𝑜(|𝑦|)

)︂
=
(︂

𝑜(|𝑦|2)
𝐷2𝑢(0)𝑦 · 𝑦 + 𝑜(|𝑦|2)

)︂
.

Case Π = Π𝑇𝑧𝑀 : Taking into account the estimates in the previous two cases we achieve

Π𝑧 =
1
2
(︀
2Id− 2Π(TzM)⊥

)︀
𝑧 =

(︂
𝑦 + 𝑜(|𝑦|2)

𝐷2𝑢(0)𝑦 · 𝑦 + 𝑜(|𝑦|2)

)︂
.
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To summarize, in all three cases, we obtain

Π𝑧 · 𝑒𝑖 = 𝜆𝑦𝑖 + 𝑜(|𝑦|2) ∀𝑖 ∈ {1, . . . , 𝑛− 1} and Π𝑧 · 𝑒𝑛 = 𝐷2𝑢(0)𝑦 · 𝑦 + 𝑜(|𝑦|2), (3.11)

with 𝜆 = 2 for Π = 2Id, 𝜆 = 0 for Π = −2Π(𝑇𝑧𝑀)⊥ , and 𝜆 = 1 for Π = Π𝑇𝑧𝑀 . Now, applying the co-area formula

to the first term in the right hand side of (3.10) and using the above kernel expansions for 𝑧 = (𝑦, 𝑢(𝑦)) we get∫︁
𝐷(0,𝜀)

𝜉

(︂
|𝑧|
𝜀

)︂
𝑑𝑦 =

∫︁
𝐷(0,𝜀)

𝜉

(︂
|𝑦|
𝜀

)︂
+𝑂(|𝑦|2) 𝑑𝑦

=
∫︁ 𝜀

𝑟=0

(︁
𝜉
(︁𝑟
𝜀

)︁
+𝑂(𝑟2)

)︁
ℋ𝑛−2 (𝜕𝐷(0, 𝑟)) 𝑑𝑟

= 𝜎𝑛−2

∫︁ 𝜀

𝑟=0

𝜉
(︁𝑟
𝜀

)︁
𝑟𝑛−2 𝑑𝑟 +𝑂(𝜀𝑛+1), (3.12)

where 𝜎𝑛−2 = (𝑛− 1)𝜔𝑛−1 is the area of the unit sphere in R𝑛−1. Using (3.11) we obtain for 𝑖 ∈ {1, . . . , 𝑛− 1},∫︁
𝐷(0,𝜀)

1
|𝑧|
𝜌′
(︂
|𝑧|
𝜀

)︂
Π(𝑧) 𝑑𝑦 · 𝑒𝑖 =

∫︁
𝐷(0,𝜀)

[︂
1
|𝑦|
𝜌

(︂
|𝑦|
𝜀

)︂
+𝑂(|𝑦|)

]︂
(𝜆𝑦𝑖 + 𝑜(|𝑦|2)) 𝑑𝑦

=
∫︁ 𝜀

𝑟=0

(︂
1
𝑟
𝜌′
(︁𝑟
𝜀

)︁
+𝑂(𝑟)

)︂∫︁
𝜕𝐷(0,𝑟)

(𝜆𝑦𝑖 + 𝑜(𝑟2)) 𝑑ℋ𝑛−2 𝑑𝑟

=
∫︁ 𝜀

𝑟=0

(︂
1
𝑟
𝜌′
(︁𝑟
𝜀

)︁
+𝑂(𝑟)

)︂
𝑟𝑛−2𝑜(𝑟2) 𝑑𝑟 =

∫︁ 𝜀

𝑟=0

𝑜(𝑟𝑛−1)𝑑𝑟

= 𝑜(𝜀𝑛), (3.13)

where we used that
∫︁

𝜕𝐷(0,𝑟)

𝑦𝑖 𝑑ℋ𝑛−2 vanishes. Furthermore, using the kernel expansions and (3.11) we achieve

∫︁
𝐷(0,𝜀)

1
|𝑧|
𝜌′
(︂
|𝑧|
𝜀

)︂
Π(𝑧) 𝑑𝑦 · 𝑒𝑛 =

𝜀∫︁
𝑟=0

(︂
1
𝑟
𝜌′
(︁𝑟
𝜀

)︁
+𝑂(𝑟)

)︂∫︁
𝜕𝐷(0,𝑟)

(𝐷2𝑢(0)𝑦 · 𝑦 + 𝑜(𝑟2))𝑑ℋ𝑛−2𝑑𝑟

=

𝜀∫︁
𝑟=0

1
𝑟
𝜌′
(︁𝑟
𝜀

)︁∫︁
𝜕𝐷(0,𝑟)

(𝐷2𝑢(0)𝑦 · 𝑦)𝑑ℋ𝑛−2𝑑𝑟 + 𝑜(𝜀𝑛). (3.14)

Next, we verify that
∫︁

𝜕𝐷(0,𝑟)

(𝐷2𝑢(0)𝑦·𝑦)𝑑ℋ𝑛−2 = 𝐻(0)·𝑒𝑛
𝜎𝑛−2

𝑛− 1
𝑟𝑛. Indeed, let {𝑣1, . . . , 𝑣𝑛−1} be an orthonormal

basis of R𝑛−1 of eigenvectors of 𝐷2𝑢(0) associated with eigenvalues 𝜅1, . . . , 𝜅𝑛−1. Then decomposing 𝑦 =
𝑛−1∑︁
𝑗=1

𝑦𝑗𝑣𝑖

in ℬ, we have 𝐷2𝑢(0)𝑦 ·𝑦 =
𝑛−1∑︁
𝑗=1

𝜅𝑗𝑦
2
𝑗 and by symmetry

∫︁
𝜕𝐷(0,𝑟)

𝑦2
𝑗 𝑑𝑦 =

1
𝑛− 1

∫︁
𝜕𝐷(0,𝑟)

|𝑦|2 𝑑𝑦 =
𝜎𝑛−2

𝑛− 1
𝑟𝑛. Hence,

the claim follows from∫︁
𝜕𝐷(0,𝑟)

(𝐷2𝑢(0)𝑦 · 𝑦)𝑑ℋ𝑛−2 =
𝑛−1∑︁
𝑗=1

𝜅𝑗
𝜎𝑛−2

𝑛− 1
𝑟𝑛 =

𝜎𝑛−2

𝑛− 1
𝑟𝑛 trace𝐷2𝑢(0). (3.15)
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Let Π ∈ {Π𝑆 , −2Π𝑆⊥ , 2Id}. Gathering the above estimates ((3.9) to (3.15)) and inserting them in (3.7), we
conclude⃒⃒

𝐻𝛱
𝜀 (0, 𝑉 )−𝐻(0)|

=
(︂∫︁ 𝜀

𝑟=0

𝜉
(︁𝑟
𝜀

)︁
𝑟𝑛−2 𝑑𝑟 +𝑂(𝜀𝑛)

)︂−1 ⃒⃒⃒⃒
𝐻(0)

∫︁ 𝜀

𝑟=0

(︂
1
𝑛

𝑟

𝜀
𝜌′
(︁𝑟
𝜀

)︁
+ 𝜉

(︁𝑟
𝜀

)︁)︂
𝑟𝑛−2 𝑑𝑟 + 𝑜(𝜀𝑛−1)

⃒⃒⃒⃒
=

𝜀−(𝑛−1)

𝐶𝜉 +𝑂(𝜀)

(︂
|𝐻(0)|𝜀𝑛−1

∫︁ 1

𝑠=0

(︂
1
𝑛
𝑠𝜌′(𝑠) + 𝜉(𝑠)

)︂
𝑠𝑛−2 𝑑𝑠+ 𝑜(𝜀𝑛−1)

)︂
= 0 + 𝑜(1),

with 𝐶𝜉 =
∫︁ 1

𝑠=0

𝜉(𝑠)𝑠𝑛−2 𝑑𝑠 and
∫︁ 1

𝑠=0

(︂
1
𝑛
𝑠𝜌′(𝑠) + 𝜉(𝑠)

)︂
𝑠𝑛−2 𝑑𝑠 = 0 by assumption (3.1).

As 𝐻(0) is othogonal to 𝑇0𝑀 , Π(𝑇0𝑀)⊥𝐻(0) = 𝐻(0) and thus for Π ∈ {Π𝑆 ,−2Π𝑆⊥ , 2Id} we have⃒⃒
Π(𝑇0𝑀)⊥𝐻

𝛱
𝜀 (0, 𝑉 )−𝐻(0)

⃒⃒
= 𝑜(1) .

Finally, it is straightforward to verify that for 𝑀 being at least C3 one obtains the improved convergence
estimate

⃒⃒
𝐻𝛱

𝜀 (0, 𝑉 )−𝐻(0)
⃒⃒

= 𝑂(𝜀). �

In summary, consistency with the usual mean curvature holds for smooth varifolds (Prop. 3.3). In the
particular case Π = Π𝑆 , consistency with the generalized mean curvature holds almost everywhere (w.r.t.
the mass measure) for rectifiable varifolds whose first variation is a Radon measure ([10]).

In view of stating convergence of approximate mean curvature 𝐻𝜀(·, 𝑉𝑖) computed on point cloud varifolds
(𝑉𝑖)𝑖, when 𝜀 tends to 0 and 𝑉𝑖 tends to a smooth (or rectifiable with first variation Radon) varifold, we tackle
the stability issue in next section.

4. Stability of the approximate mean curvature

We are now going to state a quite general stability result (Thm. 4.8) on the approximate mean curvature
introduced in (3.4). The stability will hold with respect to weak star convergence of varifolds, assuming that
the limit varifold has finite mass and is 𝑑–regular in the sense that its mass ‖𝑉 ‖ is 𝑑–Ahlfors regular, i.e. there
exists 𝐶0 ≥ 1, 𝑟0 > 0 such that for all 𝑥 ∈ spt ‖𝑉 ‖ and 0 < 𝑟 ≤ 𝑟0,

𝐶−1
0 𝑟𝑑 ≤ ‖𝑉 ‖(𝐵(𝑥, 𝑟)) ≤ 𝐶0𝑟

𝑑. (4.1)

Note that 𝑟0 can be chosen as large as needed: if condition (4.1) holds for some 𝑟0 > 0 then it holds for any
𝑟1 ≥ 𝑟0 possibly adapting the regularity constant 𝐶0.

We now compare Theorem 4.8 with the main convergence result obtained in [10]: Theorem 5.5. The impor-
tant contribution here is to get rid of thorny assumption (5.24) in Theorem 5.5 ([10]), this is the central issue
in Section 4. Only relying on weak star convergence of varifolds, we are now able to prove convergence of
approximate mean curvature. In doing so, we design a divergence between varifolds (4.5), that suitably adapts
assumption (5.24) and tends to 0 (4.17), no longer as a reasonable though tricky assumption, but as a conse-
quence of weak star convergence and Ahlfors regularity of the limit varifold. In Theorem 4.8, we also consider
more general projector Π (as in (3.4)) than Π = Π𝑆 dealt with in [10]: this is easily achieved using the fact that
the family of maps (indexed by 𝑥 ∈ R𝑛)

Φ𝜀
𝑥 : (𝑦, 𝑆) ↦→ 1

𝜀
𝜌′
(︂
|𝑦 − 𝑥|
𝜀

)︂
Π(𝑦 − 𝑥)
|𝑦 − 𝑥|

= Π∇𝑦

(︂
𝜌

(︂
|𝑦 − 𝑥|
𝜀

)︂)︂
(4.2)
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Figure 1. Two different sequences of curves 𝐶𝜌 with different frequencies 1
2𝜌 and amplitude

𝜌𝛼 for 𝛼 = 1 (left) and 𝛼 = 2 (right).

is equi-Lipschitz with Lipschitz constant bounded by 𝜀−2Lip(𝜌′). Our motivation for allowing more general
projectors arises from numerical experiments: as we detail in Section 6, choosing Π = Π𝑆 leads to numerical
instability of the scheme while other choices are better suited.

Theorem 4.8 requires some work on weak star and weak convergence of finite Radon measures as well as on
the flat distance and Prokhorov distance that metrizes weak convergence (see Prop. 4.5 below).

The section is organized as follows, in a first part we introduce some material on weak and weak star
convergences as well as flat distance and Prokhorov distance. In a second part we establish a general stability
result (Prop. 4.7) holding in the neighborhood (with respect to aforementioned distances) of a 𝑑–regular varifold.
Let us emphasize that 𝑑–regularity of a Radon measure is a weak assumption when it comes to prove stability for
curvature estimates. In the third and last part, we put the results of the section together and state a convergence
theorem (Thm. 4.8 and Cor. 4.9) for the approximate mean curvature (3.4) of a sequence of weak star converging
varifods.

All Radon measures we consider in this section are nonnegative (and nonzero) Radon measures.

4.1. Prokhorov and flat distance

Definition 4.1 (Weak and weak star convergence). Let (𝑋, 𝑑) be a locally compact and separable metric space
(for us 𝑋 = R𝑛 or 𝑋 = R𝑛 ×𝐺𝑑,𝑛) and let (𝜇𝑖)𝑖∈N, 𝜇 be Radon measures in 𝑋. We say that

(𝑖) (𝜇𝑖)𝑖 weak star converges to 𝜇 if for every 𝜙 : 𝑋 → R continuous and compactly supported,
∫︁
𝜙𝑑𝜇𝑖 −−−→

𝑖→∞∫︁
𝜙𝑑𝜇.

(𝑖𝑖) If in addition the measures (𝜇𝑖)𝑖, 𝜇 are finite, we say that (𝜇𝑖)𝑖 weak converges to 𝜇 if for every 𝜙 : 𝑋 → R

continuous and bounded,
∫︁
𝜙𝑑𝜇𝑖 −−−→

𝑖→∞

∫︁
𝜙𝑑𝜇.

Weak star convergence is also referred as vague convergence. By definition, weak convergence implies weak
star convergence, whereas the converse is not true in general: compactly supported functions are blind to mass
escaping at infinity or accumulating on the boundary. Consider for instance 𝜇𝑖 = 𝛿𝑖 in R or 𝜇𝑖 = 𝛿 1

𝑖
in ]0, 1[. In

both cases 𝜇𝑖 weak star converge to 0 but does not weak converge.
A simple example of weak star convergence of varifolds is defined via a sequence of sawtooth type polygonal

curves 𝐶𝜌 of amplitude 𝜌𝛼 for some 𝛼 ≥ 1 and frequency 1
2𝜌 oscillating around the 𝑒1 axis in R2 (cf. Fig. 1).

Given these curves we define a sequence of varifolds 𝑉𝜌 via

𝑉𝜌(𝐵) = (1 + 𝜌2(𝛼−1))−
1
2ℋ1({𝑥 ∈ 𝐶𝜌 | (𝑥, 𝑇𝑥𝐶𝜌) ∈ 𝐵}) 𝑖.𝑒. 𝑉𝜌 = (1 + 𝜌2(𝛼−1))−

1
2ℋ1

|𝐶𝜌
⊗ 𝛿𝑇𝑥𝐶𝜌 .

We denote by 𝐷𝑒1 ⊂ R2 the straight line along the 𝑒1 axis. For 𝛼 > 1, the family (𝑉𝜌) converges weak star
for 𝜌 tending to 0 to the varifold 𝑉 = ℋ1

𝐷𝑒1
⊗ 𝛿span(𝑒1) that is the smooth varifold associated with the straight

line 𝐷𝑒1 . For 𝛼 = 1, the tangent direction alternates between 𝑒1 + 𝑒2 and 𝑒1 − 𝑒2 for any varifold 𝑉𝜌, the weak
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star limit of the family of varifolds is 𝑉 = ℋ1
𝐷𝑒1

⊗ 1
2

(︀
𝛿span(𝑒1+𝑒2) + 𝛿span(𝑒1−𝑒2)

)︀
, note that the measure in the

Grassmannian is constant along the 𝑒1 axis and consists of 2 atomic weights in the Grassmannian.
Note that finite Radon measures inherit the Banach structure of linear forms on 𝐶𝑐(𝑋) through Riesz repre-

sentation theorem. However, the resulting total variation distance

𝑑𝑇𝑉 (𝜇, 𝜈) = |𝜇− 𝜈|(𝑋) = sup
{︂∫︁

𝑋

𝜙𝑑𝜇−
∫︁

𝑋

𝜙𝑑𝜈

⃒⃒⃒⃒
𝜙 ∈ C𝑐(𝑋), sup |𝜙| ≤ 1

}︂
is much too strong with respect to compactness issues as well as approximation questions. Indeed, if 𝑥, 𝑦 ∈ 𝑋
then whenever 𝑥 ̸= 𝑦, 𝑑𝑇𝑉 (𝛿𝑥, 𝛿𝑦) = 2 no matter how small 𝑑(𝑥, 𝑦) is. Therefore, we introduce the so-called flat
distance and Prokhorov distance that behave more consistently with weak and weak star topologies.

Definition 4.2 (Flat distance). Let (𝑋, 𝑑) be a locally compact and separable metric space (for us 𝑋 = R𝑛 or
𝑋 = R𝑛 × 𝐺𝑑,𝑛) and let 𝜇, 𝜈 be Radon measures. We define the (localized) bounded Lipschitz distance in the
open set 𝑈 ⊂ 𝑋:

∆𝑈 (𝜇, 𝜈) := sup

⎧⎨⎩
∫︁

𝑋

𝜙𝑑𝜇−
∫︁

𝑋

𝜙𝑑𝜈

⃒⃒⃒⃒
⃒⃒𝜙 is 1–Lipschitz
sup𝑋 |𝜙| ≤ 1
spt𝜙 ⊂ 𝑈

⎫⎬⎭ ,

in the case 𝑈 = 𝑋, we simply denote ∆ = ∆𝑋 . Note that ∆ is a distance in the space of Radon measures.

For balls of radius less than 1, sup𝑋 |𝜙| ≤ 1 is automatically satisfied in Definition 4.2.

Remark 4.3. Let 𝑉 , 𝑊 be 𝑑–varifolds in R𝑛 and let 𝐵 ⊂ R𝑛 be an open set. We shorten ∆𝐵×𝐺𝑑,𝑛
(𝑉,𝑊 ) as

∆𝐵(𝑉,𝑊 ) and we observe that
∆𝐵(‖𝑉 ‖, ‖𝑊‖) ≤ ∆𝐵×𝐺𝑑,𝑛

(𝑉,𝑊 ). (4.3)

Indeed, let 𝜙 ∈ C𝑐(R𝑛) be a 1–Lipschitz function supported in 𝐵 and bounded by 1. On one hand 𝜓 : (𝑦, 𝑆) ↦→
𝜙(𝑦) is in particular a 1–Lipschitz function in C𝑐(R𝑛 × 𝐺𝑑,𝑛) supported in 𝐵 × 𝐺𝑑,𝑛 and bounded by 1. Fur-

thermore,
∫︁

R𝑛

𝜙𝑑‖𝑉 ‖ −
∫︁

R𝑛

𝜙𝑑‖𝑊‖ =
∫︁

R𝑛×𝐺𝑑,𝑛

𝜓𝑑𝑉 −
∫︁

R𝑛×𝐺𝑑,𝑛

𝜓𝑑𝑊 and (4.3) follows from Definition 4.2.

Definition 4.4 (Prokhorov distance). Let 𝜇, 𝜈 be finite Radon measures in R𝑛 we recall that the Prokhorov
distance is defined as

𝑑𝒫(𝜇, 𝜈) := inf
{︀
𝛿 > 0

⃒⃒
𝜇(𝐴) ≤ 𝜈(𝐴𝛿) + 𝛿 and 𝜈(𝐴) ≤ 𝜇(𝐴𝛿) + 𝛿, ∀𝐴 ⊂ 𝑋 Borel set

}︀
,

with 𝐴𝛿 =
⋃︀

𝑥∈𝐴𝐵(𝑥, 𝛿). We introduce a slightly modified version of Prokhorov distance, for 𝑑 ∈ N*,

𝜂𝑑(𝜇, 𝜈) := inf
{︀
𝛿 > 0

⃒⃒
𝜇(𝐵) ≤ 𝜈(𝐵𝛿) + 𝛿𝑑 and 𝜈(𝐵) ≤ 𝜇(𝐵𝛿) + 𝛿𝑑,∀𝐵 ⊂ R𝑛 closed ball

}︀
.

As Radon measures we work with are 𝑑–dimensional, homogeneity considerations lead to the modified
Prokhorov distance 𝜂𝑑 introduced in Definition 4.4. Notice that 𝐴

𝛿
= 𝐴𝛿 for a Borel set 𝐴 ⊂ R𝑛 and then

𝜇(𝐴) ≤ 𝜇(𝐴) ≤ 𝜈(𝐴𝛿) + 𝛿 and it is natural to restrict to closed sets. Moreover, the restriction to balls is due to
the convergence result we are interested in, nevertheless, as 𝜇 and 𝜈 are Radon measures in R𝑛, if they coincide
on balls then they are equal (thanks to Radon-Nikodym differentiation theorem for Radon measures) and thus
𝜂𝑑 defines a distance among finite Radon measures. The triangular inequality is straightforward, using that
𝑎𝑑 + 𝑏𝑑 ≤ (𝑎 + 𝑏)𝑑 for 𝑎, 𝑏 ≥ 0 and 𝑑 a positive integer. The next proposition connects weak and weak star
topologies and topology induced by both Prokhorov and flat distances.

Proposition 4.5. Let (𝑋, 𝑑) be a locally compact separable metric space (for us 𝑋 = R𝑛 or 𝑋 = R𝑛 × 𝐺𝑑,𝑛)
and let 𝜇, (𝜇𝑖)𝑖∈N be finite (nonzero) Radon measures.
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(1) (𝜇𝑖)𝑖 weak star converges to 𝜇 and 𝜇𝑖(𝑋) −−−→
𝑖→∞

𝜇(𝑋) if and only if (𝜇𝑖) weak converges to 𝜇.

(2) If (𝜇𝑖)𝑖 weak converges to 𝜇, then both ∆(𝜇𝑖, 𝜇) −−−→
𝑖→∞

0 and 𝑑𝒫(𝜇𝑖, 𝜇) −−−→
𝑖→∞

0.

We refer to [1][1.80] for the first point of Proposition 4.5 and Section 8.3 of [5] for the second point, let us
mention that considering 𝜇𝑖

𝜇𝑖(𝑋) and 𝜇
𝜇(𝑋) allows to work with probability measures, for which the second point

is more commonly stated. We now check that weak convergence implies convergence for 𝜂𝑑, which is all we need
in this work.

Lemma 4.6. Let 𝜇, 𝜈 be finite Radon measures. Then

𝜂𝑑(𝜇, 𝜈) ≤

{︃
(∆(𝜇, 𝜈))

1
𝑑+1 if ∆(𝜇, 𝜈) ≤ 1

(∆(𝜇, 𝜈))
1
𝑑 if ∆(𝜇, 𝜈) ≥ 1

. (4.4)

In particular, if (𝜇𝑖)𝑖∈N is a sequence of finite Radon measures weakly converging to 𝜇 then 𝜂𝑑(𝜇𝑖, 𝜇) tends to 0
when 𝑖→∞.

Proof. The proof is standard, we give it for the sake of clarity. Let 𝐵 = 𝐵(𝑥, 𝑟) ⊂ R𝑛 and let 𝜀 > 0. We define
ℎ𝜀 : R+ → [0, 1] and 𝜙𝜀 : R𝑛 → [0, 1] by

ℎ𝜀(𝑡) =

⎧⎨⎩1 if 0 ≤ 𝑡 ≤ 𝑟
0 if 𝑡 ≥ 𝑟 + 𝜀
1− 𝑡−𝑟

𝜀 if 𝑟 < 𝑡 < 𝑟 + 𝜀
and for 𝑦 ∈ R𝑛, 𝜙𝜀(𝑦) = ℎ𝜀(|𝑦 − 𝑥|)

so that 𝜙𝜀 is radial, ‖𝜙𝜀‖∞ ≤ 1 and 𝜙𝜀 is 1
𝜀 –Lipschitz. We infer that∫︁

𝜙𝜀𝑑𝜇−
∫︁
𝜙𝜀𝑑𝜈 ≤ max

(︂
1,

1
𝜀

)︂
∆(𝜇, 𝜈).

Consequently,

𝜇(𝐵) ≤
∫︁
𝜙𝜀𝑑𝜇 ≤

∫︁
𝜙𝜀𝑑𝜈 + max

(︂
1,

1
𝜀

)︂
∆(𝜇, 𝜈) ≤ 𝜈(𝐵𝜀) + max

(︂
1,

1
𝜀

)︂
∆(𝜇, 𝜈).

If ∆(𝜇, 𝜈) ≥ 1, we can take 𝜀 = (∆(𝜇, 𝜈))
1
𝑑 ≥ 1 and we obtain 𝜂𝑑(𝜇, 𝜈) ≤ (∆(𝜇, 𝜈))

1
𝑑 . If ∆(𝜇, 𝜈) ≤ 1, we can

take 𝜀 = (∆(𝜇, 𝜈))
1

𝑑+1 ≤ 1 and we obtain 𝜂𝑑(𝜇, 𝜈) ≤ (∆(𝜇, 𝜈))
1

𝑑+1 .
The last part of the statement follows from second point of Proposition 4.5. �

4.2. A stability result

Unfortunately, stability of the approximate mean curvature does not hold directly with respect to Prokhorov
or flat distance but with respect to a combination 𝛿(·, ·) of both that is not a distance, defined in (4.5) below.
Nevertheless, we prove in Theorem 4.8 (𝑖) that 𝛿(𝑉, 𝑉𝑖) tends to 0 when the sequence of varifolds (𝑉𝑖)𝑖 weak
star converge to a 𝑑–regular varifold 𝑉 . We define for 𝑉 , 𝑊 two 𝑑–varifolds in R𝑛,

𝛿(𝑉,𝑊 ) = sup

{︃
∆𝐵(𝑉,𝑊 )

(𝜂𝑑(‖𝑉 ‖, ‖𝑊‖) + diam𝐵/2)𝑑

⃒⃒⃒⃒
⃒𝐵 ⊂ R𝑛 ball centered in spt ‖𝑉 ‖

}︃
. (4.5)

Proposition 4.7. Let 𝑉 be a 𝑑–regular varifold in R𝑛 of finite mass, let 𝑥 ∈ spt ‖𝑉 ‖ and let 𝜀 ∈]0, 1[. Then
for any 𝑑–varifold 𝑊 and 𝑧 ∈ R𝑛 satisfying

|𝑥− 𝑧|+ 𝜂𝑑(‖𝑉 ‖, ‖𝑊‖) ≤ 𝛾𝜀 with 𝛾 =
1

8
(︁

1 + 2𝐶
1
𝑑
0 + 𝐶

2
𝑑
0

)︁ , (4.6)
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where 𝐶0 ≥ 1 is the 𝑑–regularity constant from (4.1), we have

⃒⃒
𝐻Π

𝜀 (𝑧,𝑊 )−𝐻Π
𝜀 (𝑥, 𝑉 )

⃒⃒
≤ 𝐶

𝛿(𝑉,𝑊 ) + |𝑥− 𝑧|
𝜀2

, (4.7)

where 𝐶 > 0 only depends on 𝑑, 𝑛, 𝐶0, 𝜉 and 𝜌.

Proof. We shorten notations 𝜂 := 𝜂𝑑(‖𝑉 ‖, ‖𝑊‖) and 𝛿 := 𝛿(𝑉,𝑊 ) and 𝐵 = 𝐵(𝑥, 𝜀 + |𝑥 − 𝑧|). We apply

Definition 4.2 of ∆𝐵 together with the fact that 𝜉
(︂
| · |
𝜀

)︂
is

Lip(𝜉)
𝜀

–Lipschitz to obtain

𝜀𝑛
⃒⃒⃒
‖𝑊‖ * 𝜉𝜀(𝑧)− ‖𝑉 ‖ * 𝜉𝜀(𝑥)

⃒⃒⃒
≤
⃒⃒⃒⃒∫︁

𝜉

(︂
| · −𝑧|
𝜀

)︂
𝑑‖𝑊‖ −

∫︁
𝜉

(︂
| · −𝑧|
𝜀

)︂
𝑑‖𝑉 ‖

⃒⃒⃒⃒
+
∫︁ ⃒⃒⃒⃒

𝜉

(︂
| · −𝑧|
𝜀

)︂
− 𝜉

(︂
| · −𝑥|
𝜀

)︂⃒⃒⃒⃒
𝑑‖𝑉 ‖

≤Lip(𝜉)
𝜀

(∆𝐵(‖𝑊‖, ‖𝑉 ‖) + |𝑥− 𝑧|‖𝑉 ‖ (𝐵)) . (4.8)

From (4.8), Remark 4.3 and 𝑑–regularity of ‖𝑉 ‖ (4.1), we infer

𝜀𝑛
⃒⃒⃒
‖𝑊‖ * 𝜉𝜀(𝑧)− ‖𝑉 ‖ * 𝜉𝜀(𝑥)

⃒⃒⃒
≤ Lip(𝜉)

𝜀

(︁
∆𝐵(𝑊,𝑉 ) + 𝐶0|𝑥− 𝑧| (𝜀+ |𝑥− 𝑧|)𝑑

)︁
≤ Lip(𝜉)

𝜀

(︁
𝛿 (𝜀+ |𝑥− 𝑧|+ 𝜂)𝑑 + 𝐶0|𝑥− 𝑧| (𝜀+ |𝑥− 𝑧|)𝑑

)︁
by (4.5)

≤ 𝐶0Lip(𝜉)
𝛿 + |𝑥− 𝑧|

𝜀
(𝜀+ |𝑥− 𝑧|+ 𝜂)𝑑

≤ 𝐶1
𝛿 + |𝑥− 𝑧|

𝜀
𝜀𝑑 (4.9)

with 𝐶1 := 2𝑑𝐶0Lip(𝜉) using 𝜀 + |𝑥 − 𝑧| + 𝜂 ≤ 2𝜀. We repeat the same argument with Φ𝜀
𝑥 defined in (4.2),

Lip(Φ𝜀
𝑧) ≤ 𝜀−2Lip(𝜌′) and then

⃒⃒⃒⃒
⃒
∫︁

R𝑛×𝐺𝑑,𝑛

Φ𝜀
𝑧 𝑑𝑊 −

∫︁
R𝑛×𝐺𝑑,𝑛

Φ𝜀
𝑥 𝑑𝑉

⃒⃒⃒⃒
⃒ ≤ Lip(𝜌′)

𝜀2
(∆𝐵(𝑊,𝑉 ) + |𝑥− 𝑧|‖𝑉 ‖ (𝐵))

≤ 𝐶2
𝛿 + |𝑥− 𝑧|

𝜀2
𝜀𝑑 with 𝐶2 := 2𝑑𝐶0Lip(𝜌′) (4.10)

Last but not least, we estimate 𝜀𝑛‖𝑊‖*𝜉𝜀(𝑧) from below thanks to the mass ‖𝑉 ‖ of rings of radii comparable

to 𝜀. Recall that 𝜉 is positive in (0, 1) and denote 𝛽 = min
{︂
𝜉(𝑠)

⃒⃒⃒⃒
𝑠 ∈

[︂
𝐶
−2/𝑑
0
4 , 1

2

]︂}︂
> 0. We then have,

𝜀𝑛‖𝑊‖ * 𝜉𝜀(𝑧) =
∫︁
𝜉

(︂
|𝑦 − 𝑧|
𝜀

)︂
𝑑‖𝑊‖(𝑦) ≥ 𝛽 ‖𝑊‖

(︁
𝐵(𝑧, 𝜀

2 )) ∖𝐵(𝑧, 𝐶−2/𝑑
0

𝜀
4 )
)︁

≥ 𝛽
(︁
‖𝑊‖(𝐵(𝑧, 𝜀

2 ))− ‖𝑊‖(𝐵(𝑧, 𝐶−2/𝑑
0

𝜀
4 )
)︁
. (4.11)
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From (4.11), we first apply Definition 4.4 of 𝜂, then we use the inclusion of balls 𝐵(𝑥,𝑅− |𝑥− 𝑧|) ⊂ 𝐵(𝑧,𝑅) ⊂
𝐵(𝑥,𝑅+ |𝑥− 𝑧|) for a given radius 𝑅 > |𝑥− 𝑧| and we finally get (4.12) thanks to the 𝑑–regularity of ‖𝑉 ‖ (4.1):

𝜀𝑛‖𝑊‖ * 𝜉𝜀(𝑧) ≥ 𝛽
(︁[︀
‖𝑉 ‖(𝐵(𝑧, 𝜀

2 − 𝜂))− 𝜂𝑑
]︀
−
[︁
‖𝑉 ‖(𝐵(𝑧, 𝐶−2/𝑑

0
𝜀
4 + 𝜂)) + 𝜂𝑑

]︁)︁
≥ 𝛽

(︁
‖𝑉 ‖(𝐵(𝑥, 𝜀

2 − (𝜂 + |𝑥− 𝑧|)))− ‖𝑉 ‖(𝐵(𝑥,𝐶−2/𝑑
0

𝜀
4 + (𝜂 + |𝑥− 𝑧|)))− 2𝜂𝑑

)︁
≥ 𝛽

(︂
𝐶−1

0 2−𝑑(𝜀− 2(𝜂 + |𝑥− 𝑧|))𝑑 − 𝐶02−𝑑
(︁
𝐶
−2/𝑑
0

𝜀

2
+ 2(𝜂 + |𝑥− 𝑧|)

)︁𝑑

− 2𝜂𝑑

)︂
≥ 𝛽𝐶−1

0 2−𝑑
(︁

(𝜀− 2(𝜂 + |𝑥− 𝑧|))𝑑 − (
𝜀

2
+ 2𝐶2/𝑑

0 (𝜂 + |𝑥− 𝑧|))𝑑 − (2(2𝐶0)1/𝑑𝜂)𝑑
)︁

⏟  ⏞  
=:𝐴

. (4.12)

Using once again that 𝑎𝑑 + 𝑏𝑑 ≤ (𝑎+ 𝑏)𝑑 for 𝑎, 𝑏 ≥ 0 we estimate 𝐴 as follows:

𝐴 ≥ (𝜀− 2(𝜂 + |𝑥− 𝑧|))𝑑 −
(︁𝜀

2
+ 2𝐶2/𝑑

0 (𝜂 + |𝑥− 𝑧|) + 2(2𝐶0)1/𝑑𝜂
)︁𝑑

and then using that for 𝑎 ≥ 𝑏 ≥ 0, 𝑎𝑑− 𝑏𝑑 ≥ (𝑎− 𝑏)𝑎𝑑−1 with 𝑎 = 𝜀− 2(𝜂+ |𝑥− 𝑧|) and 𝑏 = 𝜀
2 + 2𝐶2/𝑑

0 (𝜂+ |𝑥−
𝑧|) + 2(2𝐶0)1/𝑑𝜂, we get

𝐴 ≥ 1
2

(︁
𝜀− 4(1 + (2𝐶0)1/𝑑 + 𝐶

2/𝑑
0 )(𝜂 + |𝑥− 𝑧|)

)︁
(𝜀− 2(𝜂 + |𝑥− 𝑧|))𝑑−1⏟  ⏞  

≥ 1
2 ( 𝜀

2 )𝑑
by assumption in (4.6)

.

We conclude that
𝜀𝑛‖𝑊‖ * 𝜉𝜀(𝑧) ≥ 𝐶−1

3 𝜀𝑑 with 𝐶3 = 𝛽−1𝐶022𝑑+1 (4.13)

We similarly have
𝜀𝑛‖𝑉 ‖ * 𝜉𝜀(𝑥) ≥ 𝐶−1

3 𝜀𝑑. (4.14)

Eventually, for Π as in (3.4) and using ‖Π‖ ≤ 2 and (4.1),⃒⃒⃒⃒∫︁
Φ𝜀

𝑥𝑑𝑉

⃒⃒⃒⃒
≤
∫︁

𝐵(𝑥,𝜀)×𝐺𝑑,𝑛

1
𝜀

⃒⃒⃒⃒
𝜌′
(︂
|𝑦 − 𝑥|
𝜀

)︂
Π(𝑦 − 𝑥)
|𝑦 − 𝑥|

⃒⃒⃒⃒
𝑑𝑉 (𝑦, 𝑆) ≤ 2

𝜀
‖𝜌′‖∞‖𝑉 ‖(𝐵(𝑥, 𝜀))

≤ 2
𝜀
‖𝜌′‖∞𝐶0𝜀

𝑑 ≤ 𝐶4𝜀
𝑑−1 with 𝐶4 := 2𝐶0‖𝜌′‖∞ (4.15)

We combine (4.9), (4.10), (4.13), (4.14) and (4.15) so that⃒⃒
𝐻Π

𝜀 (𝑧,𝑊 )−𝐻Π
𝜀 (𝑥, 𝑉 )

⃒⃒
=
⃒⃒⃒⃒ ∫︀

Φ𝜀
𝑧 𝑑𝑊

𝜀𝑛‖𝑊‖ * 𝜉𝜀(𝑧)
−

∫︀
Φ𝜀

𝑥 𝑑𝑉

𝜀𝑛‖𝑉 ‖ * 𝜉𝜀(𝑥)

⃒⃒⃒⃒
≤ 1
𝜀𝑛‖𝑊‖ * 𝜉𝜀(𝑧)

(︃ ⃒⃒⃒⃒∫︁
Φ𝜀

𝑧 𝑑𝑊 −
∫︁

Φ𝜀
𝑥 𝑑𝑉

⃒⃒⃒⃒

+

⃒⃒⃒⃒∫︁
Φ𝜀

𝑥𝑑𝑉

⃒⃒⃒⃒
𝜀𝑛‖𝑉 ‖ * 𝜉𝜀(𝑥)

𝜀𝑛
⃒⃒⃒
‖𝑊‖ * 𝜉𝜀(𝑧)− ‖𝑉 ‖ * 𝜉𝜀(𝑥)

⃒⃒⃒)︃

≤ 𝐶3𝜀
−𝑑

(︂
𝐶2
𝛿 + |𝑥− 𝑧|

𝜀2
𝜀𝑑 + 𝐶3𝜀

−𝑑𝐶4𝜀
𝑑−1𝐶1

𝛿 + |𝑥− 𝑧|
𝜀

𝜀𝑑

)︂
≤ 𝐶3 (𝐶2 + 𝐶1𝐶3𝐶4)

𝛿 + |𝑥− 𝑧|
𝜀2

,
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and 𝐶 = 𝐶3 (𝐶2 + 𝐶1𝐶3𝐶4) > 0 is then a constant depending on 𝑑, 𝑛, 𝐶0, 𝜌 and 𝜉 and in particular uniform
w.r.t. 𝑥. �

In order to establish convergence of approximate mean curvature under weak star convergence of varifolds,
it remains to prove that 𝛿(𝑉, 𝑉𝑖) tends to 0 when 𝑉𝑖 weak star converges to 𝑉 , which is the key point of the end
of the section.

4.3. Convergence of approximate mean curvature

Let us transfer the measure setting introduced in Section 4.1 to our varifolds framework 𝑋 = R𝑛 × 𝐺𝑑,𝑛.
For a 𝑑–varifold 𝑉 , the total variation is 𝑉 (𝑋) = 𝑉 (R𝑛 × 𝐺𝑑,𝑛) = ‖𝑉 ‖(R𝑛). Let (𝑉𝑖)𝑖∈N, 𝑉 be 𝑑–varifolds
such that (𝑉𝑖)𝑖 weak star converges to 𝑉 , with ‖𝑉 ‖(R𝑛) < +∞ and with support contained in a fixed compact
𝐾 × 𝐺𝑑,𝑛 ⊂ R𝑛 × 𝐺𝑑,𝑛. Then, ‖𝑉𝑖‖ weak star converges to ‖𝑉 ‖ and moreover ‖𝑉𝑖‖(R𝑛) → ‖𝑉 ‖(R𝑛). Indeed,
‖𝑉 ‖(R𝑛) ≤ lim inf𝑖→∞ ‖𝑉𝑖‖(R𝑛) by lower semi continuity of total variation. And in addition, as all 𝑉𝑖 are
supported in the same compact set 𝐾 ×𝐺𝑑,𝑛, we have that

lim sup
𝑖→∞

‖𝑉𝑖‖(R𝑛) = lim sup
𝑖→∞

𝑉𝑖(𝐾 ×𝐺𝑑,𝑛) ≤ 𝑉 (𝐾 ×𝐺𝑑,𝑛) = ‖𝑉 ‖(R𝑛),

hence lim𝑖→∞ ‖𝑉𝑖‖(R𝑛) = ‖𝑉 ‖(R𝑛) < +∞. Consequently, thanks to Proposition 4.5, (𝑉𝑖)𝑖 (resp. (‖𝑉𝑖‖)𝑖) weak
converges to 𝑉 (resp. ‖𝑉 ‖) and both

sup
𝐵⊂R𝑛 ball

∆𝐵(𝑉, 𝑉𝑖) ≤ ∆(𝑉, 𝑉𝑖) −−−→
𝑖→∞

0 and 𝜂𝑑(‖𝑉𝑖‖, ‖𝑉 ‖) −−−→
𝑖→∞

0 hold. (4.16)

Theorem 4.8. Let 𝑉 be a 𝑑–regular varifold in R𝑛 with regularity constant 𝐶0 ≥ 1 in (4.1) and assume
‖𝑉 ‖(R𝑛) < ∞. Let (𝑉𝑖)𝑖 be a sequence of 𝑑–varifolds weak star converging to 𝑉 . Assume that there exists a
compact set 𝐾 ⊂ R𝑛 such that spt𝑉𝑖 ⊂ 𝐾 ×𝐺𝑑,𝑛 for all 𝑖. Then,

(𝑖) setting 𝑑𝑖 := 𝛿(𝑉, 𝑉𝑖) (𝛿 has been defined in (4.5)) we have

𝑑𝑖 → 0 for 𝑖→∞; (4.17)

(𝑖𝑖) setting 𝜂𝑖 := 𝜂𝑑(‖𝑉 ‖, ‖𝑉𝑖‖), there exists a constant 𝐶 > 0 depending only on 𝑑, 𝑛, 𝐶0, 𝜉 and 𝜌 such that:
if 𝑥 ∈ spt ‖𝑉 ‖ and (𝑧𝑖)𝑖 ⊂ R𝑛 converges to 𝑥, then for any sequence (𝜀𝑖)𝑖 ⊂]0, 1[ tending to 0 and satisfying

|𝑥− 𝑧𝑖|+ 𝜂𝑖 ≤ 𝛾𝜀𝑖, for 𝛾 =
(︁

8(1 + (2𝐶0)1/𝑑 + 𝐶
2/𝑑
0 )

)︁−1

(4.18)

we have ⃒⃒
𝐻Π

𝜀𝑖
(𝑧𝑖, 𝑉𝑖)−𝐻Π

𝜀𝑖
(𝑥, 𝑉 )

⃒⃒
≤ 𝐶

𝑑𝑖 + |𝑥− 𝑧𝑖|
𝜀2𝑖

· (4.19)

Note that (𝑖𝑖) directly follows from Proposition 4.7, and (𝑖) again holds under the flexible assumption that
𝑉 is 𝑑–regular in the sense of (4.1).

Proof. Proof of (𝑖): We first show that 𝑑𝑖 → 0.
As varifolds are supported in the same compact set 𝐾 ×𝐺𝑑,𝑛, we have (4.16), i.e.

1. (𝑉𝑖)𝑖 weak converges to 𝑉 and the flat distance ∆(𝑉, 𝑉𝑖) tends to 0, thus

sup
𝐵⊂R𝑛 ball

∆𝐵(𝑉, 𝑉𝑖) ≤ ∆(𝑉, 𝑉𝑖) −−−→
𝑖→∞

0,

2. (‖𝑉𝑖‖)𝑖 weak converge to ‖𝑉 ‖ and both ∆(‖𝑉𝑖‖, ‖𝑉 ‖) −−−→
𝑖→∞

0 and 𝜂𝑖 := 𝜂𝑑(‖𝑉𝑖‖, ‖𝑉 ‖) −−−→
𝑖→∞

0.



MEAN CURVATURE MOTION OF POINT CLOUD VARIFOLDS 1791

Let us argue by contradiction and, up to extraction of a subsequence, assume that ∃𝛿 > 0 such that ∀𝑖 ∈ N,
𝑑𝑖 > 𝛿. By definition of 𝑑𝑖, there is a sequence of balls (𝐵𝑖)𝑖 ⊂ R𝑛, 𝐵𝑖 = 𝐵(𝑥𝑖, 𝑟𝑖) with 𝑥𝑖 ∈ spt ‖𝑉 ‖ and 𝑟𝑖 > 0,
such that for all 𝑖,

∆𝐵𝑖
(𝑉, 𝑉𝑖) > 𝛿(𝑟𝑖 + 𝜂𝑖)𝑑.

And we already know that ∆𝐵𝑖(𝑉𝑖, 𝑉 ) ≤ ∆(𝑉, 𝑉𝑖) −−−→
𝑖→∞

0, thus (𝑟𝑖 +𝜂𝑖)𝑑 must tend to 0 as well, and 𝜂𝑖 already

tends to 0 so that we eventually conclude that 𝑟𝑖 −−−→
𝑖→∞

0.

Now, from the definition of ∆𝐵𝑖 , ∆𝐵𝑖(𝑉, 𝑉𝑖) > 𝛿(𝑟𝑖 + 𝜂𝑖)𝑑 implies that there exists a sequence of 1–Lipschitz
functions (𝜙𝑖)𝑖 ∈ C(R𝑛 ×𝐺𝑑,𝑛) with spt𝜙𝑖 ⊂ 𝐵𝑖, ‖𝜙𝑖‖∞ ≤ 1 and such that for all 𝑖,⃒⃒⃒⃒

⃒
∫︁

𝐵𝑖×𝐺𝑑,𝑛

𝜙𝑖𝑑𝑉𝑖 −
∫︁

𝐵𝑖×𝐺𝑑,𝑛

𝜙𝑖𝑑𝑉

⃒⃒⃒⃒
⃒ > 𝛿(𝑟𝑖 + 𝜂𝑖)𝑑. (4.20)

Applying Ascoli compactness theorem in C(𝐾×𝐺𝑑,𝑛), up to extracting a subsequence, there exists a continuous
function 𝜙 ∈ C(𝐾 ×𝐺𝑑,𝑛) such that 𝜙𝑖 −−−→

𝑖→∞
𝜙 uniformly in 𝐾 ×𝐺𝑑,𝑛.

It is not difficult to see that 𝜙 = 0. Indeed, let us consider

𝑋 = {𝑦 ∈ 𝐾 : |𝜙(𝑦)| > 0}.

Let 𝑥 ∈ 𝑋, then ∃𝑁 = 𝑁𝑥 ∈ N such that for all 𝑖 ≥ 𝑁 , |𝜙𝑖(𝑥)| > 0 and thus 𝑥 ∈ 𝐵𝑖. Therefore, |𝑥 − 𝑥𝑖| ≤
𝑟𝑖 −−−→

𝑖→∞
0 and thus, (𝑥𝑖)𝑖 converges to 𝑥. Consequently 𝑋 contains at most one point and on the other hand

𝑋 is open by continuity of 𝜙 so that 𝑋 = ∅.
Coming back to (4.20) we first get by definition of 𝜂𝑖 that ‖𝑉𝑖‖(𝐵𝑖) ≤ ‖𝑉 ‖(𝐵𝜂𝑖

𝑖 ) + (𝜂𝑖)𝑑 and then by (4.1)

𝛿(𝑟𝑖 + 𝜂𝑖)𝑑 < sup
𝐾×𝐺𝑑,𝑛

|𝜙𝑖| (‖𝑉𝑖‖(𝐵𝑖) + ‖𝑉 ‖(𝐵𝑖)) ≤
(︀
𝐶0(𝑟𝑖 + 𝜂𝑖)𝑑 + (𝜂𝑖)𝑑 + 𝐶0(𝑟𝑖)𝑑

)︀
sup

𝐾×𝐺𝑑,𝑛

|𝜙𝑖|

≤ 2𝐶0(𝑟𝑖 + 𝜂𝑖)𝑑 sup
𝐾×𝐺𝑑,𝑛

|𝜙𝑖|.

It follows that, 0 < 𝛿 <
2𝐶0(𝑟𝑖 + 𝜂𝑖)𝑑

(𝑟𝑖 + 𝜂𝑖)𝑑
sup

𝐾×𝐺𝑑,𝑛

|𝜙𝑖| ≤ 2𝐶0 sup
𝐾×𝐺𝑑,𝑛

|𝜙𝑖| leading to a contradiction since

sup𝐾×𝐺𝑑,𝑛
|𝜙𝑖| −−−→

𝑖→∞
sup𝐾×𝐺𝑑,𝑛

|𝜙| = 0.

Proof of (𝑖𝑖): apply Proposition 4.7 with 𝑊 = 𝑉𝑖. �

Eventually combining consistency (Prop. 3.3) and stability (Thm. 4.8) we obtain the convergence of the
approximate mean curvature. The following result (Cor. 4.9) is a particular case where strong regularity of the
limit varifold ensures that assumptions of both consistency and stability are fulfilled. However, the C3 regularity
assumption is stronger than necessary and more general results essentially require to check that Proposition 3.3
and stability Theorem 4.8 apply.

Corollary 4.9 (Convergence). Let 𝑉 be a 𝑑–varifold associated with a compact 𝑑–submanifold 𝑀 ⊂ R𝑛 without
boundary of class C3. Let (𝑉𝑖)𝑖 be a sequence of 𝑑–varifolds weak star converging to 𝑉 . Assume that there exists
a compact set 𝐾 ⊂ R𝑛 such that spt𝑉𝑖 ⊂ 𝐾 × 𝐺𝑑,𝑛 for all 𝑖. Then, define 𝑑𝑖 = 𝛿(𝑉, 𝑉𝑖) (as in (4.5)) and
let 𝑥 ∈ 𝑀 , (𝑧𝑖)𝑖 ⊂ R𝑛 such that |𝑥 − 𝑧𝑖| −→ 0, for any sequence (𝜀𝑖)𝑖 ⊂ (0, 1) tending to 0 and satisfying
|𝑥− 𝑧𝑖|+ 𝜂𝑑(‖𝑉 ‖, ‖𝑉𝑖‖) = 𝑜(𝜀𝑖) we have

⃒⃒
𝐻Π

𝜀𝑖
(𝑧𝑖, 𝑉𝑖)−𝐻(𝑥, 𝑉 )

⃒⃒
= 𝑂

(︂
𝑑𝑖 + |𝑥− 𝑧𝑖|

𝜀2𝑖

)︂
+𝑂(𝜀𝑖)

−−−→
𝑖→∞

0 as soon as
√︀
𝑑𝑖 + |𝑥− 𝑧𝑖| = 𝑜(𝜀𝑖).
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Proof. First of all, we recall that a closed 𝑑–submanifold of R𝑛 of class C2 is in particular 𝑑–regular and then
∃𝐶0 ≥ 1 such that for all 𝑥 ∈𝑀 and 0 < 𝑟 ≤ diam𝑀 ,

𝐶−1
0 𝑟𝑑 ≤ ‖𝑉 ‖(𝐵(𝑥, 𝑟)) = ℋ𝑑(𝑀 ∩𝐵(𝑥, 𝑟)) ≤ 𝐶0𝑟

𝑑.

We mention that one could adapt the proof of Proposition 3.3 and more precisely apply (3.8) with 𝑔 =√︀
1 + |∇𝑢|2 to infer the 𝑑–regularity of 𝑀 . Applying Theorem 4.8 and Proposition 3.3 (in particular the last

estimate for 𝑀 being at least C3) to⃒⃒
𝐻Π

𝜀𝑖
(𝑧𝑖, 𝑉𝑖)−𝐻(𝑥, 𝑉 )

⃒⃒
≤
⃒⃒
𝐻Π

𝜀𝑖
(𝑧𝑖, 𝑉𝑖)−𝐻Π

𝜀𝑖
(𝑥, 𝑉 )

⃒⃒
+
⃒⃒
𝐻Π

𝜀𝑖
(𝑥, 𝑉 )−𝐻(𝑥, 𝑉 )

⃒⃒
concludes the proof. �

In the case of a point cloud varifold 𝑉 =
∑︀𝑁

𝑖=1𝑚𝑖𝛿(𝑥𝑖,𝑃𝑖), and for

Π = Π𝑖𝑗 ∈ {Π𝑃𝑗
, −2Π𝑃⊥𝑗

, 2 Id, Π𝑃⊥𝑖
∘Π𝑃𝑗

, −2Π𝑃⊥𝑖
∘Π𝑃⊥𝑗

, 2Π𝑃⊥𝑗
} (4.21)

we rewrite the approximate mean curvature

𝐻Π
𝜀 (𝑥𝑖, 𝑉 ) = − 𝑑

𝑛

1
𝜀

𝑁∑︁
𝑗=1

𝑚𝑗𝜌
′
(︂
|𝑥𝑗 − 𝑥𝑖|

𝜀

)︂
Π𝑖𝑗

(︂
𝑥𝑗 − 𝑥𝑖

|𝑥𝑗 − 𝑥𝑖|

)︂
𝑁∑︁

𝑗=1

𝑚𝑗𝜉

(︂
|𝑥𝑗 − 𝑥𝑖|

𝜀

)︂ . (4.22)

Proposition 3.3 leaves us with at least 6 possible choices for the definition of an approximate mean curvature,
more or less equivalently reasonable in the continuous smooth case. Our numerical experiments in Section 6
indicate that those formulas can behave very differently when used in the context of a time discretization for
the simulation of mean curvature flows.

Remark 4.10 (𝑘–nearest neighbors). Notice that in the use of formula (4.22), it is advisable to ensure that
the selected neighbourhood is sufficiently large and contains at least a fixed number of points. This is an
appropriate procedure especially for point clouds that are not uniformly sampled. In fact, for point clouds of
moderate density we prescribe the number 𝑘 of nearest points to be considered and infer 𝜀 so that the support
of 𝜌

(︁
|· − 𝑥𝑖|

𝜀

)︁
exactly contains 𝑥𝑖 plus 𝑘 − 1 other points.

5. Mean curvature motion and comparison principles

5.1. Computation of masses and directions for point cloud varifolds

Before we discuss the actual time discretization let us detail how we derive masses and directions from
positions. In the case of a smooth varifold 𝑉 = ℋ𝑑

|𝑀 ⊗ 𝛿𝑇𝑥𝑀 associated with a 𝑑–submanifold 𝑀 ⊂ R𝑛, the
tangent plane and the varifold are completely determined by the knowledge of 𝑀 . In the case of a point
cloud varifold, there is no unique choice of masses {𝑚𝑖}𝑁

𝑖=1 and sets of directions {𝑃𝑖}𝑁
𝑖=1. Here, we will follow

standard approaches. The ansatz to define the masses 𝑚𝑖 is as follows. We assume that the positions {𝑥𝑖}𝑖 are
close to some 𝑑–submanifold 𝑀 and we want to define masses {𝑚𝑖}𝑖 such that the resulting Radon measures
𝜇 :=

∑︀𝑁
𝑖=1𝑚𝑖𝛿𝑥𝑖

and 𝜈 := ℋ𝑑
|𝑀 are close in the sense of measures. To this end, we regularize 𝜇 and 𝜈 via

convolution. I.e. we define 𝜆𝛿(𝑥) = 𝛿−𝑛𝜆(|𝑥|/𝛿) for 𝜆 : R → R nonnegative, even, and compactly supported in
[−1, 1]. Then we renormalize the regularized 𝜇 by the regularized 𝜈 in the sense that

𝑚𝑖 =
𝜈 * 𝜆𝛿(𝑥𝑖)
𝜇 * 𝜆𝛿(𝑥𝑖)
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Unfortunately, 𝑀 and thus 𝜈 are not known and we replace 𝛿𝑛𝜈 *𝜆𝛿(𝑥𝑖) with its first order approximation 𝐶𝜆𝛿
𝑑

with 𝐶𝜆 =
∫︀

R𝑑 𝜆(|𝑦|) 𝑑𝑦 = 𝜎𝑑−1

∫︀ 1

𝑠=0
𝜆(𝑠)𝑠𝑑−1 𝑑𝑠 being the volume weighted by 𝜆 of the unit ball in R𝑑. From

this we deduce for the masses

𝑚𝑖 =
𝐶𝜆𝛿

𝑑

𝑁∑︁
𝑗=1

𝜆

(︂
|𝑥𝑗 − 𝑥𝑖|

𝛿

)︂ .
To the best of our knowledge, there is unfortunately no general result of convergence of such estimators, assuming
for instance a control of the Hausdorff distance between 𝑀 and {𝑥𝑖}𝑖 and asking for {𝑚𝑖}𝑖 ensuring that 𝜇
and 𝜈 are close in flat distance or in Wasserstein type distance. In our numerical experiments, we will consider
either 𝜆 smooth and compactly supported or 𝜆 = 𝜒]−1,1[ which implies

𝑚𝑖 =
𝜔𝑑𝛿

𝑑

𝑘𝛿
with 𝑘𝛿 = card {𝑗 ∈ {1, . . . , 𝑁} : |𝑥𝑗 − 𝑥𝑖| < 𝛿} .

As it is usually done, sets of directions {𝑃𝑖}𝑖 are computed through a local weighted linear regression. We fix a
further nonnegative and even profile kernel 𝜁 : R → R supported in ] − 1, 1[ and a sufficiently large parameter
𝜎 > 0 and define, based on a 𝜎–neighborhood of some point 𝑥𝑖 containing 𝑘𝜎 points, a center of mass

𝑥̄ =
1
𝑘𝜎

𝑁∑︁
𝑗=1

𝜒]−1,1[

(︂
|𝑥𝑗 − 𝑥𝑖|

𝜎

)︂
𝑥𝑗

of the points 𝜎–close to the point 𝑥𝑖. Furthermore, with the notation 𝑥 = (𝑥(1), . . . , 𝑥(𝑛)) for the 𝑛–components
of 𝑥 ∈ R𝑛, we compute the 𝑛 by 𝑛 covariance matrix 𝑀 𝑖 = (𝑀 𝑖

𝑘𝑙)𝑘,𝑙=1,...𝑛 of coefficient (𝑘, 𝑙):

𝑀 𝑖
𝑘𝑙 =

𝑁∑︁
𝑗=1

𝜁

(︂
|𝑥𝑗 − 𝑥𝑖|

𝜎

)︂(︁
𝑥

(𝑘)
𝑗 − 𝑥̄(𝑘)

)︁(︁
𝑥

(𝑙)
𝑗 − 𝑥̄(𝑙)

)︁
.

The matrix 𝑀 𝑖 is symmetric and positive semi-definite. The 𝑑 eigenvectors associated with the 𝑑 highest
eigenvalues provide a basis of an approximate tangent space 𝑃𝑖 and the (𝑛 − 𝑑) eigenvectors corresponding to
the (𝑛 − 𝑑) smallest eigenvalues provide a basis of an approximate normal space 𝑃⊥𝑖 . When using a smooth
profile 𝜁, this way of computing tangent plane ensures its spatial regularity. In our numerical experiments, we
have chosen 𝜁 = 𝜉 smooth and compactly supported in ]−1, 1[. As pointed out in Remark 4.10 concerning 𝜀, for
practical reasons it is advisable to fix (𝑘𝜀, 𝑘𝜎, 𝑘𝛿) and to define (𝜀, 𝜎, 𝛿) accordingly (as the radius of the smallest
ball containing the right number of nearest points), in this case (𝜀, 𝜎, 𝛿) vary, depending on the sampling of the
point cloud. This is what we finally have used in the applications.

5.2. Time continuous mean curvature motion and comparison principles

Now, we are in the position to formulate mean curvature motion for point cloud varifolds. More precisely,
given a point cloud 𝑑–varifold 𝑉 =

∑︀
𝑖=1 ...,𝑁 𝑚𝑖𝛿(𝑥𝑖,𝑃𝑖) in R𝑛, we consider the following system of ordinary

differential equations:

Find a family of varifolds (𝑉 (𝑡))𝑡≥0 with

𝑉 (𝑡) =
𝑁∑︁

𝑖=1

𝑚𝑖(𝑋(𝑡))𝛿(𝑥𝑖(𝑡),𝑃𝑖(𝑋(𝑡))) and 𝑋(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑁 (𝑡)) ∈ R𝑛𝑁

such that
d
d𝑡𝑥𝑖(𝑡) = 𝐻Π

𝜀 (𝑥𝑖(𝑡), 𝑉 (𝑡)) (5.1)
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for prescribed initial data 𝑉 (0) = 𝑉 and 𝑖 = 1 . . . 𝑁 . Here, 𝑚𝑖(𝑋(𝑡)) and 𝑃𝑖(𝑋(𝑡)) are computed from the
positions as functions of neighboring positions (see the beginning of the current section) while 𝐻Π

𝜀 is defined in
(4.22). Thus, the evolution equation turns into

d
d𝑡𝑥𝑖(𝑡) =

1
𝜀

𝑁∑︁
𝑗=1

𝜔𝑖𝑗(𝑡)Π𝑖𝑗(𝑡) (𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)) , 𝑖 = 1 . . . 𝑁. (5.2)

with

𝜔𝑖𝑗(𝑡) = − 𝑑
𝑛

𝑚𝑗(𝑡)𝜌′
(︂
|𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)|

𝜀

)︂
1

|𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)|
𝑁∑︁

𝑙=1

𝑚𝑙(𝑡)𝜉
(︂
|𝑥𝑙(𝑡)− 𝑥𝑖(𝑡)|

𝜀

)︂
for 𝑖 ̸= 𝑗 and 𝜔𝑘

𝑖𝑖 = 0, where 𝑚𝑖(𝑡) = 𝑚𝑖(𝑋(𝑡)) denotes the masses at time 𝑡. We observe that 𝜔𝑖𝑗(𝑡) ≥ 0 since
𝜌 is nonincreasing in [0, 1] and 𝜉 is positive in ]0, 1[. As a first consequence of this rewritten evolution problem
we obtain the following comparison result which establishes planar barriers for the flow.

Proposition 5.1 (planar barrier). Let (𝑋(𝑡))0≤𝑡<𝑇 be a family of point clouds evolving according to the flow
defined in (5.2) up to some time 𝑇 ∈]0,+∞]. Suppose that

(𝑖) the initial point cloud 𝑋(0) = {𝑥𝑖(0)}𝑁
𝑖=1 ⊂ R𝑛 fulfills 𝑥𝑖(0) · 𝜈 ≤ 𝜇 for 𝑖 = 1 . . . 𝑁 with 𝜈 ∈ R𝑛, 𝜇 ∈ R,

(𝑖𝑖) for all 0 ≤ 𝑡 < 𝑇 , if 𝑥𝑖(𝑡) is a point on the boundary of the convex hull of 𝑋(𝑡) then for all points 𝑥𝑗(𝑡)
such that |𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)| < 𝜀, the vector Π𝑖𝑗(𝑡)(𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)) at 𝑥𝑖(𝑡) is pointing inside the convex hull of
𝑋(𝑡).

Then independently of the choices of masses 𝑚𝑖(𝑡) and for all 0 ≤ 𝑡 < 𝑇 ,

𝑥𝑖(𝑡) · 𝜈 ≤ 𝜇, for all 𝑖 = 1 . . . 𝑁.

Proof. Assume that the point cloud 𝑋(𝑡) is touching the plane {𝑥 ∈ R𝑛 |𝑥 · 𝜈 = 𝜇} at time 𝑡 ≥ 0. Consider
any 𝑥𝑖(𝑡) with 𝑥𝑖(𝑡) · 𝜈 = 𝜇. Then, our assumption ensures that d

d𝑡𝑥𝑖(𝑡) · 𝜈 ≤ 0 and 𝑋(𝑡) will not penetrate the
plane. �

For Π𝑖𝑗 = 2 Id the assumption in the proposition is obviously fulfilled and for one of the choices Π𝑖𝑗 ∈
{−2Π𝑃⊥𝑗

, −2Π𝑃⊥𝑖
∘ Π𝑃⊥𝑗

, 2Π𝑃⊥𝑗
} this assumption appears to be a useful constraint to define {𝑃𝑖}𝑖=1,...𝑁 . For

Π𝑖𝑗 ∈ {Π𝑃𝑗
, Π𝑃⊥𝑖

∘Π𝑃𝑗
} the assumption will fail in general for most practical choices of the 𝑃𝑖. In fact, in this

case the verification of a planar barrier depends in a subtle way on the weights 𝜔𝑖𝑗 .
Next, let us consider a spherical comparison principle. A sphere of radius 𝑅0 around a center point 𝑥 ∈ R𝑛

stay spherical under mean curvature motion with radius 𝑅(𝑡) =
√︀

(𝑅0)2 − 2𝑑𝑡 and surfaces inside the initial
sphere stay inside the evolving spheres until they become singular, e.g. at the extinction time (see ([20], Prop. 3.1
and Rem. 4.10) for a measure theoretic version due to Brakke). In what follows, we will here study a discrete
counterpart of this comparison principle in the case of point cloud varifolds.

Proposition 5.2 (sphere comparison principle). For point cloud 𝑋0 = {𝑥0
𝑖 }𝑁

𝑖=1 ⊂ R𝑛 and 𝑧 ∈ R𝑛 define
𝑅0 = max𝑖=1,...,𝑁 |𝑥0

𝑖 − 𝑧| and assume that (𝑋(𝑡))0≤𝑡<𝑇 satisfies (5.1) with 𝑋(0) = 𝑋0. Then 𝑅(𝑡) =
max𝑖=1,...,𝑁 |𝑥𝑖(𝑡)− 𝑧| fulfills

𝑅(𝑡) ≤

√︃
(𝑅0)2 − 2𝑑

∫︁ 𝑡

0

𝑐(𝑠)d𝑠

with

𝑐(𝑡) = min
{︂

Π𝑖𝑗(𝑡)(𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)) · (𝑥𝑖(𝑡)− 𝑧)
|𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)|2

⃒⃒⃒⃒
𝑖 ∈ {1, . . . , 𝑁}, |𝑥𝑖(𝑡)− 𝑧| = 𝑅(𝑡) and
𝑗 ∈ {1, . . . , 𝑁}, 0 < |𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)| < 𝜀

}︂
(5.3)

and 𝑡 ≤ 𝑇 with 𝑇 being the extinction time, which is smaller or equal than the supremum over all 𝑡 > 0 for
which the argument of the square root is positive.
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Proof. Without any restriction assume 𝑧 = 0 and choose any 𝑥𝑖(𝑡) with 𝑅(𝑡) = |𝑥𝑖(𝑡)|. Multiplying (5.2) with
𝑥𝑖(𝑡) we obtain

1
2

d
d𝑡 |𝑥𝑖(𝑡)|2 = d

d𝑡𝑥𝑖(𝑡) · 𝑥𝑖(𝑡) =
1
𝜀

𝑁∑︁
𝑗=1

𝜔𝑖𝑗(𝑡)Π𝑖𝑗(𝑡) (𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)) · 𝑥𝑖(𝑡)

≤ −𝑐(𝑡)
𝜀

𝑁∑︁
𝑗=1

𝜔𝑖𝑗(𝑡)|𝑥𝑖(𝑡)− 𝑥𝑗(𝑡)|2

=
𝑐(𝑡)𝑑
𝑛

𝑁∑︁
𝑗=1

𝑚𝑗(𝑡)𝜌′
(︂
|𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)|

𝜀

)︂
|𝑥𝑗(𝑡)− 𝑥𝑖(𝑡)|

𝜀
𝑁∑︁

𝑙=1

𝑚𝑙(𝑡)𝜉
(︂
|𝑥𝑙(𝑡)− 𝑥𝑖(𝑡)|

𝜀

)︂ ≤ −𝑐(𝑡)𝑑 ,

where we have used 𝑛𝜉(𝑠) = −𝑠𝜌′(𝑠) from (3.1). Thus, we obtain 𝑅(𝑡)2 ≤ (𝑅0)2 − 2𝑑
∫︀ 𝑡

0
𝑐(𝑠)d𝑠, which proves

the claim. �

For Π𝑖𝑗 = 2 Id, the constant in (5.7) is 𝑐(𝑡) = 1 for all 𝑡 and thus the conclusion of Proposition 5.4 recovers
the classical spherical comparison principle 𝑅(𝑡) ≤

√︀
(𝑅0)2 − 2𝑑𝑡. Indeed, dropping the dependence on time

and fixing 𝑖 and 𝑗 according to (5.3) and so that |𝑥𝑗 − 𝑧| ≤ |𝑥𝑖 − 𝑧| = 𝑅 we then obtain

(𝑥𝑖 − 𝑥𝑗) · (𝑥𝑖 − 𝑧) = |𝑥𝑖 − 𝑧|2 − (𝑥𝑗 − 𝑧) · (𝑥𝑖 − 𝑧) ≥ 1
2 |𝑥𝑖 − 𝑧|2 − (𝑥𝑗 − 𝑧) · (𝑥𝑖 − 𝑧) + 1

2 |𝑥𝑗 − 𝑧|2 = 1
2 |𝑥𝑖 − 𝑥𝑗 |2.

Unfortunately, regarding to other choices for Π𝑖𝑗 , 𝑐(𝑡) strongly depends on the computation of normals and
could even be negative.

5.3. Time discrete curvature flow

Let us now proceed with a time discretization of (5.1). It is well–known, for parametric mean curvature flows
for instance, that explicit time discretization implies a restrictive stability condition, imposing small time steps.
A common solution is then to consider implicit or partially implicit time discretizations. Let us consider a time
step 𝜏 > 0 and approximate the solution 𝑥𝑖(𝑡𝑘) at a discrete time 𝑡𝑘 = 𝑘𝜏 using the adopted notation

𝑚𝑘
𝑖 = 𝑚𝑖(𝑋𝑘), 𝑃 𝑘

𝑖 = 𝑃𝑖(𝑋𝑘), Π𝑘
𝑖𝑗 = Π𝑖𝑗(𝑃 𝑘

𝑖 , 𝑃
𝑘
𝑗 ) as in (4.21),

𝑋𝑘 = (𝑥𝑘
𝑖 )𝑖=1...𝑁 ∈ R𝑛𝑁 and 𝑉 𝑘 =

𝑁∑︁
𝑖=1

𝑚𝑘
𝑖 𝛿(𝑥𝑘

𝑖 ,𝑃 𝑘
𝑖 ).

A first natural choice is the implicit scheme (actually implicit with respect to positions 𝑋𝑘 but explicit with
respect to masses and sets of directions):

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝜏𝐻Π
𝜀 (𝑥𝑘+1

𝑖 , ̂︁𝑉 𝑘) with ̂︁𝑉 𝑘 =
𝑁∑︁

𝑖=1

𝑚𝑘
𝑖 𝛿(𝑥𝑘+1

𝑖 ,𝑃 𝑘
𝑖 ), (5.4)

𝑉 𝑘+1 =
𝑁∑︁

𝑖=1

𝑚𝑘+1
𝑖 𝛿(𝑥𝑘+1

𝑖 ,𝑃 𝑘+1
𝑖 ), (5.5)

where in (5.5) the updated masses 𝑚𝑘+1
𝑖 and tangent directions 𝑃 𝑘+1

𝑖 are computed from the new positions
𝑋𝑘+1. In other words, the positions 𝑋𝑘+1 = (𝑥𝑘+1

𝑖 )𝑖=1...𝑁 ∈ R𝑛𝑁 must satisfy the following equations for
𝑖 = 1 . . . 𝑁

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 +
𝜏

𝜀

𝑁∑︁
𝑗=1

𝜔𝑘+1
𝑖𝑗 Π𝑘

𝑖𝑗

(︀
𝑥𝑘+1

𝑗 − 𝑥𝑘+1
𝑖

)︀
(5.6)
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with

𝜔𝑘
𝑖𝑗 = − 𝑑

𝑛

𝑚𝑘
𝑗 𝜌
′

(︃
|𝑥𝑘

𝑗 − 𝑥𝑘
𝑖 |

𝜀

)︃
1

|𝑥𝑘
𝑗 − 𝑥𝑘

𝑖 |
𝑁∑︁

𝑙=1

𝑚𝑘
𝑙 𝜉

(︂
|𝑥𝑘

𝑙 − 𝑥𝑘
𝑖 |

𝜀

)︂
for 𝑖 ̸= 𝑗, and 𝜔𝑘

𝑖𝑖 = 0. As for the continuous counterpart 𝜔𝑘
𝑖𝑗 ≥ 0. At first, we obtain as in the time continuous

case a comparison principle with planar barriers for the flow.

Proposition 5.3 (planar barrier in the time discrete case). Suppose that a sequence of point cloud varifolds
(𝑉𝑘)𝑘 is solution of the implicit scheme (5.4). In addition,

(1) assume that the initial points 𝑋0 = {𝑥0
𝑖 }𝑁

𝑖=1 ⊂ R𝑛 fulfill 𝑥0
𝑖 · 𝜈 ≤ 𝜇 for 𝑖 = 1 . . . 𝑁 with 𝜈 ∈ R𝑛, 𝜇 ∈ R,

(2) for all 𝑘, if 𝑥𝑘
𝑖 is a point on the boundary of the convex hull of 𝑋𝑘, then for points 𝑥𝑘

𝑗 such that |𝑥𝑘
𝑗−𝑥𝑘

𝑖 | < 𝜀

assume (implicitly) that Π𝑘
𝑖𝑗(𝑥𝑘+1

𝑗 − 𝑥𝑘+1
𝑖 ) at 𝑥𝑘+1

𝑖 is pointing inside the convex hull of 𝑋𝑘+1.
Then independently of the choices of masses 𝑚𝑘

𝑖

𝑥𝑘
𝑖 · 𝜈 ≤ 𝜇, for all 𝑖 = 1 . . . 𝑁

and for all 𝑘 such that 𝑉 𝑘 is defined.

Proof. The proof is analogous to the proof of Proposition 5.1 in the time continuous case, now considering
𝑖 ∈ {1, . . . 𝑁} with 𝑥𝑘+1

𝑖 · 𝜈 = max𝑗∈{1,...𝑁} 𝑥
𝑘+1
𝑗 · 𝜈. �

Next, we study a fully discrete version of the sphere comparison property (cf. Prop. 5.2).

Proposition 5.4 (time discrete sphere comparison principle). Suppose that a point cloud 𝑋0 = {𝑥0
𝑖 }𝑁

𝑖=1 ⊂ R𝑛

is contained in a ball 𝐵0 of radius 𝑅0 and centered at 𝑧 and assume that (𝑉 𝑘)𝑘 is a sequence of point cloud
varifolds which are solutions of the implicit scheme (5.4).
For each 𝑘 ≥ 1, define 𝑅𝑘 = max

𝑖∈{1,...,𝑁}
|𝑥𝑘

𝑖 − 𝑧| and

𝑐𝑘 = min

{︃
Π𝑘

𝑖𝑗(𝑥𝑘+1
𝑖 − 𝑥𝑘+1

𝑗 )(𝑥𝑘+1
𝑖 − 𝑧)

|𝑥𝑘+1
𝑖 − 𝑥𝑘+1

𝑗 |2

⃒⃒⃒⃒
⃒ 𝑖 ∈ {1, . . . , 𝑁}, |𝑥𝑘+1

𝑖 − 𝑧| = 𝑅𝑘+1 and
𝑗 ∈ {1, . . . , 𝑁}, |𝑥𝑘+1

𝑖 − 𝑥𝑘+1
𝑗 | < 𝜀

}︃
. (5.7)

Then, independently of the choices of masses, for all 𝑘 such that 𝑉 𝑘 is defined, the positions {𝑥𝑘
𝑗 }𝑁

𝑗=1 ⊂ R𝑛 are

contained in the ball of center 𝑧 and radius
√︁

(𝑅0)2 − 2𝑑𝜏
∑︀𝑘

𝑙=1 𝑐
𝑘.

Let us remark, that in analogy to the time continuous case 𝑐𝑘 = 1 for Π𝑖𝑗 = 2 Id and hence 𝜏
∑︀𝑘

𝑙=1 𝑐
𝑘 = 𝑡𝑘.

Proof. Without loss of generality let 𝑧 = 0. Assume that at time 𝑡𝑘 the point cloud 𝑋𝑘 satisfies max𝑗=1...𝑁 |𝑥𝑘
𝑗 | ≤

𝑅𝑘. We choose 𝑖 ∈ {1, . . . , 𝑁} such that |𝑥𝑘+1
𝑖 | = max𝑗∈{1,...𝑁} |𝑥𝑘+1

𝑗 |. and proceed in analogy to the proof of
Proposition 5.2. Thereby, one obtains

|𝑥𝑘+1
𝑖 |2 = 𝑥𝑘

𝑖 · 𝑥𝑘+1
𝑖 +

𝜏

𝜀

𝑁∑︁
𝑗=1

𝜔𝑘+1
𝑖𝑗 Π𝑘

𝑖𝑗(𝑥𝑘+1
𝑗 − 𝑥𝑘+1

𝑖 ) · 𝑥𝑘+1
𝑖 (5.8)

≤ |𝑥𝑘
𝑖 ||𝑥𝑘+1

𝑖 | − 𝑐𝑘
𝜏

𝜀

𝑁∑︁
𝑗=1

𝜔𝑘+1
𝑖𝑗 |𝑥𝑘+1

𝑗 − 𝑥𝑘+1
𝑖 |2 (5.9)

= |𝑥𝑘
𝑖 ||𝑥𝑘+1

𝑖 | − 𝑑𝑐𝑘𝜏 ≤ 1
2 |𝑥

𝑘+1
𝑖 |2 + 1

2 |𝑥
𝑘
𝑖 |2 − 𝑑𝑐𝑘𝜏 .

This implies (𝑅𝑘+1)2 = |𝑥𝑘+1
𝑖 |2 ≤ |𝑥𝑘

𝑖 |2 − 2𝑐𝑘𝑑𝜏 ≤ (𝑅𝑘)2 − 2𝑐𝑘𝑑𝜏 and thus establishes the claim. �
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However, for practical reasons, we rather propose a linearized version of the previous implicit scheme (5.4) in
which we choose 𝑉 𝑘 as the geometric reference in the discrete evolution of the 𝑘th time step and we introduce
the following semi-implicit scheme

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 +
𝜏

𝜀

𝑁∑︁
𝑗=1

𝜔𝑘
𝑖𝑗Π𝑘

𝑖𝑗

(︀
𝑥𝑘+1

𝑗 − 𝑥𝑘+1
𝑖

)︀
(5.10)

which leads to a linear system to be solved in each time step. With 𝑋𝑘 = (𝑥𝑘
1 , . . . , 𝑥

𝑘
𝑁 ) ∈ R𝑛𝑁 , we can rewrite

this linear system as

(𝑀 − 𝜏

𝜀
𝐿)𝑋𝑘+1 = 𝑀𝑋𝑘 (5.11)

where 𝑀 is a diagonal matrix of size (𝑛𝑁, 𝑛𝑁) defined as

𝑀 =

⎛⎜⎝𝜇1I𝑛

. . .
𝜇𝑁 I𝑛

⎞⎟⎠ with 𝜇𝑖 =
𝑁∑︁

𝑙=1

𝑚𝑘
𝑙 𝜉

(︂
|𝑥𝑘

𝑙 − 𝑥𝑘
𝑖 |

𝜀

)︂

and 𝐿 is a matrix of size (𝑛𝑁, 𝑛𝑁), which we can see as a matrix of (𝑁,𝑁) blocks 𝐿(𝑖,𝑗) of size (𝑛, 𝑛). For a
fixed 𝑖, the block 𝐿(𝑖,𝑗) is the null matrix if |𝑥𝑘

𝑗 − 𝑥𝑘
𝑖 | > 𝜀 and

𝐿(𝑖,𝑗) = − 𝑑
𝑛

𝑚𝑘
𝑗

|𝑥𝑘
𝑗 − 𝑥𝑘

𝑖 |
𝜌′

(︃
|𝑥𝑘

𝑗 − 𝑥𝑘
𝑖 |

𝜀

)︃
Π𝑘

𝑖𝑗 for 𝑗 ̸= 𝑖 ,

𝐿(𝑖,𝑖) = −
𝑁∑︁

𝑗=1,𝑗 ̸=𝑖

𝐿(𝑖,𝑗) =
𝑑

𝑛

𝑁∑︁
𝑗=1

𝑚𝑘
𝑗

|𝑥𝑘
𝑗 − 𝑥𝑘

𝑖 |
𝜌′

(︃
|𝑥𝑘

𝑗 − 𝑥𝑘
𝑖 |

𝜀

)︃
Π𝑘

𝑖𝑗 .

where Π𝑘
𝑖𝑗 is the (𝑛, 𝑛)–matrix corresponding to the linear operator Π𝑘

𝑖𝑗 . The matrix (𝑀 − 𝜏
𝜀𝐿) is strongly

diagonal dominant and thus an M-matrix. Hence, the system (5.11) is uniquely solvable and one obtains 𝑋𝑘+1 =
(Id− 𝜏

𝜀 M−1L)−1Xk.

6. Numerical Results

We perform numerical tests with the semi-implicit scheme (5.10). Different from explicit schemes our scheme
allows for a time step size of the order of the point sampling distance and turned out to be first order consistent in
time. First we test its consistency and robustness to white noise in the simple case of a circle evolving through
curvature flow (Sect. 6.1). The absence of singularities allows us to discard most choices for the projector
Π𝑖𝑗 in (4.21) and we carry on the study with Π𝑖𝑗 = 2Π𝑃⊥𝑖

in Section 6.2. In particular, we observe that
the implicit assumption for the discrete sphere inclusion, though not proven in this case, is satisfied in our
numerical experiment (see Fig. 5e). Next we focus in Section 6.3 on curvature flows of curves with crossings and
junctions, taking advantage of the flexibility with respect to topological changes of point cloud representation.
Our curvature flow is able to converge to both Steiner trees spanning the four vertices of a square in Figure 9.
Last, in Section 6.4, we draw our attention to surfaces and recover the minimal cone spanning the edges of a
tetrahedron in the limit of our mean curvature flow as well as a candidate minimal surface spanning the edges
of a cube, see Figures 10 and 11.

Remark 6.1 (Nearest neighbor graph and 𝑘𝑑–tree structure). From a practical perspective, we compute neigh-
borhoods thanks to a 𝑘𝑑–tree structure that is computed with the library Nanoflann [4]. Note that the knowledge
of the nearest neighbor graph encodes information that can be interpreted as a discrete counterpart to the local
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topology of the object. Comparing with triangulated surface, it can be seen as the counterpart to the mesh
connectivity information. In fact, in case of triangular surfaces one can either move points and obtain a new
mesh with the same connectivity structure, or one can move points and remesh the set of points, which is a
computationally demanding operation but often necessary since moving points may create overlaps or crossings
in the mesh. In a point cloud, after moving the positions of the points, one has the same choice: one can recom-
pute the nearest neighbor graph or leave it unchanged. As pointed out below, this will be useful to stabilize the
point cloud evolution close to triple points. Such operations are straightforward to handle in a 𝑘𝑑–tree.

6.1. Evolution of circles

As already mentioned when we discussed sphere comparison principle (see Sect. 5.2) a circle of initial radius
𝑅0 evolves into concentric circles of radius 𝑅(𝑡) =

√︀
𝑅2

0 − 2𝑡 at time 𝑡 under mean curvature flow. A first step
in order to validate our approach is to check this property on our scheme.

We start with a circle of radius 𝑅0 = 0.5 uniformly discretized with 𝑁 points. In Figure 2, we first perform
a qualitative comparison of the behavior of the scheme depending on the operator Π𝑖𝑗 . In Figures 2e and 2f we
observe strong instabilities after short time, while in Figure 2d, instabilities appear after longer time. Conse-
quently, we focus on projection operators tested in Figures 2a, 2b and 2c, that is Π𝑖𝑗 ∈

{︁
Π𝑃𝑗 , Π𝑃⊥𝑖

∘Π𝑃𝑗 , Π𝑃⊥𝑖

}︁
.

As a second step to validate our approach, we then test the robustness with respect to white noise: we
introduce an initial white noise of standard deviation 𝑠 on the circle of radius 𝑅0 = 0.5.

In Figure 3a, we observe tangential instabilities with agglomeration of points in very short time. In Figure 3b,
we observe that noise is not smoothed but transported, which is reasonable, given that the initial projection
onto 𝑃𝑗 makes Π𝑖𝑗 = Π𝑃⊥𝑖

∘ Π𝑃𝑗 blind to normal noise. As a consequence of this non-smoothing effect, the
speed of evolution is considerably slowed down. In Figures 3c and 3d we observe that noise is smoothed in a
few steps. The evolution is then close to the exact one. This is further improved in Figure 3c and in Figure 3d
with even higher initial noise. From this first analysis, we conclude that the most robust choice among (4.21) is
Π𝑖𝑗 = 2Π𝑃⊥𝑖

when dealing with discretization of smooth curves.
We then carry on our study with Π𝑖𝑗 = 2Π𝑃⊥𝑖

.
Next, we check the first order convergence in time. To that extend, we compute for the circle evolution the

relative mean error after a time 𝑇 defined as

𝑒(𝑇 ) =
1
𝑁

𝑁∑︁
𝑖=1

|𝑅(𝑇 )− |𝑥𝑖(𝑇 )||
𝑅(𝑇 )

with 𝑅(𝑇 ) =
√︁
𝑅2

0 − 2𝑇 , (6.1)

for successively smaller time steps 𝜏 = 2−𝑘/𝑁 , 𝑘 ∈ {0, 1, . . . , 8}. The test is performed on a uniformly discretized
circle of radius 𝑅0 = 0.5 with 𝑁 = 400 points, the number of points used for the computation of masses is
𝑘𝛿 = 3, of tangent directions is 𝑘𝜎 = 17 and of curvatures is 𝑘𝜀 = 15. The error 𝑒(𝑇 ) is computed at time 𝑇 = 0.1
while the extinction time is 𝑇𝑒𝑥𝑡 = 𝑅2

0/2 = 0.125. In Figure 4, we observe a convergence of first order in time in
the case without noise (blue curve labelled ”without noise”), while when adding an initial noise independent of
𝜏 , the error 𝑒𝑇 decay stabilizes and grows (green curve labelled ”fixed noise”). So as to understand the behavior
of 𝑒𝑇 in the case of noise, we perform the same experiment, but adding a white noise of standard deviation
𝑠 =

√
2−𝑘5/𝑁 which is linked via 𝑁 to the time step size 𝜏 = 2−𝑘/𝑁 that is 𝑠2 = (25/𝑁)𝜏 (red curve labelled

”adaptive noise”). We then retrieve the first order convergence in time previously observed without noise. Notice
that due to the lack of a Lipschitz bound for the map 𝑡 ↦→ 𝑅(𝑡) near the extinction time 𝑇𝑒𝑥𝑡 = 0.125, the error
tends to explode for times close to 𝑇𝑒𝑥𝑡 as it is pointed out in Figure 4b.

We eventually study the influence of the number of points 𝑘𝜎 used for the regression and the number of
points 𝑘𝜀 used for the computation of the curvature on a circle uniformly discretized with 𝑁 = 400 points. Due
to the symmetry of the configuration, all choices happen to be equivalent and we hence add an initial noise
of standard deviation 𝑠 = 5/𝑁 = 0.0125. The number of points used to compute the mass is 3. We compute
the mean error 𝑒(𝑇 ) (6.1) obtained at time 𝑇 = 0.1 for a time step 𝜏 = 2−5/𝑁 = 7.8125 10−5. In each box of
Figure 4c, the error 𝑒(𝑇 ) corresponding to (𝑘𝜎, 𝑘𝜀) is given.
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Figure 2. Comparison of the results given by the semi-implicit scheme (5.10) for different
choices of operator Π𝑖𝑗 . The test is performed on a circle uniformly discretized with 𝑁 = 400
points, the number of points for computing the mass is fixed to 𝑘𝛿 = 3, the number of points
for the regression is fixed to 𝑘𝜎 = 17 and the number of points for the computation of curvature
is fixed to 𝑘𝜀 = 15, the time step is 𝜏 = 0.1/𝑁 = 0.0005. The numerical solutions and the exact
solutions in black are represented at same times 𝑡. Simulations are stopped then resulting in
clutter due to noise amplification. (a) 𝛱𝑖𝑗 = 𝛱𝑃 𝑗 , 𝑡 = 0, 0.03, 0.06, 0.09, 0.12. (b) 𝛱𝑖𝑗 = 𝛱𝑃𝑖

⊥ ∘
𝛱𝑃 𝑗 , 𝑡 = 0, 0.03, 0.06, 0.09, 0.12. (c) 𝛱𝑖𝑗 = 2𝛱𝑃𝑖

⊥ , 𝑡 = 0, 0.03, 0.06, 0.09, 0.12. (d) 𝛱𝑖𝑗 = 2Id,
𝑡 = 0, 0.03, 0.06, 0.09, 0.117. (e) 𝛱𝑖𝑗 = −2𝛱𝑃𝑗

⊥ , 𝑡 = 0, 0.02, 0.03, 0.12. (f) 𝛱𝑖𝑗 = −2𝛱𝑃𝑖
⊥ ∘𝛱𝑃𝑗

⊥ ,
𝑡 = 0, 0.01, 0.03, 0.12.

We observe that the number of points used to compute curvature must be large enough (at least 𝑘𝜀 = 13
in this case) to obtain acceptable errors. The choice of 𝑘𝜎 appears to be less crucial and 𝑘𝜎 = 7 seems to be
already sufficiently large.

6.2. Evolution of more general curves

In this section, we apply our scheme (5.10) with Π𝑖𝑗 = Π𝑃⊥𝑖
to a point cloud varifold 𝑉 =

∑︀𝑁
𝑖=1𝑚𝑖𝛿𝑥𝑖

⊗ 𝛿𝑃𝑖

associated to the discretization with 𝑁 points of the following parametrized curve:

𝑥(𝑡) = (𝑟(𝑡) cos 𝑡, 𝑟(𝑡) sin 𝑡) with 𝑟(𝑡) =
1
2

(︁
1 + 𝑟0 sin

(︁
6𝑡+

𝜋

2

)︁)︁
, 𝑟0 = 0, 4 𝑡 ∈ [0, 2𝜋[.

The parameter interval is uniformly discretized so that for 𝑖 ∈ {0, . . . , 𝑁−1}, 𝑥𝑖 = 𝑥(2𝑖𝜋/𝑁), the masses 𝑚𝑖 and
tangents 𝑃𝑖 are then computed from the positions. In Figure 5, we apply our linear semi-implicit scheme (5.10)
(for Π𝑖𝑗 = 2Π𝑃⊥𝑖

) to 𝑉 both with and without noise. The test is performed with 𝑁 = 400 points, the number
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Figure 3. Comparison of the results given by the semi-implicit scheme (5.10) for different
choices of operator Π𝑖𝑗 when adding white noise. The test is performed on circle uniformly
discretized with 𝑁 = 400 points, the number of points for computing the mass is fixed to
𝑘𝛿 = 3, the number of points for the regression is fixed to 𝑘𝜎 = 17 and the number of points
for the computation of curvature is fixed to 𝑘𝜀 = 15, the time step is 𝜏 = 0.1/𝑁 = 0.0005. The
numerical solutions and the exact (black line) solutions are represented at same times 𝑡. To the
initial circle is added a Gaussian noise with standard deviation 𝑠 = 5/𝑁 = 0.0125 in 3a–3c and
𝑠 = 15/𝑁 = 0.0375 in 3d. (a) 𝛱𝑖𝑗 = 𝛱𝑃 𝑗

, 𝑡 = 0, 0.006, 𝑠 = 0.0125. (b) 𝛱𝑖𝑗 = 𝛱𝑃
𝑖⊥
∘ 𝛱𝑃 𝑗

,
𝑡 = 0, 0.03, 0.06, 0.09, 0.12, 𝑠 = 0.0125. (c) 𝛱𝑖𝑗 = 2𝛱𝑃

𝑖⊥
, 𝑡 = 0, 0.03, 0.06, 0.09, 0.12, 𝑠 = 0.0125.

(d) 𝛱𝑖𝑗 = 2𝛱𝑃
𝑖⊥

, 𝑡 = 0, 0.03, 0.06, 0.09, 0.12, 𝑠 = 0.0375.

Figure 4. (a) Decay of the mean error (6.1) at time 𝑇 = 0.1 when the time step 𝜏 ∈ {2−𝑘/𝑁 :
𝑘 = 0, . . . , 8} is refined, 𝑁 = 400. Black triangle indicates slope 1 in log–log scale. (b) Error
𝑒(𝑡) represented with respect to time 𝑡, for 𝜏 = 6.2510−4, in red with initial white noise (of
standard deviation 1.2510−3) and in blue without noise. (c) Error 𝑒(0.1) for different numbers
of points 𝑘𝜎 used for computing tangent and 𝑘𝜀 used for computing curvature.
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Figure 5. Left figure (a) to (d): Blue and red point clouds are the results given by our scheme
without adding noise for the blue point cloud and with white noise of standard deviation 5/𝑁
for the red point cloud. The black curve is the reference solution. Right figure (e): we compute
and represent the minimal radius 𝑅(𝑡) of the circle (centered at 0) and including the points at
time 𝑡, keeping the same parameters and color code as in the left figure. We moreover add grey
dashed lines corresponding to the graph of 𝑡 ↦→

√︀
𝑅(𝑡0)− 2(𝑡− 𝑡0) for 𝑡0 ∈ {0, 0.01, 0.025, 0.05}

and 𝑅(𝑡0) is the radius obtained for the initially noisy shape (red dots). (a) time 𝑡 = 0. (b)
time 𝑡 = 0.01. (c) time 𝑡 = 0.025 (d) time 𝑡 = 0.05.

of points for computing the masses is set to 𝑘𝛿 = 7, the number of points for the regression is 𝑘𝜎 = 19 and the
number of points for the computation of curvature is 𝑘𝜀 = 25. We finally choose the time step 𝜏 = 1/𝑁 = 0.0025.
We compare the results to a reference solution computed thanks to a usual parametric mean curvature flow
([19]) with a fine discretization and a time step 𝜏𝑟𝑒𝑓 = 5.10−8 = 10−5𝜏 . We observe a consistent evolution in
Figures 5a–5d, even when some noise is added to the initial shape. In Figure 5e, we check that the discrete
sphere inclusion, that was only established for the fully implicit scheme (see Prop. 5.4), is however satisfied in
our experiment.

6.3. Singular evolutions in the plane

As we are dealing with point clouds, it is very easy to deal with changes of topologies, especially triple points
arising when curves merge are quite naturally captured. Moreover, we know from [10] that the approximate
curvature 𝐻Π(𝑥0, 𝑉 ) defined in (3.4) is not only consistent in the smooth context, but as well in presence of
singular curvature when Π = Π𝑆 (i.e. Π𝑖𝑗 = Π𝑃𝑗

). Even though there is no such rigorous consistency property
for Π ∈ {Π(𝑇𝑥0𝑀)⊥ ∘ Π𝑆 , 2Id, 2Π(Tx0M)⊥} (i.e. Π𝑖𝑗 ∈ {Π(𝑃𝑖)⊥ ∘ Π𝑃𝑗 , 2Id, 2Π(Pi)⊥}), we compare in Figure 6 the
behavior of those operators in the presence of a singularity. More precisely, we consider a junction of three
infinite half lines meeting at 0 and we focus on the values of the approximate mean curvature computed in a
neighborhood of 0. The lines are uniformly discretized to define a point cloud varifold 𝑉 with all masses 𝑚𝑖

equal and we associate with each point its exact tangent direction 𝑃𝑖 : one of the three possible directions (notice
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Figure 6. Computed mean curvature vector at junction point depending on the chosen pro-
jection operator. (a) 𝛱𝑖𝑗 = 𝛱𝑃𝑗

. (b) 𝛱𝑖𝑗 = 𝛱𝑃𝑖
⊥ ∘𝛱𝑃𝑗

. (c) 𝛱𝑖𝑗 = 2𝛱𝑃𝑖
⊥ . (d) 𝛱𝑖𝑗= 2Id. (e)

𝛱𝑖𝑗 = 𝛱𝑃𝑗 . (f) 𝛱𝑖𝑗 = 𝛱𝑃𝑖
⊥ ∘𝛱𝑃𝑗 . (g) 𝛱𝑖𝑗 = 2𝛱𝑃𝑖

⊥ . (h) 𝛱𝑖𝑗= 2Id.

that there is no point exactly at the junction so that 𝑃𝑖 is well–defined). In the computation each neighborhood
contains exactly 60 points, corresponding to a disk of radius 𝜀 ≃ 0.20 near the singular point 0. We plot the
approximate mean curvature vector computed at each point and the norm of this vector is color coded according
to the colorbar on the right of each plot while the arrows indicate the direction. Notice that the length of the
arrows is rescaled to improve the readability of the plot. The plot is centered at the singularity 0 and the viewing
window is scaled such that solely the 60 points closest to the singularity are visualized. In particular the points
that are outside do not interfere with the singularity in the computations. We recall that the expected singular
curvature of such a junction is −(𝑢1 +𝑢2 +𝑢3)𝛿0 where 𝑢1, 𝑢2, 𝑢3 are the unit vectors pointing in the directions
of the half-lines (see Example 2.8).
In Figures 6a–6d, the three half-lines meet with 120 degrees angles, forming a triple point having 0
generalized mean curvature (see computations in Example 2.8). We observe that projecting onto the normal
𝑃⊥𝑖 (Figs. 6b and 6c) ensures that the approximate mean curvature is 0 up to a very small error 10−11 while
the error term (see maximal intensity on the colorbar) is larger 10−3 in Figure 6a even in this simple situation.
In Figure 6d, there is a tangential component attracting points to the junction point. Furthermore, the arrows
are aligned with the lines and point towards 0. In Figures 6e–6h, the three half-lines meet with different angles
and we expect some singular curvature to be observed, which can best be seen in Figure 6e.

Unfortunately, choosing Π𝑖𝑗 = Π𝑃𝑗
leads to strong instabilities of the curvature flow as noted previously, see

Figure 3 and we carry on with Π𝑖𝑗 = 2Π𝑃⊥𝑖
.

It is then possible to perform mean curvature flow even after the creation of singularities. We propose some
examples in 2𝐷 of such evolutions. In Figure 7, we perform a test on two crossing circles. We observe that both
crossing points split up into two triple points almost instantaneously. The different curve segments then merge
until they form a single circular curve, which then follows the usual evolution. In this evolution, the circles are
discretized with a total of 𝑁 = 1000 points. The number of points used for computing curvature is 𝑘𝜀 = 31, for
the tangent is 𝑘𝜎 = 15 and for the mass is 𝑘𝛿 = 7. The time step is set to 𝜏 = 1/4𝑁 = 2.5 · 10−4. In Figure 8,
we perform a similar test on three crossing circles, which allows to observe several mergers and the formation
of multiple triple points. The circles are discretized with a total of 𝑁 = 1200 points. The number of points used
for computing curvature is 𝑘𝜀 = 31, for the tangent is 𝑘𝜎 = 15 and for the mass is 𝑘𝛿 = 7. The time step is set
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Figure 7. Evolution of two crossing circles under discrete curvature flow. (a) time 0. (b) time
0.003. (c) time 0.03. (d) time 0.05. (e) time 0.07. (f) time 0.11.

Figure 8. Evolution of three circles towards one circle under discrete curvature flow. (a) time
0. (b) time 0.1. (c) time 0.2. (d) time 0.3. (e) time 0.4. (f) time 0.5. (g) time 0.3 (zoomed).

to 𝜏 = 1/2𝑁 ≃ 4.16 · 10−4. In Figure 8g, a zoom is shown at time 0.3 to provide a better visualization of the
triple point configuration.

In Figure 9, we consider an initial configuration consisting of a square whose 4 corners are kept fixed. Evolving
this point cloud under curvature flow, we aim at recovering a shortest path connecting the 4 corners, in the limit,
usually called Steiner tree. There are 2 shortest paths in this case, because of the symmetry of the configuration
of the 4 points, we hence compare our limit configuration to one of the two Steiner trees (plotted in black in
each figure) connecting the 4 corners. The experiment is designed as follows, the initial square is discretized
with 𝑁 = 300 points.

The number of points used for computing curvature is 𝑘𝜀 = 41 and for computing mass 𝑘𝛿 = 7. The number
of points used for computing tangent is 𝑘𝜎 = 11 in the first evolution (Figs. 9a–9f) and it is 𝑘𝜎 = 15 in the
second evolution (Figs. 9g–9l). The time step is fixed to 𝜏 = 1

4𝑁 . In order to help connectedness to be preserved,
we do not recompute the nearest neighbor graph (i.e. the 𝑘𝑑–tree structure, see Rem. 6.1) at each step, but
only every 25 iterations. The corners are kept fixed as follows, their positions are included in the linear system
(5.11) used to compute positions after a time-step and then, while all other positions are updated, the ones
corresponding to the four corners are unchanged.
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Figure 9. Evolution of a square whose corners are fixed to one (𝑎)–(𝑓) or the other (𝑔)–(𝑙)
Steiner tree connecting the 4 fixed corners. (a) time 0. (b) time 0.1. (c) time 0.2. (d) time 0.3.
(e) time 0.4. (f) time 1. (g) time 0. (h) time 0.1. (i) time 0.2. (j) time 0.3. (k) time 0.4. (l) time
1.

The point cloud is depicted at times 0, 0.1, 0.2, 0.3, 0.4 and 1 as indicated in the legend. The associated
Steiner tree is outlined in black and we observe that slight parameter changes may lead to the other Steiner
tree. Let us mention here, that specific modulations of the parameters, in particular a too large kernel size for
the evaluation of the curvature, eventually leads to a loss of connectedness of the point cloud and thus one ends
up with two segments joining two pairs of opposite corners or even worse break up.

6.4. Singular evolutions of surfaces

We now perform numerical tests in 3𝐷: on a surface leaning on the edges of tetrahedron and on the edges
of a cube, and we evidence that, for some parameters, we recover some well–known soap films in the limit of
the mean curvature flow. For the tetrahedron, we obtain a cone on the edges which is one of the three possible
minimal cones in R3 (see [37]). For the cube we obtain a surface in Figure 11 (i) with close to planar facets
connecting the edges of the cube with a square in the center. This reflects not only experimentally observed
soap films but also a theoretical result by Brakke [7] which gives a lower area competitor of the cone over the
edges sharing the geometry of our numerical result with slightly bended facets.

It is known that the mean curvature vector points in the direction to choose in order to decrease area. Indeed,
the mean curvature vector is the L2–gradient of the area functional and varifolds generalized mean curvature
relies on this characterization. Based on that observation, when the mean curvature flow is well–defined it
should yield a minimal surface in the limit. However, when the flow creates singularities it is more complicated
to analyze, also on the computational side. For instance, triangulated surfaces are not well–adapted to handle
topology changes. Our discrete flow based on point cloud representation allows to observe the evolution from
an initial surface spanning the edges of the tetrahedron or the cube to one of the soap films spanning the same
boundary. We insist that the discrete flow is automatic, once the parameters are set, there is no further manual
intervention. Note that for 2𝐷 surfaces, creation of holes is an unwanted but successful strategy to decrease area
while spanning the same 1𝐷 boundary (the edges of the tetrahedron here). And in the same line, connecting
the edges with many very thin structures rather than a surface gives a lower area since lines have zero area.
While in 1𝐷 we only had to care about wether connectedness was preserved, in 2𝐷 the topology is richer and
the choice of parameters is crucial to discard, when possible, those unwanted behaviors.
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Figure 10. Different steps of the semi-linear scheme (5.10) performed on (the surface of)
a tetrahedron whose edges are fixed, discretized with 𝑁 = 6052 points and for a time–step
𝜏 = 0.005. In explicit one observed an initial detachment of the evolving varifold from the faces
of the tetrahedron. These detached pieces then form a bubble collapsing to an interior point
of the tetrahedron leaving planar triangular facets with two vertices out of the vertices of the
tetrahedron and the third vertex being the interior point. The norm of the approximate mean
curvature vector is color coded on the left and on the right a shaded visualization of the point
clouds using square shaped splats with proper point normals is shown. (a) Step 1. (b) Step 13.
(c) Step 25. (d) Step 37. (e) Step 49. (f) Step 61. (g) Step 73. (h) Step 85. (i) Step 97.

We now give the details of both numerical experiments, starting with the tetrahedron. We begin with a point
cloud discretizing the faces of a tetrahedron with 𝑁 = 6052 points. The corners of the tetrahedron 0, (0, 0, 1),
(0, 1, 0) and (0, 0, 1) are fixed as well as the edge–points (not moved at iterations). The number of points used
for computing curvature is 𝑘𝜀 = 26, tangent is 𝑘𝜎 = 23 and mass is 𝑘𝛿 = 17. In order to help topology to be
preserved, we do not recompute the 𝑘𝑑–tree structure at each step, but only every 2 iterations. The time step
is fixed to 𝜏 = 0.005. The point cloud is depicted every 12 steps of the evolution as indicated in the legend of
Figure 10. Edge points are fixed as follows (and similarly to the way corners are fixed for the square in Figure 9):
all points including edge points are involved in the semi-implicit computation (5.11) but positions of edge points
are never updated. In the last experiment, edge points of the cube are fixed in the same fashion.

We proceed similarly for the cube. The faces of a cube with side–length 1 are discretized with a total of
𝑁 = 18600 points. The number of points used for the computation of curvature is 𝑘𝜀 = 21, tangent is 𝑘𝜎 = 23
and mass is 𝑘𝛿 = 9.
We do not recompute the 𝑘𝑑–tree structure at each step, but only every 50 iterations. The time step is fixed to
𝜏 = 0.01. The point cloud is depicted every 400 steps of the evolution as indicated in the legend of Figure 11.
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Figure 11. Different steps of the semi-linear scheme (5.10) performed on (the surface of) a
cube whose edges are fixed, discretized with 𝑁 = 18600 points and for a time–step 𝜏 = 0.01.
Again, the norm of the approximate mean curvature vector is color coded on the left and on the
right a shaded visualization of the point clouds using square shaped splats with proper point
normals is shown. (a) Step 1. (b) Step 401. (c) Step 801. (d) Step 1201. (e) Step 1601. (f) Step
2001. (g) Step 2401. (h) Step 2701. (i) Step 2701 rotated.
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