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Abstract

In analogy with the free factors of a free group we define special factors of
Generalized Baumslag-Solitar (GBS) groups as non-cyclic subgroups which appear
in splittings over infinite cyclic groups. We give an algorithm which, given a GBS
group G and an element g ∈ G, decides whether there exists a special factor H < G
such that g ∈ H. This algorithm is analogous to an algorithm by Whitehead for
free groups. Furthermore we prove that given g ∈ G there exists a unique minimal
special factor containing g and give an algorithm which finds it.

Baumslag-Solitar groups, defined by BS(p, q) = 〈a, t|tapt−1 = aq〉, are a family of
one-relator groups which were introduced to give examples of non-hopfian groups in
[BS62]. Generalized Baumslag-Solitar (GBS) groups are a wider family composed of all
fundamental groups of finite graphs of infinite cyclic groups. The isomorphism problem
between GBS groups (i.e. determining if two graphs of groups define the same GBS
group) is not known apart from a few special cases. Clay and Forester showed in [CF08]
that it is solvable when first Betti number is at most one. Levitt ([Lev07]) defined
a particular class of GBS groups with nice outer automorphism group for which the
isomorphism problem is also solvable.

In fact, the automorphism group of a GBS groupG can be very complicated in general
and depends a lot on G. For example, Out(BS(2, 3)) is finite but Out(BS(p, pn)) for
p, n ∈ Z is not finitely generated.

This was shown by Collins and Levin in [CL83] with algebraic methods and later by
Clay in [Cla09] using geometric methods.

By Bass-Serre theory GBS groups have a natural action on trees which is a motivation
for using geometric methods. The study of automorphisms of free groups and outer space
give some inspiration. Given a GBS group G, there is an analogue for outer space, which
is called deformation space ([For06]). It can be defined as the set of all minimal actions
of G on trees with infinite cyclic stabilizers, up to G-equivariant isometry and Out(G)
acts on it by precomposition of the action.

An automorphism of the free group FN is called fully irreducible if it does not have
any periodic conjugacy class of free factor of FN . Such an automorphism φ admits a
train track representative: there exists a free minimal action of FN on a simplicial metric
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tree, which defines a translation axis for the action of φ on outer space. Train tracks
representatives are a powerful tool to study automorphisms of FN .

In some sense one can define fully irreducible automorphisms of a GBS group G:
they are the automorphisms whose powers do not preserve any conjugacy class of special
factors, the analogue of free factors in this context. Margot Bouette showed in [Bou16]
that all automorphisms of BS(p, pn) are reducible, which is surprising: one would have
suspected that a generic automorphism would not preserve any special factor. However,
she proved that there is a different deformation space invariant under Out(G) on which
irreducible automorphisms exist, always admit train tracks and act on the modified
deformation space with positive translation length. In more general GBS groups it is
not known if train tracks always exist for fully irreducible automorphisms. Under some
restrictions on the GBS group though (ex: no nontrivial integer modulus, [For06]), we
can assume that the dimension of the deformation space is finite. Then [Mei15, Theorem
50] applies and proves the existence of train tracks.

This sort of problem is a motivation to understand special factors. Here is a way to
define them. Identifying the free group FN with the fundamental group of some graph
Γ, the fundamental group of any subgraph of Γ is a free factor of FN . Moreover, allowing
to vary the graph and identification, any free factor of FN can be obtained this way.
Similarly, a special factor of a GBS group G is the fundamental group of some subgraph
of a graph of groups Γ where Γ is a graph of cyclic groups with fundamental group G.
To avoid degenerate cases, we do not consider cyclic subgroups as special factors. A
noticeable difference is the fact that many different graphs of groups may appear and
give distinct special factors, while all free factors of free groups may be seen in roses.
Therefore, while free factors of same rank in a free group FN are isomorphic and in the
same orbit under Aut(FN ), special factors of a GBS group may be a lot more diverse
and there may be infinitely many orbits of special factors under Aut(G). This is the
case for G ' BS(2, 4).

The Whitehead algorithm in the free group solves the following problem: given
g, h ∈ FN , is there φ ∈ Aut(FN ) such that φ(g) = h ? A weaker form of this algorithm
can decide, given g ∈ FN , if g is simple, i.e. whether there exists a proper free factor
containing g. The first problem seems difficult for GBS groups since the automorphism
group is a lot more complicated and may not be finitely generated. Here we solve the
analogue of the second problem in a GBS group G by giving an algorithm deciding if
an element g ∈ G is contained in a special factor. We also prove that there exists a
unique minimal special factor containing g and give a further algorithm which finds this
minimal factor.

Before stating the results, let us give some useful background. Let G be a GBS group.
It admits an action on a locally finite tree T with cyclic edge and vertex stabilizers.
Unless G is isomorphic to Z,Z2 or the fundamental group of a Klein bottle, all trees
with cyclic stabilizers have the same elliptic subgroups. Let D be the set of G-trees with
cyclic edge and vertex stabilizers. We call it the cyclic deformation space.

In the main part of the paper we will consider restricted deformation spaces, where
we impose an extra condition on the edge groups of the trees. In this introduction we
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present the result for D the cyclic deformation space for simplicity but we actually prove
a slightly stronger version.

A loxodromic element in a tree T in D is an element acting on a tree with no fixed
point. This property does not depend on the choice of T ∈ D, so we may refer to
loxodromic elements of the group G. A loxodromic element of G is simple if there exists
a proper special factor containing it. In order to understand whether an element is
simple, we use Whitehead graphs. The Whitehead graph WhT (g, v), where v is a vertex,
has vertices corresponding to the edges of T with origin v. Two vertices are linked by
an edge whenever a translate of the axis of g in T takes the turn between the two edges
corresponding to the vertices. We say that the graph has an admissible cut when it is
disconnected or has a cut vertex.

Whitehead’s lemma was originally published in [Whi36] for free groups. We have the
following result, adapted from a version of Whitehead’s lemma from [GH19].

Theorem A. Let g ∈ G a loxodromic element. If g is simple then for all T ∈ D there
exists a vertex v ∈ T such that WhT (g, v) has an admissible cut.

Let us take an element g ∈ G and a tree T ∈ D. We consider T as a marked graph
of groups Γ = T/G. In case WhT (g, v) has an admissible cut, either g is represented in
the fundamental group of some proper subgraph of Γ, so it is simple, or we can perform
some transformation of Γ in order to obtain a new tree. We can apply the theorem above
to the result of the transformation. The point is that this process will eventually stop,
so we deduce an algorithm to determine whether g is simple:

Corollary B. There is an algorithm taking as input

• a GBS group G given as a graph of groups

• a loxodromic element g ∈ G

which decides whether g is simple, and if it is, returns a proper special factor containing
g.

The point of the algorithm will be to transform the graph until one of its proper
subgraphs contains the axis of g. Note that Whitehead’s version for free groups (see
[LS01, Chapter I, section 4]) has the same goal but uses specific automorphisms to
transform a rose. Here we prefer to use the approach given in [GH19] instead. It
consists in unfolding the tree associated to the graph, that is to say, perform the inverse
of folds. While in Whitehead’s approach the word length decreases and the graph keeps
the same volume, here the word length remains constant while the volume of the graph
increases, eventually reaching a point where g avoids some edge in the graph.

The main reason for which we choose this approach is that there is no preferred
graph of groups in general, and the graph of group showing the special factor containing
g might be very different from the initial graph of groups used to define G. There might
be no automorphism between the factor containing g and a subgraph of the initial graph.

We prove a stronger version of Theorem A and Corollary B which applies to a
finite collection of elements of G rather than a single element. Actually the version for
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Figure 1: Unfolding of type II (i.e. the unfolded edges belong to the same orbit) as seen
in the graph of groups

collections decides whether the elements of a collection belong to a system of special
factors, which are special factors which are either conjugate or disjoint in some sense.

In the process of showing that the algorithm stops, we need to show that the volume
of the graph increases. It does not increase at each step and in fact, if the transformation
performed is an unfolding of edges in the same orbit (see Figure 1), the volume remains
constant. The following result prevents the graph from being transformed indefinitely
without increasing its volume.

A sequence of unfoldings of type II is a finite or infinite sequence Tn → · · · → T1 → T0

where the Ti are trees in D and Ti+1 → Ti is a type II fold, that is, a fold of edges in the
same orbit, with origin and endpoint in different orbits. Then no such sequence can be
infinite:

Lemma C. Suppose that G is not a solvable Baumslag-Solitar group. Any sequence of
unfoldings of type II is finite.

Whitehead graphs, which are useful for the algorithm, can be computed algorithmi-
cally. In [Bee15] methods for algorithmic computations in GBS groups are given. In
section 3 we explain the algorithm in detail.

As a special factor is itself a GBS group, we may want to iterate the algorithm in
the following way. Given g ∈ G belonging to a special factor H ∈ G, we can apply the
algorithm to H in order to find a smaller special factor, again and again. In the case
of free groups, the rank of the free factor decreases, so eventually we find a free factor
which does not have any smaller free factor containing the element. In the case of GBS
groups the rank does not always decrease, but we do have a complexity C which decreases
strictly when passing to a proper special factor. Note that in some GBS groups including
BS(2, 4) there exist arbitrary long chains of decreasing special factors (see Figure 2).
For the definition of C, see section 4.

Proposition D. Let G be a GBS group and H a special factor of G. Then C(H) < C(G).

From this we deduce the existence of a minimal special factor containing g, which is
in fact unique:
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Figure 2: A construction of arbitrary long special factor sequences in BS(2, 4). The

upper graph represents BS(2, 4) with the presentation 〈a, b, t|tbt−1 = b2, a2 = b2
k〉. Ex-

pansions from this graph lead to the graph below, which has many edges. The rectangles
show some special factors which can be read in the graph below. Here we can construct
a sequence of k nested special factors.

Theorem E. The set of special factors relative to D which contain a given loxodromic
element g admits a smallest element for inclusion.

Using the previous algorithm repeatedly we get the following:

Theorem F. There exists an algorithm taking as input a GBS group G as a marked
graph of groups and a hyperbolic element g, and which outputs the minimal factor con-
taining g as a subgraph of a marked graph of groups for G.

Just like Theorem A, Theorem F also applies to finite collections of elements of G.
In that case it outputs the minimal system of special factors containing the collection.

The paper is structured as follows. In section 1 we introduce basic notions about
GBS groups and prove that no sequence of unfoldings of type II can be infinite. In
section 2 we prove Theorem A. Section 3 proves Theorem F : it gives of an algorithm to
determine whether there exists a special factor containing a particular group element.
Most of it consists in proving why all steps needed to check that an element is simple
are algorithmic. Since it is more technical, the proof of the algorithm may be skipped
at first reading. Finally we prove theorem E in section 4.
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1 Definitions

1.1 Trees, elliptic groups, deformation spaces

We refer to [Ser77] for basic notions on graphs of groups. A graph is a set of vertices,
along with a set of oriented edges. An edge comes with applications o and t which
associate its initial and terminal vertex to an edge, respectively. There is a fixed-point-
free involution e 7→ ē with t(ē) = o(e).

A graph of groups is a graph Γ such that every vertex v is labelled with a group Gv,
every edge e is labelled with a group Ge = Gē and for every oriented edge e of Γ, there
is a given monomorphism φe : Ge → Gt(e).

Definition 1.1. A generalized Baumslag-Solitar group (GBS group) is the fundamental
group of some finite graph of groups of which each edge or vertex group is infinite cyclic.

A GBS group is non-elementary if it is not isomorphic to one of the following: Z, Z2

or the fundamental group of the Klein bottle 〈a, t|tat−1 = a−1〉 = 〈a, b|a2 = b2〉.

Remarks 1.2. • Generally the graph of (cyclic) groups for a GBS group is not unique,
in fact there may be infinitely many such graphs.

• From a graph of groups one can deduce a presentation for the group. Since vertex
groups are cyclic, GBS groups are finitely presented. See [Lev07] for some detail
on GBS groups.

Definition 1.3. A labelled graph is a graph of which each oriented edge e carries a label
λ(e) ∈ Z \ {0} at its origin.

In graphs of cyclic groups, choosing a generator av for each vertex group and ae for
each edge group gives an identification with Z and each inclusion Ge → Gv is given
by a multiplication by a nonzero integer. Therefore any such graph of groups can be
described by a labelled graph.

Definition 1.4. An edge in a graph is a loop if its endpoints are equal.

Let G be a non-elementary GBS group.

Definition 1.5. A G-tree is a simplicial tree endowed with a minimal action of G by
simplicial isomorphisms without inversion of edges.

We endow all trees with the combinatorial metric, that is, all edges have length 1.

Remark 1.6. Let T be a G-tree and let g be a loxodromic element in T , that is, an
element acting on T with no fixed point. The translation length of g is

‖g‖T := min
x∈T

d(x, gx)

and it is equal to of edges in a fundamental domain of the axis of g in T .
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Let T be a G-tree. Let e be an edge of T . We denote the stabilizer of e by Ge (and
this subgroup fixes both endpoints of e since the action is without inversion). Similarly
we denote by Gv the stabilizer of a vertex v.

Definition 1.7. Let T be a G-tree and H a subgroup of G. The subgroup H is elliptic
(resp. bi-elliptic) in T if it fixes a vertex (resp. an edge).

Definition 1.8. Two trees T, T ′ are in the same deformation space if they share the
same elliptic subgroups. If a subgroup H < G fixes a point in T , it must then fix a point
in T ′, and conversely.

Remark 1.9. Equivalently, T and T ′ belong to the same deformation space if there exists
G-equivariant applications T → T ′ and T ′ → T (see [GL07] for detail).

Apart from Z,Z2 and the fundamental group of the Klein bottle, all actions on trees
dual to descriptions of G as graphs of cyclic groups belong to the same deformation
space ([For06]).

Definition 1.10. For a non-elementary GBS group G, the cyclic deformation space D
is the space of all G-trees with infinite cyclic vertex and edge stabilizers.

We define a restricted deformation space of the cyclic deformation space, which is
smaller than D, like in [GL07]:

Definition 1.11. Let A be a family of subgroups of G, stable by conjugation and by
taking subgroups. The restricted deformation space DA is the set of G-trees in D whose
bi-elliptic subgroups all belong to A.

We refer to subgroups which belong to A as allowed edge groups in DA.

Remark 1.12. For a subgroup of G, being elliptic is a property which depends only on
the deformation space of the tree studied. However in general this does not hold for bi-
elliptic subgroups: two trees in the same deformation space may have different bi-elliptic
subgroups. This applies to D and DA.

Definition 1.13. Let be T a G-tree. Let F be a G-invariant subforest of T . We define
the equivalence relation ∼F on T as the smallest G-invariant equivalence relation such
that x ∼F y whenever there exists some connected component of F containing both x
and y.

The quotient T → T/ ∼F is a tree, called the collapse of F in T .
The G-equivariant application T → T/ ∼F is called the collapse map.
When F is the G-equivariant subforest spanned by an edge e, we speak of the collapse

of e instead of the collapse of F , and denote it by T → T/ ∼e

Definition 1.14. Let T be a G-tree. An edge of T is called collapsible if T/ ∼e is a tree
in the same deformation space as T . An edge e with endpoints u and v is collapsible if
u and v are in different orbits and either Ge = Gu or Ge = Gv.

7



Remark 1.15. If there is a G-equivariant application f : T → S where T, S ∈ D such that
the image of e is a single point in S, then e is collapsible. Indeed f factorizes through
T/ ∼e. Thus there exists a G-equivariant application T/ ∼e→ T (and vice-versa) so
T/ ∼e is in D.

Definition 1.16. A G-tree T is reduced if no edge in T is collapsible.

Remarks 1.17. 1. This notion can be expressed of in terms graphs of groups, which
are more convenient for a computational use. Denote by Γ the graph of groups
associated to the quotient T/G, then T is reduced if whenever an edge morphism
in Γ into a vertex group is surjective then the edge is a loop.

2. Reduced trees in a deformation space share the same bi-elliptic subgroups. Any
bi-elliptic subgroup in some reduced tree T ∈ D is also bi-elliptic in any tree in D,
reduced or not.

Definition 1.18. We call Amin the family of subgroups which are bi-elliptic in reduced
trees. The reduced deformation space Dred is the restricted deformation space DAmin .

Definition 1.19. We call an elliptic subgroup in some tree T ∈ D big with respect to
A if it is not in A.

Remark 1.20. In order to check whether an elliptic subgroup is big for Amin, it suffices
to check that it fixes no edge in some arbitrary tree in D.

In a graph of cyclic groups viewed as a labelled graph, vertex groups such that no
label at the vertex is ±1 are maximal big groups. If the graph of groups is reduced, then
maximal big groups are exactly vertex stabilizers with all labels different from ±1.

The number of conjugacy classes of maximal big groups is finite (bounded by the
number of vertex orbits of some tree in D) and depends only on G and D (see [GL07]).

1.2 Folds, expansions

In this section we define folds and expansions, and give a construction for a certain type
of expansion.

Definition 1.21. A G-tree S is a refinement of another G-tree T if there exists a
collapse π : S → T , i.e. T is equivariantly isomorphic do S/ ∼F for some G-invariant
forest F ⊂ S.

We say that S is an expansion if additionnally S and T belong to the same deforma-
tion space.

Lemma 1.22 (Construction of an expansion TH,S). Let T be a G-tree and v a vertex
of T . Let Ev be the set of edges with origin v. Let H be a subgroup of Gv and S a
non-empty proper subset of Ev which satisfy:

• HS = S
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• ∀g ∈ Gv \H, gS ∩ S = ∅.

Consider the partition Ev =
⊔
g∈Gv/H

gS t E′ where E′ = Ev \Gv · S.

We construct TH,S from T as follows. First we replace v by the star on Gv/H and
for each g ∈ Gv and each edge e ∈ S, we attach g · e to gH. Then we attach E′ on the
centre of the star. Finally we extend this by equivariance to all translates of v.

The obtained tree TH,S is minimal, is a refinement of T and belongs to the same
deformation space (without restriction on edge groups). Moreover, if H ∈ A and T ∈ DA
then TH,S ∈ DA.

Proof. Let us prove that TH,S is minimal. The tree TH,S has no valence 1 vertex: since
S ( Ev and S 6= ∅ then either Gv/H has two or more elements, or E′ is non-empty. In
both cases no vertex has valence 1.

If TH,S were not minimal, it would have a valence 1 vertex: suppose TH,S is not
minimal and call TH,Smin the minimal invariant subtree. By cocompacity of the action
there exists v ∈ T such that the distance d(v, Tmin) is maximal and positive. Then v has
valence 1, which gives the contradiction needed.

Note that collapsing the stars involved in the construction of TH,S allows to recover
the original tree T , so TH,S is a refinement of T . This implies that all elliptic subgroups
of TH,S are elliptic in T . Conversely, let G0 be a subgroup fixing a vertex w in T . If
w /∈ G · v then its pre-image by the collapse map is a single point so it must be fixed by
G0. If w = v, its pre-image is the closure of the star. The star is invariant by Gv so its
center is a fixed point for Gv which contains G0. This proves that T and TH,S have the
same elliptic subgroups.

Thus TH,S is in the same deformation space as T . Note that the second condition
implies that the stabilizer of any edge of the star is conjugate to H, hence the last
statement.

To define folds, we rely on [BF91]. Folds are a classical operation on trees and were
first defined by Stallings ([Sta91]). The idea behind a fold is to identify two edges of a
G-tree in an equivariant way to create a new tree.

Definition 1.23 (Fold). Let T be a G-tree. Let V be a vertex of T and e1, e2 two edges
with origin v such that e2 /∈ G · ē1. We define the fold of e1 together with e2 as follows.

We define the equivalence relation ∼ on T as the smallest G-invariant equivalence
relation satisfying e1 ∼ e2 and t(e1) ∼ t(e2).

The result of the fold of e1 with e2 is T/ ∼ and it is a tree.

Up to subdividing some edges, any fold boils down to a sequence of folds of the three
types illustrated by Figure 3 (see [BF91] for more details on fold types), which presents
folds as seen in the quotient graph, depending on whether the edges an their terminal
vertices are in the same orbit or not.

Denote by A = Gv, Bi = Gt(ei), Ei = Gei . The result of a fold is in the same
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Figure 3: The three basic types of folds

deformation space as the original tree if and only if one of the following conditions1 is
true (see figure 4):

• the fold is of type I with B1 = E1 and B2 = E2, which we call type A (not referring
to subtypes of [BF91])

• the fold is of type I and B2 ⊂ B1 or B1 ⊂ B2 which we call type B

• the fold is of type II and E1 = B1 which we call type C.

Remark 1.24. The pre-image of any edge by a fold which does not change the deformation
space is star-shaped, i.e. it consists in a collection of edges which share a common
endpoint. In fact

• π−1π(ε) = ε if ε /∈ G · e1, e2

• π−1π(e1) = Gπ(e1) · {e1 ∪ e2} and Gπ(e1) fixes o(e1) = o(e2) in case A, B and C.

An unfolding of type C is the inverse of a fold of type C, i.e. given a tree T0, it
consists in finding a tree T1 such that T1 → T0 is a fold of type C. We will need the
following result about sequences of unfoldings. A sequence of unfoldings of type C is a
sequence · · · → Tn → · · · → T1 → T0 such that every Ti+1 → Ti is a fold of type C.

1If we work with restricted deformations spaces DA, we must ensure when folding that the new edge
groups belong to A. However in this article we will work backwards: starting with the folded tree, we
will unfold it, and we do not need to worry since the new groups will be smaller.
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Figure 4: The three types of folds which preserve the deformation space, as seen in
labelled graphs.

Lemma 1.25. Suppose that G is not a solvable Baumslag-Solitar group. Let T be a
GBS tree for G. Any sequence of unfoldings of type C (see Figure 3) of T is finite.

Proof. We will show that it is impossible to construct an infinite sequence of unfoldings
of type C. We consider the quotient Γ = T/G. Unfoldings of type C do not change the
edges of Γ: only labels vary. Therefore in the rest of the proof edges will keep the same

name after unfolding. Consider the product
∏

e∈T/G

|λ(e)| of all labels in Γ (see Figure 5).

It is a positive integer.
An unfolding of type C can be performed on an edge e ∈ Γ if and only if λ(ē) = ±1

and there exists an integer q such that |q| > 1 and q divides all other labels at t(e).
During the unfolding, the labels at only two vertices may change : λ(e′), e′ ∈ Et(e)\{e}

are divided by q whereas λ(e) is multiplied by q. Let k be the valence of the vertex t(e),

where k ≥ 2 by minimality. The product
∏

e∈T/G

|λ(e)| is multiplied by q2−k. If the valence

of t(e) in Γ is at least 3 (i.e. k ≥ 3) then the product of labels decreases. An unfolding
at a valence 2 vertex does not change the product. To conclude we need to show that
one cannot produce an infinite sequence of unfoldings of type C on edges whose terminal
vertex has valence 2.

In the rest of this proof we will denote this sort of unfolding by “unfolding from a
valence 2 vertex”. We will say that the unfolding of an edge e is an unfolding “from
t(e)”. Since no new edge is created in Γ, edges will keep the same name after unfolding.

The topological edges of the graph Γ are connected components of the graph without
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Figure 5: The product decreases when doing unfoldings of type C.

its vertices with valence greater or equal to 3. Since the number of topological edges of
the graph is finite any infinite sequence of unfoldings from valence 2 vertices would have
infinitely many unfoldings in at least one topological edge.

Note that an unfolding from a valence 2 vertex does not change any label outside
of its topological edge. Consequently valence 2 unfoldings in different topological edges
commute.

In most cases a topological edge is a segment c. It may be a circle, only if Γ is a circle.
First let us study the case of a segment (Figure 6). It is composed of a certain number
of edges with labels, and is bounded by vertices of valence 1 or at least 3. We will show
that there is a bound (depending on Γ) on the length of any sequence of unfoldings from
inner vertices in the same topological edge. As unfoldings in different topological edges
commute, this will show that no infinite sequence of unfoldings from valence 2 vertices
exist.

Choose an orientation for c and view it as a concatenation of oriented edges e1 . . . el.
We define the following complexity for a segment c of length l:

K(c) :=

n∏
i=1

|λ(ei)|i ×
n∏
i=1

|λ(ēi)|n+1−i

which gives more weight to initial labels of edges at the end of the chain and to terminal
labels of edges at the beginning of the chain. Note that it is well-defined since it does
not depend on the choice of orientation for c.

The idea is that unfoldings move factors of labels in the direction where they will
weight less. Let us show that the complexity decreases during any unfolding.

Let i ∈ {1, . . . , l−1}. Suppose we do an unfolding of ei (a valence 2 unfolding, so we
exclude the case i = l). We obtain a new segment c′ with different labels. Two labels
change: λ(ei+1) is divided by a factor q and λ(ei) is multiplied by this same factor q,
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Figure 6: Topological edges

where |q| 6= 1. Therefore K(c′) = K(c)× |q|i/|q|i+1 = K(c)/|q| so K(c′) < K(c).
Since the formula for the complexity does not depend on the orientation of the

segment we get the same result for an unfolding of a ēi.
As K is a positive integer it cannot decrease indefinitely. This proves that the

sequence of unfoldings must stop when the topological edge is a segment.

When the graph is a circle, it has a single topological edge. If there exists a vertex
group which is strictly bigger than all edge groups at this vertex, then no unfolding can
occur from this vertex and labels at this vertex can only increase. The graph minus this
vertex is a segment to which we can apply the argument above: no unfolding sequence
can be infinite.

If not then every vertex has at least one label which is ±1. Choose an orientation
of the circle and orient the edges accordingly. If all initial labels (for this orientation)
are ±1 then the group is a solvable Baumslag-Solitar group. The same deduction can
be made with the reverse orientation. If this happens for neither orientation then we
can find two vertices with a label different from ±1 pointing in different directions. Call
v1, v2 these two vertices, which split the circle into two segments. Call B the segment
with the ±1 labels at its endpoints and A the segment with greater labels. Up to taking
a subsegment of B we may suppose that the labels borne by the edges of B are all ±1.

Unfoldings in A cannot be done indefinitely, because no unfolding from v1 or v2 occur
and we are again in the case of a segment. This shows that any long enough sequence
of unfoldings must involve an edge in B.

The only unfoldings which may involve edges in B are unfoldings from v1 or v2. If
we perform such an unfolding we increase one of the labels inside B.

Then we can define a new partition where B strictly decreases, and iterate until there
is a vertex with both labels different from ±1.
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Figure 7: Expansion and collapse on the standard tree T1 (seen in the quotient) and
new special factor with respect to D obtained after the collapse, visible in T3 ∈ D̄. The
tree T2 is in D but not in DAmin .

2 Special factors, and algorithm for simplicity of group
elements

2.1 Special factors for a deformation space

In this section, we introduce special factors with respect to some deformation space DA.
They are an analogue of free factors for free groups.

Remark 2.1. We will write D̄A to denote the set of all trees obtained by collapsing G-
invariant subforests in trees of DA, including the trivial tree. We include trees of DA
which correspond to collapsing empty forests.

Definition 2.2. A special factor H with respect to DA is a subgroup of G which is the
stabilizer of a point in a tree T in D̄A and which is not elliptic in DA.

When the deformation space is obvious, we will write simply special factor.
We call H a proper special factor when H 6= G. Elliptic groups, i.e. vertex stabilizers

of trees in DA, are not considered to be actual special factors.

Examples 2.3. This notion depends on the allowed edge groups in DA. The space DAmin

of reduced trees has fewer allowed edge groups than D. Consider the standard tree T1

for BS(2, 4) := 〈a, t|ta2t−1 = a4〉 (see Figure 7) and perform an expansion (yielding T2)
and a collapse (yielding T3) as described by the figure. We obtain a special factor with
respect to D, which is the subgroup 〈a, tat−1〉. This subgroup cannot be obtained by
collapsing a tree in DAmin , thus it is not a special factor with respect to DAmin .

For a subgroup H < G, denote its conjugacy class by [H].

Definition 2.4. A system of special factors with respect to DA is a finite collection
of conjugacy classes of subgroups H := {[H1], . . . , [Hk]} of G such that there exists
TH ∈ D̄A such that H is the set of conjugacy classes of vertex stabilizers in TH which
are not elliptic in D.

The system is proper if it is not {[G]}.
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Remark 2.5. Just like special factors, a system of special factors can be viewed in a
graph of groups. Is is given by a collection of disjoint subgraphs Γ1, . . . ,Γk of Γ such
that for every i ∈ {1, . . . , k} the subgroup Hi is isomorphic to π1(Γi).

Definition 2.6. Let H := {[H1], . . . , [Hk]} be a system of special factors. We say that
a collection G of elements of G is H-peripheral, which we write G � H, if for any g ∈ G
there exists 1 ≤ i ≤ k such that g is contained in a conjugate of Hi.

The collection G is simple if there exists a proper system of special factors H such
that G � H.

A system of cyclic factors H′ is H-peripheral (H′ � H) if for every conjugacy class
[H ′] ∈ H′ there exists [H] ∈ H such that H ′ can be conjugated into a subgroup of H.

Remarks 2.7. 1. Equivalently H′ � H if there exists a G-equivariant map TH′ → TH
where TH′ , TH are defined as in Definition 2.4.

2. The relation � defines an order on the set of systems of special factors. It is
obviously reflexive and transitive. Suppose H′ � H and H � H′, then we get two
maps TH′ → TH and TH → TH′ . This implies that TH′ and TH have the same
elliptic subgroups. In particular they have the same non-cyclic vertex stabilizers,
so H = H′. Thus � is antisymmetric.

2.2 Whitehead graph and criterion for simplicity

We fix a collection of cyclic allowed edge groups A and consider a restricted deformation
space DA.

Definition 2.8. Let T be a G-tree. A turn in T is an unordered pair of distinct edges
with same origin. If e, e′ are two such edges, the corresponding turn is denoted by {e, e′}.

When e = e′ we call the pair a degenerate turn.
A geodesic γ crosses a turn {e, e′} if γ contains e ∪ e′.

Let G := {g1, . . . , gk} ∈ G be a finite collection of loxodromic elements. Let T ∈ DA
and v a vertex in T . The set Ev is the set of edges of T with origin v.

Definition 2.9. The Whitehead graph WhT (G, v) is the following graph. The vertex
set is Ev. Two vertices e, e′ are linked by a non-oriented edge in WhT (G, v) when there
exists g ∈ G and some conjugate of g whose axis crosses the turn {e, e′}.

Remarks 2.10. 1. Equivalently, we link e and e′ by an edge whenever there is h ∈ G
such that {he, he′} is a turn in the axis of some g ∈ G.

2. The Whitehead graph is a simplicial graph. In particular it does not have any
loop.

3. The group Gv has a natural action on WhT (G, v).

15



Definition 2.11. When WhT (G, v) is not connected, we call admissible connected com-
ponent any connected component in WhT (G, v) whose stabilizer is in A. When all edge
groups are allowed all connected components are automatically admissible.

Let p be a vertex in WhT (G, v). Let W0 be the connected component which contains
p. The vertex p is an admissible cut point if W0 \ {p} is disconnected and if there exists
a connected component A of W0 \ {p} satisfying A ∩Gv · p = ∅.

The Whitehead graph WhT (G, v) has an admissible cut (for A) when it has either
an admissible connected component or an admissible cut point.

Remarks 2.12. 1. In the admissible cut point definition, the stabilizer of A is auto-
matically an allowed edge group since it is a subgroup of Gep , where ep is the edge
of T corresponding to the vertex p of the Whitehead graph.

2. Since the Whitehead graph has no loop, A contains a vertex.

The following lemma uses that T is locally finite in an essential way.

Lemma 2.13 (Dual tree to the Whitehead graph). Let p a vertex in WhT (G, v) and
W0 the connected component containing p. If p is a cut point in W0 (i.e. W0 \ {p} is
not connected) then p is an admissible cut point of the Whitehead graph.

Proof. Let p a vertex in WhT (G, v) whose complement is disconnected. A dual forest to
the Whitehead graph can be defined as follows.

First we define the following equivalence relation on the geometric realization of the
Whitehead graph W : for all points x, y ∈ W , x ∼ y if for all q ∈ Gv · p, x and y are in
the same connected component of W \ {q}. Equivalence classes of this relation define a
partition of W \ Gv · p. An equivalence class may contain no vertex of W and that is
why we work with the geometric realization of the graph. This partition is coarser than
the partition into connected components of W \Gv · p.

Then we define the bipartite graph B as follows. There is a vertex uq for every vertex
q ∈ Gv · p. There is also a vertex vP for every equivalence class P of the equivalence
relation defined above. We put an edge between uq and vP if q ∈ P̄ .

The graph B obtained is a forest because every vertex uq disconnects all its neigh-
bours in B. It is connected if and only if the Whitehead graph is.

Let W0 be the connected component of W containing p. Suppose p is a cut point of
W0. The component B0 of B containing up is a finite tree so it has a terminal vertex w.
Vertices uq cannot be terminal since q is a cut vertex so w = vP for some equivalence
class P , which is attached to a vertex uq = h · up of B0.

The equivalence class P is a connected component of W0\{h·p} because Gv ·up∩P̄ =
{uq}. Taking A = P in the definition, h · p (and thus p) is an admissible cut point.

We can now state the main theorem of this section. Its proof is given in subsection
2.4.

Theorem 2.14. Let G ∈ G be a finite collection of loxodromic elements. If G is simple
with respect to DA then for all T ∈ DA there exists a vertex v ∈ T such that WhT (G, v)
has an admissible cut for A.
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Remark 2.15. A solvable Baumslag-Solitar group BS(1, n) := 〈a, t|tat−1 = an〉 has no
proper special factor (with respect to D = DAmin).

Remark 2.16. Let T a G-tree and T ′ a tree obtained from T by subdividing an edge.
Then there exists a vertex v ∈ T such that WhT (G, v) has an admissible cut if and only
if there exists such a vertex in T ′.

Indeed T ′ inherits the Whitehead graphs of T in addition with another Whitehead
graph coming from the additional vertex v′. The latter is a graph containing exactly two
vertices. If they are joined by an edge, there is no admissible cut. If not, WhT ′(G, v′)
is disconnected, which means for any g ∈ G, no translate of the axis of g crosses the
subdivided edge. In T this edge must then appear as an isolated vertex in the Whitehead
graph of one of its endpoints, so some Whitehead graph in T has an admissible cut.

2.3 Unfolding lemma

Let T ∈ DA. According to remark 2.16 we may assume the following : up to performing
a finite number of edge subdivisions at the beginning, T has no edge with both ends in
the same orbit, i.e. T/G has no loop. This allows us to deal with fewer cases in the
proof. The proof is similar to that of an analogous result concerning the case of free
products in [GH19, Proposition 5.1]. We will need the following lemma which enables
us to perform unfoldings on T or expansions when we find a Whitehead graph with an
admissible cut. We allow vertices of valence 2 in the trees considered.

Lemma 2.17. Suppose T/G has no loop. The following conditions are equivalent :

1. There exists a Whitehead graph WhT (G, v) with an admissible cut with respect to
DA.

2. There exists a tree S ∈ DA and a non-injective G-equivariant application f : S → T
sending edge to edge or edge to vertex such that for every g ∈ G, ‖g‖S = ‖g‖T .

In the second condition S/G has also no loop. Moreover the map f can be chosen to be
either a fold or a collapse.

Let us start with a preliminary result about lifting the axis of an element g ∈ G when
performing an unfolding.

Lemma 2.18. Let g be a loxodromic element in G. Let T, S ∈ DA and f : S → T
a simplicial map such that for all edge e ∈ T , edges in the pre-image f−1(e) := {ẽ ∈
E(S)/f(ẽ) = e} all share a common vertex. Suppose that every turn in the axis of g lifts
to S, that is to say: for every turn {e1, e2} in AxisT (g) there exists a turn {ẽ1, ẽ2} in S
such that f(ẽ1) = e1, f(ẽ2) = e2.

Then AxisT (g) lifts isometrically in S. Equivalently f is isometric on AxisS(g).

Remark 2.19. Remark 1.24 states that this lemma applies to folds of type A, B and C.
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Figure 8: Relative dispositions of the stars depending on their orientations

Proof. First of all, given an orientation of an edge e ∈ T , the edges in f−1(e) get a
compatible orientation. We will call a set of edges with a common vertex a star. If
f−1(e) is a star then this orientation is either centripetal or centrifugal.

We claim that for every edge e ∈ AxisT (g) the intersection f−1(e)∩AxisS(g) consists
in a unique edge ẽ. Moreover, if e, e′ are adjacent in T then ẽ, ẽ′ are adjacent in S. This
yield a continuous application AxisT (g) → AxisS(g) which is an inverse for f on the
axis. This proves the lemma.

Now let us prove the claim. Let e1, e2, e3 be three consecutive edges in AxisT (g) with
t(e1) = o(e2) and t(e2) = o(e3). We will show that f−1(e2)∩AxisS(g) consists in exactly
one edge.

Let A1, A2, A3 be the respective pre-images of e1, e2, e3. They are stars. We endow
them with an orientation, either centrifugal or centripetal, compatible with the orienta-
tion of their image. Because of orientations in T and since the turns lift, the star A1 is
attached to an end of A2 if the latter is centripetal, and to the centre if it is centrifugal
(see figure 8 for a picture of the different cases). On the contrary, A3 is attached to the
centre of A2 if A2 is centripetal and to an end if it is centrifugal. In both cases, distance
between A1 and A3 is 1. There is a unique edge in A2 which is adjacent to both A1 and
A3 and we call it ẽ2.

Since AxisT (g) ⊂ f(AxisS(g)), AxisS(g) intersects both A1 and A3. Since it is a
geodesic, its intersection with A2 must be the single edge ẽ2. This proves the first part
of the claim.

The second part follows: the lift ẽ1 is adjacent to A2 and the intersection of two stars
is a single point, so it is adjacent to ẽ2.
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Proof of lemma 2.17. Suppose that the first condition is true: there is a vertex v ∈ T
such that WhT (G, v) has an admissible cut. We distinguish several cases based on the
shape of WhT (G, v) and give an application f : S → T for each case (see figure 9). The
map f will be a collapse in Case 1, a type A or type C fold in Case 2, and a type B fold
in Case 3. Types of folds were defined in subsection 1.2. Note that although type A and
B folds may look similar, they lead to very different Whitehead graphs which need to
be dealt with separately.

Case 1 : Suppose that the Whitehead graph WhT (G, v) is disconnected and that
the stabilizer of a connected component is an allowed edge group of D. In this case,
denote the connected components by C1, . . . , Cn (note that two connected components
might belong to the same orbit). Suppose that Stab(C1) is an allowed edge group.

Since C1 is a connected component of the Whitehead graph, we have h · C1 ∩ C1 6=
∅ ⇒ h ∈ Stab(C1). Let S = T Stab(C1),C1 obtained by expansion, according to Lemma
1.22 with f : S → T the collapse map. We have S ∈ DA because StabC1 ∈ A and
T ∈ DA.

Let g ∈ G. As no translate of the axis of g crosses a turn between any pair of distinct
connected components Ci and Cj , no translate of AxisS(g) can cross the added edges,
so all turns of AxisT (g) lift to S. By lemma 2.18 the collapse is isometric on the axes so
‖g‖S = ‖g‖T .

In other cases, suppose that the Whitehead graph has no admissible connected com-
ponent but has a cut point (necessarily admissible, according to lemma 2.13). In that
case the orbit of the cut point under Gv cannot be the whole graph. The reason is that
the graph is finite and without simple loop, and thus cannot have only cut points as
vertices.

Case 2: Suppose that the Whitehead graph W has a Gv-invariant admissible cut
point. Then Gv fixes an edge in T . Call e such a cut point. Denote by A a connected
component of W \ {e}: its stabilizer is a subgroup of Gv so it lies in A.

If Gv ·A 6= W \ {e} denote by B the complement of Gv ·A in W \ {e}. The part B is
stable under the action of Gv. The subset A′ := Gv ·A is stable as well. Neither A′ nor
B are empty. If {f, f ′} is a turn of a translate of the axis of some g ∈ G, then {f, f ′} is
included in Gv ·A ∪ {e} or in B ∪ {e}.

We define a new tree S as follows (see Figure 9). First we expand T at the vertex
v by unattaching edges of A′, attaching an edge eA′ to v and re-attaching the edges of
A′ to the other end of eA′ , which gives the expanded tree T1 := TGv ,A′ (see lemma 1.22
for notations). Similarly we unattach edges of B to re-attach them on a new edge eB
with origin v, which gives the tree T2 := TGv ,B

1 . The lemma guarantees that T2 belongs
to DA since the stabilizer of the new edge is in A. Finally we collapse the edge e of
T2, which is a collapsible edge since its stabilizer is Gv and its ends are not in the same
orbit. Let S be the resulting tree. It belongs to DA. Folding eA′ with eB is a type A
fold and yields the original tree T .

Let g be an element of G. Let us prove ‖g‖S = ‖g‖T . The pre-image of an edge
by the fold S → T is a star. Every turn in AxisT (g) lifts in S: the only turns which
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Figure 9: The three cases in the first part of the proof of the lemma. Above, the shape
of the Whitehead graph; below, the shape of the tree around the corresponding vertex
after transformation.
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do not lift are those of the sort h · {A′, B}. Yet such turns are never crossed by the
axis by assumption on the Whitehead graph. According to lemma 2.18 f is isometric in
restriction to AxisS(g) so the translation length of g is the same in T as in S.

On the contrary, if G ·A = W \ {e} then as A is not the only connected component
there exists h 6= 1 such that h · A ∩ A = ∅. The stabilizer of A is then a subgroup
H ( Gv and H,A satisfy the conditions of the expansion lemma 1.22 with H allowed as
an edge stabilizer. We perform an expansion at the vertex v as follows: for u ∈ Gv/H,
unattach uA and re-attach it on a new edge ue′ with origin v. This yields the expanded
tree TH,A which belongs to DA. We then get S by collapsing e. Since e is collapsible we
have S ∈ DA. When one folds the edges ue′ with u ∈ Gv/H, one gets T ; the fold is of
type C.

Again, for every g ∈ G, all turns in AxisT (g) lift to S so lemma 2.18 guarantees
‖g‖S = ‖g‖T .

Case 3 : Suppose that W does not have any Gv-invariant cut point. Denote by e a
cut point and by W0 the connected component of W containing e. Let A be a connected
component of W0 \ {e} which does not contain any element of Gv · e. Such a component
exists by definition of an admissible cut point. By remark 2.12 A contains a vertex.
Remember that its stabilizer is an allowed edge group (remark 2.12) and is a subgroup
of Ge.

Denote by B the complement of Gv · A in W \ Gv · {e}; B may be empty and may
intersect W \W0. Again B is stable by Gv. We also define A′ := Ge ·A.

Since Gv · e has at least two elements, {e}∪A′ is a proper subset of Ev, so even when
B is empty, we may use lemma 1.22 to do the following expansions.

See figure 10 for a closer illustration of the case. First we do an expansion at vertex v:
we partition the set of edges into Bt

⊔
h∈Gv/Ge

({e}∪A′). We get the tree T1 := TGe,{e}∪A′

with notations of lemma 1.22: we replace the vertex v by a star with |Gv/Ge| branches.
Then we attach B to the centre of the star, and edges in h · ({e} ∪A′) to h ·Ge.

We call e1 the edge joining {e} ∪A′ to the centre of the star (which we will still call
v). We call w the origin of e1.

Then we perform a second expansion at w which is the origin of e1, ē and of the

edges of A′ and has stabilizer Ge. The tree T2 := TGe,A′

1 may be described as follows:
we unattach the edges of A′ then re-attach them on a new edge e2 with origin w (see
figure 10).

Finally consider the collapse S = T2/ ∼e. Since Ge ∈ A, T1, T2 and S are in DA.
There is an application S → T which sends e1 and e2 on e and it is the (type B) fold of
e1 with e2.

Let g be an element of G. The only turns of T at v which may be crossed by translates
of the axis of g are those of the sort h · {A,A}, h · {A, e}, {B,B}, h · {B, e}, h · {e, h′ · e}
with h, h′ ∈ Gv. All these turns lift to S. According to lemma 2.18, the whole axis lifts
isometrically so ‖g‖T = ‖g‖S .

We have proved the existence of S and f in all cases where the Whitehead graph has
an admissible cut.
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Figure 10: Steps of the unfolding in the case 3, where the orbit of the cut point has
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Conversely, suppose there exists S and f : S → T non-injective, sending edge to edge
or edge to vertex, such that ‖g‖S = ‖g‖T for every g ∈ G. According to [BF91], this
application may be considered as a composition of collapses and folds.

Let us consider only the last collapse or last fold. Since neither folds nor collapses can
increase translation length, this application satisfies the second condition of the lemma.
We may then suppose f is either a fold or a collapse, which simplifies the proof. In both
cases f is 1-Lipschitz. The assumption about translation lengths implies that for every
g ∈ G, f is isometric on the axis of g. Therefore all turns in AxisT (g) lift to S.

If f is a collapse, as it does not change deformation space, it is a quasi-isometry, so
connected components of the subforest collapsed by f are bounded.

Let v ∈ T be such that the subtree f−1(v) is not reduced to a point. As f is a
collapse, the pre-image of any edge in T is a single edge in S. In the Whitehead graph
WhT (G, v), any two vertices joined by an edge correspond to edges of T in the same
connected component of S \ f−1({v}). Otherwise AxisS(g) contains an edge collapsed
by f . Therefore the Whitehead graph has at least as many connected components as
S \ f−1({v}) which is not connected.

Let e a collapsed edge in S whose image is v. As e is collapsible, it has an end w
such that Gw = Ge and such that w is terminal in f−1(v). The vertex w belongs to the
boundary of S \ f−1(v) since S has no valence 1 vertex. Every connected component of
S \ f−1({v}) whose boundary is w has stabilizer included in Ge. The stabilizers of all
corresponding components in WhT (G, v) are then subgroups of Ge, so they are allowed
edge groups. Thus the Whitehead graph has an admissible cut.

If f is a fold, it is defined by two edges of S with same origin w: call them e1 and
e2. Call their endpoints v1 and v2. Call e′ the edge of T which is the image of e1 and
e2, w′ its initial vertex and v′ its terminal vertex (which is the image of v1 and v2). The
vertices v′ and w′ are in different orbits as we supposed that T/G is without simple loop.

We will prove that WhT (G, v′) \ {e′} is disconnected and the stabilizer of at least
one of its connected components E1 is in A. Lemma 2.13 states that this implies that
WhT (G, v′) has an admissible cut.

Figure 12 recaps all different cases of folds and associated shapes of graphs.

•w
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v1
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•
v2

•w
′ e′ •v

′

Figure 11: A fold as described.

Three different kind of folds may occur, which correspond to cases A, B and C.

1. Gei = Gvi for i ∈ {1, 2} and e1, e2 lie in different orbits (type A)
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Figure 12: Summary of all different cases of folds which may occur and corresponding
shape of associated Whitehead graph

2. Gv1 ⊂ Ge2 , up to permutation of indices, and e1, e2 lie in different orbits (type B)

3. e2 = he1 for some h ∈ Gv and Gei = Gvi (type C)

In the three cases, define Ẽ1 to be the set of edges of S with origin v1, except ē1. Let
E1 be the image of Ẽ1 in T . Define E2 similarly.

Since all turns represented in WhT (G, v′) lift to S, any edge of WhT (G, v′) with
one endpoint in E1 joins E1 to itself or to ē′. In particular, E1 and E2 are in distinct
connected components of WhT (G, v′) \ {e′}. Therefore WhT (G, v′) has an admissible
cut.

2.4 Proof of the theorem

Lemma 2.20. (Expansion of non-cyclic vertex groups) Let R ∈ D̄A whose certain ver-
tices v1, . . . , vk (in different orbits) have stabilizers H1, . . . ,Hk some special factors. Let
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T ∈ D and Ti the minimal subtree for Hi in T . There exists a G-tree S ∈ DA and a
map f : S → T and a collapse π : S → R such that:

• the image by π of the collapsed subforest is G · {v1, . . . , vk},

• for all i ∈ {1, . . . , k}, f|π−1(vi) is an isomorphism to Ti.

In other words, it is possible to blow up R by replacing vi by Ti.
A proof of this result is given in [GL17, Proposition 2.2]. The key assumption is

the fact that all edge groups in R are elliptic in T so we can attach edges of R to the
subtrees which replace the vertices. Here we suppose that R is the result of the collapse
of some R̃ ∈ D, so its edge groups are also edge groups in R̃ and are elliptic in any tree
in DA.

Proof of theorem 2.14. Let G be a GBS group and let G := {g1, . . . , gk} be a finite
collection of loxodromic elements of G. Let T ∈ DA. Suppose that G is simple with
respect to DA, that is, there exists a non-trivial G-tree R ∈ D̄A such that every gi ∈ G
fixes a vertex vi ∈ R.

For every 1 ≤ i ≤ k, let Ti be the minimal Gvi-invariant subtree of T . We obtain a
new tree S ∈ DA by applying lemma 2.20 starting from R so that for every i ∈ {1, . . . , k},
the vertex vi is replaced by a copy of Ti.

Let f : S → T be the map given by Lemma 2.17. If f is injective then it is an
isomorphism (surjectivity is obtained by minimality of the image for the action of G).
In that case, for every i ∈ {1, . . . , k}, the axis of gi avoids images of edges in S coming
from edges in R. Therefore some Whitehead graph at an end of such an edge has an
isolated vertex and has an admissible cut.

When f is not injective, we showed Lemma 2.17 that there is a vertex at which the
Whitehead graph has an admissible cut, which proves the theorem.

3 Algorithm

This part is dedicated to a theorem which states that one can decide algorithmically
whether a collection of loxodromic elements of G is simple with respect to some DA, or
not.

Before stating the theorem, let us explain how we deal with the set A of allowed
edge groups. Let Γ be a graph of groups representing G; it has finitely many vertices
v1, . . . , vn.

Definition 3.1. For H a subgroup of G we denote by AH the family of subgroups
{A ∩H,A ∈ A}. Since A is stable by taking subgroups, AH is a subfamily of A.

For each v ∈ V (Γ) let Iv be a family of positive integers. We say that (Iv)v∈V (Γ)

represents A if for every v ∈ V , A|Gv
is the set of all subgroups of Gv whose index is a

multiple of an element in Iv.

Examples 3.2. • Iv = {1} for each v ∈ Γ represents AZ.
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• Suppose Γ is reduced. Let Iv be the set of absolute values of labels at v, then
(Iv)v∈Γ represents Amin.

• Given Γ a graph of groups for G, we can choose A to be the set of bi-elliptic
subgroups in Γ. If so, A is represented by (Iv)v∈V (Γ) where Iv is the set of all
labels at v.

In the sequel we assume that A is represented by a family (Iv)v∈V (Γ) of finite sets.
Here is the theorem which we will prove.

Theorem 3.3. There is an algorithm which takes as input:

• a graph of cyclic groups ΓG representing G

• a marking G→ π1(ΓG, v0)

• a finite family of finite subsets (Iv)v∈V (ΓG) representing a family A of subgroups of
G

• a finite collection of loxodromic elements G ⊂ G.

which decides whether there exists a system of proper special factors H of G with respect
to DA such that G � H, and then returns such a system when it exists.

We show that the construction of Whitehead graphs is algorithmic, and that the con-
struction of the map of Lemma 2.17 is algothmic too. Finally, after giving a description
of the algorithm, we prove that it terminates.

3.1 Paths in graphs of groups, fundamental group

In this section we give some general definitions and results about GBS groups. For
algorithmic purposes it is more convenient to work with graphs of groups than with
trees.

Let G be a GBS group. We suppose it is given by a graph of cyclic groups ΓG. From
this graph we deduce a presentation 〈s1, . . . , sn|r1, . . . , rm〉. We will use this presentation
to define a marking in other graphs of groups below.

Let Γ be any graph of cyclic groups. It is given as a set of vertices and edges, a label
λ(e) for each edge e and a set of generators (av)v∈V (Γ) for all vertex groups.

We define π1(Γ) as a subgroup of the Bass group B(Γ) like in [Ser77, Definition (a),
part 5.1]. The group B(Γ) has the following presentation: generators are

• elements av indexed by vertices of Γ, where av is to be thought of as a generator
of the vertex group Gv ' Z

• elements te indexed by oriented edges in Γ.

Relations are the following:

1. for all edge e ∈ Γ we have te = t−1
ē
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2. for all e ∈ Γ with initial vertex u and terminal vertex v, with labels λ(e) = p and
λ(ē) = q, we have aqv = tea

p
ut−1
e

A path α in the graph of groups is a pair α = (w, γ) where

• γ is a path v0, e1, . . . , en, vn in the underlying graph of Γ, where the vi are vertices
and ei are edges such that t(ei) = vi = o(ei+1),

• w is a word a0te1a1 . . . tenan where ai ∈ Gvi for all i ∈ {0, . . . , n}.

We denote by [α] the element of B(Γ) represented by w.
The length of a path (w, γ) is the number of edges in γ. Its initial and terminal

vertices are v0 and vn respectively.
Let α = (a0t1 . . . an; v0, e1, . . . , vn) and α′ = (a′0t

′
1 . . . a

′
m; v′0, e

′
1, . . . , v

′
m) be two paths

in Γ such that vn = v′0. The concatenation of α and α′ is the path

α · α′ = (a0t1 . . . tnbt
′
1a
′
1 . . . a

′
m; v0, e1, . . . , vn, e

′
1, . . . , v

′
m)

where b is the element of Gvn equal to ana
′
0.

Let v ∈ Γ. A loop based at v in Γ is a path with initial and terminal vertices equal
to v.

To a loop α = (w, γ), one associates the corresponding element [α] := [w] ∈ B(Γ).
If α, α′ are loops in Γ based at v then [α · α′] = [α] · [α′].
Fix a vertex v in Γ. The fundamental group π1(Γ, v) is the subgroup of B(Γ) con-

sisting of the elements of B(Γ) associated to loops based in v.

Remark 3.4. If a word in the generators of B(Γ) corresponds to a path in the graph,
then this loop is unique. We really mean the word as a sequence fo letters and not the
corresponding element of B(Γ). Thus the word is sufficient to describe a path in the
graph of groups, and we will use the word on its own when the description in terms of
edges and vertices is not needed.

A marking of Γ is a map {si, 1 ≤ i ≤ n} → π1(Γ, v) which associates a loop based at
v in Γ to each generator of G, such that it induces an isomorphism G→ π1(Γ, v).

For every g ∈ G, given the expression of g as a word in the generators {si, 1 ≤ i ≤ n},
we can determine a loop in Γ based at v which represents g.

We call a path in Γ given by a word w reduced if no subword in w is of the form teatē
with a ∈ ie(Ge). Note that here vertex groups are cyclic so determining if a belongs to
ie(Ge) boils down to a question of divisibility.

We call a loop α cyclically reduced if the concatenation α · α is reduced.

We may modify the marking by the following process. Given another vertex v′ and a
path α in the graph of groups Γ from v to v′, there is an isomorphism π1(Γ, v) ' π1(Γ, v′)
defined by

σα :π1(Γ, v)→ π1(Γ, v′)

[h] 7→ [ᾱhα]
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Lemma 3.5. A path h = (w, γ) can be reduced algorithmically, i.e. there is an algorithm
which finds a reduced path h′ such that [h] = [h′] in B(Γ).

A loop can be cyclically reduced algorithmically: for any loop α, one can find a
cyclically reduced loop α′ and a path β such that [α] = [β̄α′β].

The proof is standard and straightforward. We leave it to the reader.

Lemma 3.6. Suppose that γ is a reduced loop based at v and that [γ] ∈ Gv. Then γ has
length 0.

The proof for this fact is in [Ser77, 5.2, Theorem 11].
With the elements above we define the universal cover TΓ,v of the graph of groups Γ.

It is a graph defined as follows. The set of vertices is

Ṽ = {paths in Γ with initial vertex v}/ ∼

where γ ∼ γ′ if γ and γ′ have the same terminal vertex vi ∈ Γ and [γ]−1[γ′] ∈ Gvi .
Denote by [γ]V the vertex associated to the path γ. The group π1(Γ, v) acts on Ṽ by
left concatenation.

Note that checking whether two paths define the same vertex boils down to checking
whether a path in Γ can be reduced to a length zero path, by lemma 3.6, so it is
algorithmic.

Let ṽ = [1]V . It is a lift for the base point.
The oriented edges of (T, v) are defined as follows:

Ẽ =
{

(α, ate)/ α path in Γ from v to v′, e ∈ Ev′ , a ∈ Gv′
}
/ ∼

where Ev′ is the set of edges with origin v′. The equivalence relation ∼ is defined by
(α, ate) ∼ (α′, a′te′) if and only if e = e′ and a−1α−1α′a′ ∈ iē(Ge). The origin of this
edge is [α]V and its terminus is [α · ate]V .

Denote by [(α, ate)]E the equivalence class of (α, ate). The group π1(Γ, v) acts on Ẽ
by left concatenation of α. We have the relation [(α, ate)]E = [(α ·a, te)]E for all a ∈ Gv′ .
The edge with opposite orientation is [(α, ate)]E = [α · ate, tē].

The graph defined is a tree. The quotient of (T, v) under the action of π1(Γ, v) is Γ;
the projection of [γ]V is the last vertex of γ (see [Ser77] for a proof).

Note that for different base points v, v′ the universal covers TΓ,v and TΓ,v′ are iso-
morphic. Given α joining v to v′, we define an isomorphism between TΓ,v and TΓ,v′ by
[γ]V 7→ [ᾱ · γ]V (this is well-defined since it does not depend on the representative γ
chosen). A marking G → π1(Γ, ∗) yields an action of G on TΓ,∗. If we identify π1(Γ, v)
with π1(Γ, v′) with the isomorphism σα as above, the isomorphism between the trees is
G-equivariant.

Lemma 3.7. Let α be a path in Γ with first vertex v. It can be lifted to a path in T with
first vertex ṽ and last vertex pα, the equivalence class of α in Ṽ .

Suppose α is reduced. Then the distance between ṽ and pα in (T, v) is equal to the
length of α.
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Proof. We follow the proof of [Bee15, Proposition 2.6].
First of all we construct the path between ṽ and pα. Denote by n the length of α.

Write (as a word) α = a0te1a1 . . . an, and αi := a0te1a1 . . . ai for i ≤ n.
Let ṽi = [αi]V and ẽi = [(αi−1, tei)]E .
The path ṽ, ẽ1, ṽ1, . . . , ẽn, ṽn = g · ṽ is a path in T . Let us show that it is a geodesic,

that is, no consecutive edge are opposite.
Suppose ẽi+1 = ẽi for some i ∈ {0, . . . , n}. Then

[(αi, tei+1)]E = [(αi · tei+1 , t̄ei+1)]E = [(αi−1, tei)]E

so ēi = ei+1 and teiait̄ei ∈ iei(Gei). Since the word is reduced this leads to a contradic-
tion. Thus the lift of the path α is a geodesic in T .

Lemma 3.8. Let Γ be a labelled graph and g be an element in π1(Γ, v) represented by a
cyclically reduced loop γ. Let T be the universal cover of Γ defined as above.

If the loop has length zero, then g is elliptic. Otherwise g is loxodromic and the path
in T defined by γ, joining ṽ to gṽ, is a fundamental domain of the axis of g in T .

In particular, for each loxodromic element g ∈ G, one can compute a fundamental
domain of its axis.

Proof. Let γ be a cyclically reduced loop in Γ such that [γ] = g. Let ṽ be the lift of the
base point v in T . Since γ is cyclically reduced, lemma 3.7 ensures that [ṽ, g2 · ṽ] is a
geodesic. Therefore ṽ belongs to the axis of g in T . As a result the path [ṽ, g · ṽ] is a
fundamental domain of the axis of g.

3.2 Algorithmicity of Whitehead graph computation and unfoldings

Lemma 3.9. Let Γ be a marked graph of groups for G. Let T be its universal cover.
Let x be a vertex in T represented as x = [γx]V for some path γ in Γ. Let Gx be the
stabilizer of x, not to be confused with vertex groups in Γ. The subgroup Gx is generated
by ax := γxaπ(x)γ̄x and one can compute

• the link lk(x)

• the action of ax on lk(x).

Proof. Since T is a tree, lk(x) is the collection of edges of T with initial vertex x. Denote
by π the quotient map T → Γ. Any edge of T with origin x has a unique representative
of the form (γx, a

k
π(x)te) with e ∈ lk(π(x)) and 0 ≤ k < λ(e).

All such edges can be listed algorithmically since the indices of edge groups in vertex
groups are all finite.

For every y := [γx, a
k
π(x)te]E ∈ lk(x) we have ax · y = [γx, a

k+1 mod λ(e)
π(x) te]E .

Let g ∈ G be a loxodromic element. With the input of a graph of groups and a loop
for g we can compute the Whitehead graphs WhT ({g}, v):
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Lemma 3.10. Let Γ be a graph of cyclic groups. Let (w, γ) be a cyclically reduced loop in
Γ based in v representing some g ∈ π1(Γ). Let T be the universal cover of Γ at basepoint
v and let x be a vertex in T . The computation of the Whitehead graphs WhT ({g}, x) is
algorithmic.

Proof. By lemma 3.9 we can compute the link of x and the action of Gx on it.
By lemma 3.8 we may compute a fundamental domain of the axis of g2 (or equiva-

lently a pair of consecutive fundamental domains of g). All orbits of turns crossed by
the axis of g appear in this segment. For every turn τ of Axis(g) based at a point in
the orbit of x we can find a pair of edges in lk(x) forming a turn in the same orbit, and
using the action of Gx, we can find all turns at x in the orbit of τ .

The elements of lk(x) form the vertices of WhT (g, x) and the turns computed above
are edges.

Corollary 3.11. Let G ⊂ G be a finite collection of loxodromic elements of G. Then
the computation of the Whitehead graphs WhT (G, v) is algorithmic.

Lemma 3.12. Given a Whitehead graph WhT (G, v), the action of Gv on it and the set
Iv, one can decide algorithmically whether it has an admissible cut.

Proof. Finding connected components in a finite graph is algorithmic. The set Iv allows
to check the admissibility of connected components by calculating stabilizers.

Lemma 2.17 states that given a Whitehead graph with an admissible cut there exists
a non-injective map f : S → T which preserves translation length of every g ∈ G. In the
proof we actually gave a construction of such a map. We are going to prove that this
construction can be done algorithmically. First we show that collapses and expansions
can be done algorithmically:

Lemma 3.13. There is an algorithm which takes as input a graph of groups Γ, a col-
lapsible edge ε = vw of Γ such that Gw = Gε, a marking ψ : G→ π1(Γ, v) and outputs

• a marked graph of groups (Γ′, ψ′) whose universal cover is the tree T ′ obtained by
the collapse of the orbit ε of the universal cover T of (Γ, ψ)

• an isomorphism φ : π1(Γ, v)→ π1(Γ′, v′) such that φ ◦ ψ = ψ′.

Proof. First construct the graph of groups Γ′: we collapse the collapsible edge ε in Γ.
Since Gw = Gε we have λ(ε̄) = ±1. We create the new graph of group Γ′ by deleting
ε and w and redefining any edge with origin w by attaching it to v instead. The label
of such edges is multiplied by ±λ(ε). There is a map between the underlying graphs
f : Γ → Γ′ which sends each vertex to the corresponding vertex in Γ′ (which we will
write with a ′) and sends w to v′, and sends any edge except ε to the corresponding edge
and sends e to the vertex v′.
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Now let us build a morphism φ : B(Γ)→ B(Γ′):

au 7→ au′ for u 6= w

aw 7→ a
±λ(ε)
v′

te 7→ te′ for ε 6= e

tε 7→ 1

This morphism sends any path in the graph of groups Γ to a path in Γ′. In particular
it induces a morphism π1(Γ, v) → π1(Γ′, v′). Moreover the induced morphism is an
isomorphism between both fundamental groups. We define ψ′ = φ ◦ ψ. It is a marking
on Γ′.

The morphism φ induces a map (T, v)→ (T ′, v′) because it sends paths to paths and
preserves the equivalence relations defining trees. This map is a collapse map and it is
G-equivariant for the markings ψ and ψ′.

The graph Γ′ and the marking ψ′ can be computed from Γ and ψ, which proves the
lemma.

We have a similar result for expansions. It is slightly more difficult since while
collapses may be defined from data in the quotient, the definition of an expansion requires
some information in the tree.

Lemma 3.14. There is an algorithm which takes as input

• a marked graph of groups (Γ, ψ)

• a vertex v ∈ Γ

• a subset S ( E(ṽ), where ṽ is the basepoint of the universal cover (T, v), such that
∀g ∈ Gṽ, gS ∩ S 6= ∅⇒ g ∈ Stab(S)

and outputs

• a marked graph (Γ′, ψ′) whose universal cover is T ′ = T Stab(S),S (see lemma 1.22)

• an isomorphism φ : π1(Γ, v)→ π1(Γ′, v′) such that φ ◦ ψ = ψ′.

Proof. Like in the proof of the collapse in lemma 3.14, we first construct an oriented
graph, then construct a map between B(Γ) and B(Γ′) which induces a map between
trees.

Let Γ′ be the labelled graph obtained as follows. The vertices of Γ′ are the vertices
of Γ along with another vertex w′. To distinguish them from the vertices of Γ we write
their names with a ′. The edges are redefined according to the following rule (see figure
13). Let n := [Gṽ : Stab(S)]. Let π : T → Γ be the quotient map.

1. Add an edge ε with origin v′ and terminal vertex w′ with label n near v′ and 1
near w′.
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Figure 13: Redefinition of edges

2. For e ∈ E(Γ) not in π(S), keep e with same origin and same label λ(e).

3. For e ∈ E(Γ) in π(S) we have o(e) = v. Redefine its origin to be w′ and its label
to λ(e)/n.

This defines the origin of all oriented edges of Γ′. We then define t(e) = o(ē) for all
e ∈ E(Γ′).

Let f : Γ′ → Γ be the natural collapse map.
For each edge e with origin v in Γ, let ẽ := [(1, te)]E be its standard lift in T with origin

ṽ. If e ∈ π(S) choose c(e) such that eS := a
c(e)
v ẽ ∈ S. Note that π−1(e) ∩ S = 〈anv 〉ẽS .

Let χ : B(Γ′)→ B(Γ) be the following morphism:

au′ 7→ au for u′ 6= w′

aw′ 7→ anv

te′ 7→ te for e /∈ π(S) ∪ π(S̄)

te′ 7→ ac(e)v te for e ∈ π(S)

tε 7→ 1

and define the morphism φ : B(Γ)→ B(Γ′):

au 7→ au′

te 7→ te′ for e /∈ π(S) ∪ π(S̄)

te 7→ a−c(e)v tεte′ for e ∈ π(S)

We can check that χ ◦ φ = idB(Γ). Both these morphism send paths to paths so they in-
duce morphisms between fundamental groups. One also easily checks that φ◦χ|π1(Γ′,v′) =
idπ1(Γ′,v′). Thus χ induces an isomorphism π1(Γ′, v′)→ π1(Γ, v) and the restriction of φ
is its inverse.

Define the marking ψ′ = φ ◦ ψ of Γ′.
The morphism χ sends paths to paths, so it induces a map f̃ : (T ′, v′) → (T, v)

between universal covers. This map is G-equivariant for the markings ψ and ψ′.

We want to prove that f̃ is the collapse map of the orbit ε and that T ′ = T StabS,S .
Let ṽ′ = [1v′ ]V be the basepoint in T ′. Let w̃′ = [1v′tε1w′ ]V and ε̃ = [(1v′ , tε)]E . In

order to prove that T ′ = T Stab(S),S we need to show that the link of the vertex w̃′ is the
pre-image of S by f̃ , together with the edge ¯̃ε.
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Note that f̃ collapses the orbit ε. To prove that it is a collapse map, we also need
the following fact: f̃ is injective on the set of edges not in the orbit of ε. Indeed, for
e ∈ E(T ′) \G · ε, φ ◦ χ(Ge) = Ge. Thus two distinct edges in the same orbit cannot be
sent to the same edge.

Note that edges in different orbits are also sent to images in different orbits. This
proves that f̃ is injective on the set of edges. Thus it is injective on the interior of
T ′ \G · ε̃ and it is the collapse map associated to the orbit ε.

Let S′ = lk(w̃) \ {ε̃}. Let us show that it is contained in the preimage of S. Let
ẽ′ := [(1v′tεa

k
w′ , te′)]E be an edge in S′. By definition of the edges in Γ′, the corresponding

orbit of edge e ∈ Γ is in π(S) ⊂ Γ. Thus there is an edge [(a
c(e)
w′ , te)]E ∈ S ⊂ T . In view

of the definition of χ, the image of ẽ′ by f̃ is [(ankv , a
c(e)
v te)]E = [(a

nk+c(e)
v , te)]E . Since

ankv ∈ Stab(S) we have f̃(ẽ) = [ankv (a
c(e)
v , te)]E = ankv ẽS so it belongs to S.

The number of edges in S′ is equal to the number of edges in S, and both can be
computed with [Gṽ : StabS] and the labels. Since f̃ is injective on the set of edges and
sends S′ to S, it induces a bijection between both sets so f̃−1(S) = S′. This proves that
T ′ is the tree T StabS,S .

Corollary 3.15. Given T , H and S such as defined in lemma 1.22, the tree TH,S can
be constructed algorithmically.

Lemma 3.16. There is an algorithm which takes as input

• a marked graph of groups (ΓT , ψ) with π1(ΓT ) ' G, and universal cover T

• finite sets ITv associated to each vertex v ∈ V (ΓT ) representing a family of allowed
edge groups A such that T ∈ DA

• a Whitehead graph WhT (G, v) and an admissible cut of this graph for A, where G
is a finite collection of loxodromic elements of G

and gives

• a marked graph of groups ΓS and universal cover S ∈ DA

• sets ISv associated to vertices of ΓS representing the same collection of allowed
subgroups A

such that there exists a non-injective map S → T , sending edge to edge or vertex, such
that for every g ∈ G, ‖g‖S = ‖g‖T . Moreover the map S → T can be chosen to be either
a fold or a collapse.

Proof. The proof of lemma 2.17 gives a construction of such a tree S (or equivalently
the associated graph of groups) by performing expansions and collapses on T . Lemmas
3.13 and 3.14 compute a new marked graph of groups for a collapse or an expansion,
along with an isomorphism between fundamental groups which is compatible with the
markings.
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Finally we need to check that the sets which describe A can be computed, i.e. for
any vertex group in ΓS we need to find its maximal subgroups which belong to A. For
any vertex group H of ΓS the change of markings given by lemmas 3.13 and 3.14 enables
one to compute the image of H as a vertex subgroup in ΓT , so using the family (ITv )v∈ΓT

one can compute the family (ISv )v∈ΓS
.

3.3 Description and termination of the algorithm

In this subsection we prove Theorem 3.3. Using the criterion given by theorem 2.14
we give an algorithm deciding, given G and G ⊂ G a finite collection of loxodromic
elements, whether G is simple, and if so, determining a system of special factors H such
that G � H.

Note the following fact:

Lemma 3.17. If WhT (G, v) has an isolated vertex, then G is simple with respect to D.

Proof. In the quotient T/G the axis of g avoids some edge which defines a subforest of
T/G containing the image of the axis of every g ∈ G.

Here is the description of the algorithm. We start with the tree T0 := TG ∈ D
corresponding to the graph of groups ΓG defining G. We may check immediately whether
G is a solvable Baumslag-Solitar group, in which case no proper special factor exists.
We suppose it is not the case. Start with n = 0:

1. Compute the axis of every g ∈ G in Tn. If some edge orbit does not intersect
any axis, then its complementary subgraph is a subforest of Γ. It may have some
components with elliptic fundamental group. Such components do not contain any
element of G. The set of components of the subforest with non-elliptic fundamental
group gives a system of proper special factors H such that G � H. The algorithm
returns YES.

2. Compute Whitehead graphs for all vertices of Tn/G and check whether at least
one of them has an admissible cut, using lemma 3.10. If none is found, then G is
not simple and the algorithm returns NO.

3. If we find v ∈ Tn/G such that WhTn(G, v) has an admissible cut, we compute a
tree Tn+1 such that there is a G-equivariant f : Tn+1 → Tn sending edge to edge
or to vertex with ‖g‖Tn+1 = ‖g‖Tn for every g ∈ G. Lemma 3.16 ensures that this
can be done. Start again step 1 with Tn+1.

Lemma 3.18. The algorithm described above terminates. When it does, either it finds
T ∗ such that AxisT ∗(g) does not cross some orbit of edges for every g ∈ G, or it finds a
proof that G is not simple.

Proof. At each iteration of the second step we replace Tn by a tree Tn+1 obtained by
an expansion or an unfolding. Expansions and unfoldings of type A or B increase the
number of orbits of edges by one while unfoldings of type C do not change this number.
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Suppose by contradiction that the algorithm does not terminate, yielding an infinite
sequence (Tn)n∈N. Lemma 1.25 implies that the number of edges in Tn/G tends to
infinity. Thus there exists N ∈ N such that the number of edges of TN/G is strictly

greater than
∑
g∈G
‖g‖TN =

∑
g∈G
‖g‖T0 . Then there must be at least one orbit of edge

avoided by the axis of every g ∈ G, so the algorithm should have stopped at the N -th
iteration: this is the contradiction we needed.

4 Decreasing sequences of special factors

In this part, G is a non-elementary GBS group. Let A be a family of allowed edge
subgroups of G. Let H be a special factor with respect to DA. The induced deformation
space DA|H is the deformation space of H-trees of which elliptic groups and allowed edge
groups are those of D which are contained in H.

In particular D|H is the cyclic deformation space for H. If A|H := {A ∩H/A ∈ A},
we have DA|H = (D|H)A|H .

Lemma 4.1. A subgroup K ⊂ H is a special factor of G with respect to DA if and only
if K is a special factor of H with respect to DA|H .

Proof. If T is a tree in D̄A then its minimal H-invariant subtree TH is a tree in D̄A|H .
Conversely, any H-tree in D|H is a subtree of some G-tree in D.

Suppose K ⊂ H is a special factor of G, then it is a vertex stabilizer of some vertex
v in some T ∈ D̄A. The vertex v must belong to the minimal H-invariant subtree
TH ∈ D̄A|H since K is not an allowed edge group. Therefore K is a special factor for H

with respect to DA|H .

Now suppose K is a special factor of H with respect to DA|H : there is a collapse

T → T̄ with T ∈ DA|H and such that K is a vertex stabilizer in T̄ . There is a tree S ∈ DA

such that T is a subtree of S and there is a collapse S → S̄ such that the restriction
to T is the collapse T → T̄ and the collapse is an isometry on S \ T . Edge stabilizers
belong to A. Thus K is a vertex stabilizer in S̄ so it is a special factor for G.

Remark 4.2. If A = Amin the family of subgroups which are bi-elliptic in reduced trees
of D, we have DA = Dred. However, the elements of DAmin

|H are not necessarily reduced
as H-trees of D|H . In fact some bi-elliptic groups appearing in some reduced G-trees
might not be bi-elliptic in reduced H-trees (see figure 14 for an example). This means
that Amin|H is not the family of subgroups of H which are bi-elliptic in reduced H-trees
of D|H .

Given a family G of loxodromic elements of G, the algorithm of Theorem 3.3 that
we described can be iterated in order to find a �-decreasing sequence (Hn) of systems
of special factors with respect to DA such that for all n ∈ N, G � Hn.

One can ask whether there exists a minimal system of special factors Hmin such that
G is Hmin-peripheral, and if the iteration of the algorithm eventually finds such a system.

35



•2

1

2 •<
e •1 2 2

ΓG

ΓH
• •4 2

ΓH reduced by
collapsing e

Graphs of groups for H and G

Figure 14: Example: H is a special factor of G for Dred because Ge fixes the edge of the
loop after reduction. On the contrary (Dred)|H is not the reduced space for H because
Ge does not fix any edge in reduced H-trees (for example the universal cover of the
graph of groups on the right).

The answer is yes. We introduce a complexity on special factors which enables us to
prove the existence of a minimal factor and that the algorithm stops.

Remark 4.3. Additional operations used to iterate the Whitehead algorithm are them-
selves algorithmic. We need two things. The first one is to be able to take a (possibly
non-connected) subgraph Γ′ ⊂ Γ, compute the corresponding subgroups G′1, . . . , G

′
k and

the minimal subtrees of these subgroup. Indeed the connected components of Γ′ may
have valence 1 vertices, in which case they do not represent the minimal subtree for the
corresponding G′i. The second one is to deduce the replacements for DA in every factor
of the system. It consists in keeping all allowed edge groups which are contained in the
special factor G′i for every i ∈ {1, . . . , k}. In practice, for a factor G′i corresponding to a
connected component Γ′i, this means we keep every Iv for which v belongs to Γ′i.

For any non-elementary GBS group H we denote by b1(H) the first Betti number of
any graph of cyclic groups with fundamental group H. This is an invariant of trees in
the cyclic deformation space for H. We denote by M(H) the set of conjugacy classes of
big vertex stabilizers with respect to Amin. Define m(H) := #M(H). Vertex stabilizers
are the same in all trees in D|H so m(H) is also well-defined.

We also introduce the following integer:

σ(H) =
∑

K∈M(H)

i(K)

where i(K) is an integer which we define as follows and which is linked to the peripheral
structure of K (see [GL07, Definition 4.10])

Define i(K) = [K : K ′] where K ′ = 〈g ∈ K|g bi-elliptic in some T ∈ DAmin〉. This
definition does not depend on any graph of groups for H. However one can compute i(K)
easily using the labels of a reduced graph of groups for H. Given such a graph, there
exists exactly one vertex v corresponding to the conjugacy class K. Absolute values of
labels at v are never 1 because K is big. Then i(K) is the GCD of all labels at v.
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Both b1(H),m(H), σ(H) only depend on the conjugacy class of H. For any special
factor H < G let [H] be the conjugacy class of H in G.

Definition 4.4. We define the following complexity, which is a triple of non-negative
integers, for any non-elementary GBS group H:

C(H) = (b1(H),m(H), σ(H))

It does not depend on the reduced graph of groups chosen to compute it nor on A. We
order complexities with lexicographic order.

For elementary GBS groups, we define the complexity to be (0, 0, 0).

Proposition 4.5. Let G be a GBS group and H a special factor of G. Then C(H) <
C(G).

Remark 4.6. The proposition is true for any choice of A. Since a special factor with
respect to DA is a special factor with respect to DZ, it suffices to prove Proposition 4.5
for DZ.

Definition 4.7. Let Γ be a graph of groups and Γ′ be a subgraph of Γ. We say that
Γ is reduced with respect to Γ′ if no collapse of Γ in the same deformation space has a
subgraph with fundamental group π1(Γ′).

This property is a minimality condition: if Γ′ ⊂ Γ, up to collapsing some edges, we
can obtain Γ̄′ ⊂ Γ̄, where Γ̄ is reduced with respect to Γ′ and π1(Γ̄′) = π1(Γ′).

Remark 4.8. The definition implies that if an edge e ∈ Γ has label λ(e) = ±1 and is not
a loop, then e ⊂ Γ \ Γ′ and o(e) ∈ Γ′.

Proof of proposition 4.5. There exists a graph of groups Γ for G such that some subgraph
ΓH ⊂ Γ has fundamental group H.

We may suppose that Γ is reduced with respect to ΓH . In particular, ΓH is reduced.
We also suppose H is not an elementary GBS subgroup.

If at least one of the edges in Γ \ ΓH is non-separating then the first Betti number
of ΓH is strictly smaller than b1(Γ) so C(H) < C(G).

If all edges in Γ \ ΓH are separating, then each connected component of Γ \ ΓH is a
tree attached to ΓH by a single vertex. Figure 15 illustrates this case.

In that case we first prove that the number of big vertex stabilizers (with respect to
Amin) cannot increase.

Suppose v ∈ ΓH is a vertex whose stabilizer in H is big. If no label in Γ \ ΓH at v is
±1, then Gv < G is a big vertex stabilizer in Γ.

Otherwise, let e be an edge with o(e) = v such that λ(e) = ±1. The edge e is not
in ΓH since v is big in ΓH , thus e is separating. Furthermore no label at t(e) is ±1, so
Gt(e) is a big vertex group containing Gv. Thus every big stabilizer in H is a subgroup
of a big stabilizer in G.

Moreover the subgroup Gt(e) < G can contain at most one big vertex stabilizer of H.
This implies m(H) ≤ m(G).
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Figure 15: Cases when all edges in Γ \ ΓH are separating.
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Suppose at least one of the edges in Γ \ΓH has both its label distinct from ±1. One
of its vertices v does not belong to Γ′. The stabilizer of v is big (see remark 1.20): no
edge at v is a loop, and all labels at v are different from ±1 because Γ is reduced with
respect to Γ′. Thus m(H) < m(G) so C(H) < C(G) again.

Assume that all edges in Γ \ ΓH are separating and have one label equal to ±1. In
that case, all edges in Γ \ ΓH have one vertex in ΓH , which carries the ±1 label, and a
valence 1 vertex. If at least two such edges are attached to the same vertex in ΓH then
ΓH has strictly fewer big vertex stabilizer classes than Γ (see figure 15). Therefore we
have to deal with the case where at most one edge of Γ \ ΓH is attached to each vertex
of ΓH .

In that case, compute σ in Γ and ΓH . Only the latter is reduced. To reduce Γ we
collapse all edges in Γ \ ΓH . Thus we get a reduced graph Γ′ which is similar to ΓH
but at some vertices, all labels are multiplied by a factor. At such vertices the GCD
of all labels is also multiplied by the factor, so the corresponding iΓ(K) is greater than
iΓH

(K ∩H). Therefore σ(H) < σ(G) so C(H) < C(G).

Remark 4.9. If H is a special factor of G with respect to Dred(G), then (b1(H),m(H)) <
(b1(G),m(G)). However if F is another special factor of G for Dred(G), such that F < H,
we do not necessarily have (b1(F ),m(F )) < (b1(H),m(H)). In fact F may not be a
special factor of H for Dred(H) (see remark 4.2). Therefore this simplified complexity is
not helpful to study a decreasing sequence of special factors, even with respect to DAmin .

We deduce:

Corollary 4.10. Every decreasing sequence of special factors with respect to DA is
stationary.

Proof. Let G ⊃ G1 ⊃ · · · ⊃ Gn ⊃ . . . be a decreasing sequence of special factors of
G. Either all the Gi are all non-elementary groups so Proposition 4.5 ensures that the
sequence is stationary, or for some n ∈ N the group Gn is elementary. The elementary
GBS groups do not have any non proper special factors so in that case the sequence is
also stationary.

Corollary 4.11. Every �-decreasing sequence of systems of special factors with respect
to DA is stationary.

Proof. This is a consequence of Corollary 4.10 and Kőnig’s Lemma.

Lemma 4.12. If A,B are distinct special factors of G with respect to DA, then either
A ∩B is elliptic or it is also a special factor of G with respect to DA.

Proof. Let A,B be as in the lemma. We will construct a tree in D̄A in which A ∩ B is
a vertex stabilizer.

There exists a G-tree T ∈ D̄A where B is a vertex stabilizer. The group A acts on
T ; let TA be the minimal subtree of T for this action. Subgroups of the form hBh−1∩A
fix a vertex in TA. Consider the graph of groups TA/A.
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Let S ∈ D̄A be such that A is the stabilizer of a vertex v ∈ S. We may suppose that
all vertices with non cyclic stabilizers are in the orbit of v. We perform an expansion
on S by replacing the vertices in the orbit of v by copies of TA, which is possible since
edge stabilizers of S are elliptic in TA. We obtain a new tree R which has a vertex with
stabilizer B ∩A.

We need to show that it can be obtained by collapse of a tree of DA. We can perform
an expansion of the vertex orbit of S by replacing it by T̂A, the minimal subtree of A in
T̂ ∈ DA where T̂ → T is a collapse. All edge and vertex stabilizers of T̂A are allowed in
DA. Then we get a tree R̂ ∈ DA which yields R by collapse. This shows that A ∩ B is
either elliptic or a special factor of G with respect to DA.

Corollary 4.13. Let H,H′ be two systems of proper special factors. Define H ∧H′ :=
{[H ∩H ′]/H ∩H ′ non elliptic , [H] ∈ H, [H ′] ∈ H′}. Then H∧H′ is a system of proper
special factors.

Proof. The elements of H∧H′ are all special factors according to Lemma 4.12. We need
to check that they are all simultaneously vertex stabilizers in some tree S ∈ D̄A. The
proof works like the proof of Lemma 4.12. Let T ∈ D̄A (resp. T ′) be a tree in which
every factor of H (resp. H′) is a vertex stabilizer. We find minimal trees Ti ⊂ T for
H ′i for every [H ′i] ∈ H′, then we blow up T ′ by replacing the vertex fixed by gH ′ig

−1 by
gTi for every g ∈ G. The result is a tree S in which the conjugacy classes of non-cyclic
vertex stabilizers are the set H ∧H′, and S ∈ D̄A.

Corollary 4.14. Let G be a finite collection of loxodromic elements of G. The set of
systems of special factors H with respect to DA such that G � H admits a smallest
element for �.

Proof. Note that this set is never empty since {G} is itself a system of special factors
with respect to DA.

Corollary 4.11 ensures that any �-decreasing sequence of systems of special factors
is stationary. Thus there exists a system of special factors H such that G � H which is
minimal for this property.

Let us show that it is unique. Let H′ be another minimal special factor such that
G � H′. Let g ∈ G: there is H ∈ H and H ′ ∈ H′ such that g ∈ H ∩H ′ so H ∧H′ is not
empty. By Lemma 4.12 it is a system of special factors of G.

By minimality of H we get H ⊂ H′, and conversely by minimality of H′. By Remark
2.7 2. the relation � is an order so both systems are equal.

Using Whitehead algorithm and corollary 4.14 we deduce that there exists an al-
gorithm which finds the smallest system of special factors H such that G ⊂ G is H-
peripheral with respect to DA:

Theorem 4.15. There is an algorithm which takes as input

• a marked graph of groups ΓG representing a group G
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• a finite collection of loxodromic elements G ⊂ G as loops in ΓG

• finite sets (Iv)v∈V (ΓG) representing a collection of allowed edge groups A

and outputs the smallest system of special factors H of G with respect to DA such that
G is H-peripheral, as a finite collection of marked graph of groups.

Proof. We give the algorithm in the case where G has a single element. The algorithm
consists in constructing a decreasing sequence of special factors containing g. In the case
where G consists of more than one element, the algorithm would construct a decreasing
sequence of systems of special factors.

Define H0 := {G}, Γ0 := ΓG and D0 := DA. We will construct a decreasing sequence
of special factors H0 ⊃ · · · ⊃ HN , where g ∈ Hn for every n ∈ {0, . . . , N}. The space
Dn is defined as the induced deformation space for Hn. It coincides with the induced
deformation space for Hn seen as a special factor of some Hm for m < n. For every n,
we will construct sets (Inv )v∈V (Γn) which represent the family of allowed edge groups of
Dn.

Here is the algorithm. Start with i = 0. Use Theorem 3.3 applied to Γi to decide
whether g is contained in a special factor of Hi or not. If yes, then Hi is the minimal
special factor containing g and the algorithm stops. Else the algorithm gives

• a special factor Hi+1 ( Hi such that g ∈ Hi+1

• a new graph of groups Γ′i with π1(Γ′i) ' Hi

• a subgraph of groups Γi+1 ⊂ Γ′i such that π1(Γi+1) ' Hi+1.

Then start again with i+ 1 instead of i.
Applying this construction, we get a decreasing sequence of special factors with

respect to DA.
Corollary 4.10 guarantees that this sequence is stationary, which means that the

algorithm stops eventually. The last factor obtained, given as a marked graph of groups,
is the minimal special factor containing g.
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