
HAL Id: hal-03741421
https://hal.science/hal-03741421v2

Submitted on 19 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics of type V menthol-thymol deep eutectic
solvents: Do they reveal non-ideality?

Claire D’Hondt, Denis Morineau

To cite this version:
Claire D’Hondt, Denis Morineau. Dynamics of type V menthol-thymol deep eutectic sol-
vents: Do they reveal non-ideality?. Journal of Molecular Liquids, 2022, 365, pp.120145.
�10.1016/j.molliq.2022.120145�. �hal-03741421v2�

https://hal.science/hal-03741421v2
https://hal.archives-ouvertes.fr


1 

 

Dynamics of type V menthol-thymol deep eutectic 

solvents: Do they reveal non-ideality? 

Claire D’Hondt, Denis Morineau * 

†Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, 

France 

ABSTRACT: We have established a comprehensive study of the molecular dynamics of the 

menthol-thymol mixture, the prototype of the new class of type V deep eutectic solvents. Dielectric 

spectroscopy and differential scanning calorimetry were combined to assess the dipolar relaxation 

and glassy dynamics over an extended range of timescales (10-6 – 102 s) and for eleven different 

compositions including the two pure constituents. Positive deviations from ideal mixing 

approximation were demonstrated for both the solvent dielectric strength and the glass transition. 

They support the idea that preferential H-bond interactions between unlike molecules induce 

structural rearrangements in the DES mixtures. Excellent glassforming capability of the DES 

mixtures was demonstrated for a broad range of compositions (xThymol = 0.4-0.7). In this case, the 

dipolar dynamics could be assessed from the normal liquid to the deeply supercooled state. Many 

salient parameters of the relaxation functions, including fragility, non-Debye character and 

rotation-translation decoupling point to the development of dynamic heterogeneities.       
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1. Introduction 
 

Deep eutectic solvents (DESs) have attracted growing interest as promising alternative to 

classical solvents.[1-6] The formation of DESs is usually achieved by mixing H-bonding 

molecules and molecular ionic species.[6] For eutectic mixtures, the melting point is notably 

depressed with respect to the pure ingredients.[7, 8] In DESs, this phenomenon can be reinforced 

by non-ideal mixing effects that result from preferential intermolecular interactions between unlike 

molecules in the mixtures.[9-11] This beneficial effect paves the way for designing solvents with 

specific properties by combining different ingredients which would otherwise be solid at room 

temperature. 

While most common DESs incorporate at least one ionic ingredient, the recently introduced 

type V DESs are exclusively formed by non-ionic components.[12] Consequently, type V DESs 

are non-miscible with water, which contrasts with the former types of DESs.[13-15] As such, they 

are contemplated for extraction applications that require the use of hydrophobic solvents.[16-19] 

Since 2019 and the seminal work of Abranches et al. [12], the non-ideal character of type V 

eutectic mixtures has been mostly investigated for terpene-based solvents.[20-25] For the 

prototypical menthol-thymol mixture, a large negative deviation from ideality was demonstrated 

from the experimental determination of the solid–liquid equilibrium phase diagram, allowing its 

classification as deep. The origin of non-ideality was attributed to the asymmetric character of H-

bond interactions involving thymol, which behaves as a strong hydrogen bond donor (HBD) but a 

weak hydrogen bond acceptor (HBA).[12, 25] This condition favors the formation of H-bonds 

between thymol and menthol molecules, compared to the self-interactions (i.e. thymol-thymol and 

menthol-menthol H-bonds). This interpretation was supported by Raman spectroscopy and 
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molecular dynamic simulation studies that underlined the fundamental role of hetero-association 

in determining the liquid structure of menthol-thymol mixtures.[24, 26, 27]   

Interestingly, it was shown that the non-ideal character of the mixture was temperature 

dependent. The activity coefficient of thymol in the equimolar mixture varies considerably from 

less than 0.3 at 223 K to approximately 0.9 at 463 K.[24] Concomitantly, the number of H-bonds 

between the two DES-forming molecules decreases on increasing temperature.[24, 26] Besides 

temperature, varying the composition of the solvent is of primary interest. A maximum in the 

number of menthol-thymol H-bonds was found around the equimolar composition.[24] It is 

important to stress here that, although often misinterpreted in the literature, this does not imply 

that the eutectic composition can be associated with the existence of stoichiometric complexes (see 

detailed discussion by Martins et al. [8]). Rather, this observation suggests the existence of a range 

of compositions where the physico-chemical properties of the liquid mixture are affected by the 

preferential interactions between dissimilar molecules, and by the likely formation of mesoscopic 

liquid structures or dynamic heterogeneities. This advocates for more systematic studies of DES 

mixtures at compositions that are not restricted to the eutectic point or to specific stoichiometries. 

Incidentally, while the eutectic point of menthol-thymol mixtures was initially located close to the 

equimolar composition, a recent extensive study of their solid−liquid equilibria revealed a more 

complex situation. This updated phase diagram ruled out the standard single-eutectic point picture 

and demonstrated the existence of two co-crystals with stoichiometric ratios 1:3 and 3:2 and two 

eutectic points at respectively 𝑥Thymol
𝑒1  = 0.33 and 𝑥Thymol

𝑒2  = 0.48. [23]  

So far, the fundamental understanding of type V menthol-thymol mixtures has been solely 

based on static (thermodynamic and structural) properties. The emerging questions that have not 
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been addressed yet, concern the dynamics of type V DES. How does non-ideality, which appears 

intrinsically linked to the considerable decrease of the melting point and to the formation of 

specific H-bonded structures shows up in terms of molecular motions? More precisely, can one 

relate the observed important dependences of non-ideality on the temperature and on the 

composition to characteristic features in the relaxation processes of the liquid state? The aim of 

the present study is to provide an unprecedented assessment of the dynamical properties of a type 

V DES, covering an extended range of temperatures and compositions in the liquid, supercooled 

liquid, glassy and solid states. To reach this goal, dielectric spectroscopy (DS) is a perfectly well-

suited method as it allows covering a broad range of frequencies (MHz–Hz) corresponding to the 

DES molecular dynamics, as already demonstrated in recent studied of ionic DESs based on 

choline chloride derivatives.[14, 28, 29] We combined DS to differential scanning calorimetry 

(DSC) in order to bridge the gap from short (∼10−6 s) to ultra-long (∼102 s) timescales, that are 

typical for glassforming liquids.     

 

2.     Materials and methods 
 

L-menthol (>99%) and thymol (>99%) were purchased from Sigma-Aldrich. DES and pure 

systems were prepared by weighting and adding the two precursors to produce a series of eleven 

samples with evenly spaced molar ratios in 0.1 steps from xThymol = 0 to xThymol = 1. The samples 

were mixed by mechanical agitation at about 60°C for 30 min until a clear homogeneous liquid 

phase was obtained. 

For DS experiments, the sample was prepared in parallel plate geometry between two stainless 

steel electrodes with a diameter of 20 mm and a spacing of 260 m maintained by Teflon spacers. 
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It was placed in the cryostat and maintained under a dry nitrogen atmosphere. The complex 

impedance of the as-prepared capacitor was measured from 1 Hz to 106 Hz with a Novocontrol 

high resolution dielectric Alpha analyzer with an active sample cell. The measurements were 

performed at thermal equilibrium along a cooling and a subsequent heating branch with a 

temperature step of 2 K, and typically covering the temperature range from 130 K to 333 K (-143 

°C to  60 °C). The temperature of the sample was controlled by a Quatro temperature controller 

(Novocontrol) with nitrogen as a heating/cooling agent providing a temperature stability within 

0.1 K. The temperature scan rate, although discontinuous, was about 0.3 K.min-1 on average. 

For DSC experiments, the weighted samples were sealed in Tzero© aluminum hermetic pans. 

The measurements were performed with a Q-20 TA instrument equipped with a liquid nitrogen 

cooling system. The melting transition of an indium sample was used for calibration of temperature 

and heat flux. In general, the temperature was ramped linearly both on cooling and heating in the 

temperature range from 180 to 300 K with the same scanning rate of 5 K.min-1.  For concentrated 

systems (xThymol  0.1 and xThymol  0.9) the maximum temperature was increased to assure 

complete melting (up to 323-333 K) and the cooling rate was set to maximum speed (ca. 200 K. 

min-1).      

  

3. Results and discussion 
 

3.1 Differential scanning calorimetry 

The phase diagram of thymol-menthol DES has been studied in great details recently.[23]   Due 

to polymorphism, metastability, and the presence of solid solutions, the determination of the phase 
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diagram required the combination of X-ray diffraction and DSC, along with carefully designed 

thermal treatments. It demonstrated the existence of two co-crystals with stoichiometric ratios 1:3 

and 3:2 and two regions of solid solutions formed by menthol in thymol and menthol in the 1:3 

co-crystal. As a result, two eutectic points were established for compositions 𝑥Thymol
𝐸1 = 0.33 and 

𝑥Thymol
𝐸2 = 0.48, respectively.[23] The present study focuses on the dynamics of the liquid states 

and it was not conceived to bring any new knowledge about the solid-liquid equilibria and the 

nature of the crystalline states. In fact, on the contrary, our intention is to avoid crystallization as 

often as possible. The aim of DSC experiments are twofold: - determine for each composition and 

thermal treatment, the temperature range where the solvent has remained entirely liquid (or glassy), 

– determine the calorimetric glass transition of the fully vitrified samples. 

The thermograms measured for the eleven different compositions are illustrated in Figs. S1. The 

thermograms during heating (red curves) were all acquired at 5 K.min-1 after an initial cooling 

branch (blue curves) with the same scanning rate, except for xThymol = 1, 0.9, 0.1, and 0 (Figs. S1a, 

b, and Figs. S1j,k), where a fast cooling rate of 200 K.min-1 was applied. Different thermal 

behaviors were observed, depending on the composition. Importantly, the formation of a glass of 

the entire solvent, and the subsequent determination of its glass transition Tg on heating could be 

achieved for eight samples with xThymol ≥ 0.3. This is demonstrated by the absence of exothermic 

peak during the entire cooling scan and also during subsequent heating up to Tg, which can be 

identified by the characteristic jump of the heat capacity. Only the three menthol-rich samples 

(xThymol ≤ 0.2) are not glassforming systems under the applied experimental conditions. Indeed, 

crystallization occurred on cooling, as indicated by exothermic events in Figs. S1i-k even though 

fast cooling rates were applied.   
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As a whole, the mixtures can be classified in four different groups according to their thermal 

behavior observed by DSC:  

 - very good glassformers: for close to equimolar compositions, 0.4 ≤ xThymol ≤ 0.6, 

crystallization never occurred, as illustrated in Figs. S1e-g. 

 - good glassformers: for intermediate compositions, xThymol = 0.3 (Fig. S1h) and xThymol = 

0.7-0.8 (Fig. S1c,d), crystallization was avoided on cooling and occurred only during heating, at 

temperature well above the glass transition.  

 - poor glassformers: for thymol-rich systems,  xThymol  0.9 (Fig. S1a,b) crystallization 

occurred on cooling at 5 K.min-1 but could be avoided by quenching at 200 K.min-1. 

 - highly crystallizable systems: for menthol-rich systems,  xThymol ≤ 0.2 (Fig. S1i-k) 

crystallization occurred on cooling even during thermal quench at 200 K.min-1. Note that the 

classification as ‘highly crystallizable systems’ is strictly valid for the experimental conditions 

used in the present study, but crystallization might be avoided, provided different experimental 

conditions are applied such as ultrafast cooling or nanoscale spatial confinement [30-32]. 

The temperatures of the different transitions measured by DSC (liquidus, crystallization on 

cooling, cold crystallization on heating and the glass transition) are summarized as filled symbols 

on the phase diagram illustrated in Fig. 1. The open symbols correspond to DS measurements and 

are discussed in the next section. The assignment of the different solid phases (SMenthol, , and ) 

as well as the two eutectic points (star symbols labelled E1 and E2) are indicated according to the 

comprehensive study by Alhadid et al. [23]. 
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FIG. 1. Experimental solid–liquid and liquid-glass transitions for the binary thymol-menthol 

system measured by DSC (filled symbols) and dielectric spectroscopy (open symbols). Liquidus 

(black squares), crystallization temperature on cooling (blue downward triangles) and cold 

crystallization on heating (red upward triangles). The glass transition temperatures (green circles) 

correspond to entirely vitrified systems, i.e. with no partial crystallization (see text for 

experimental conditions). The two eutectic points denoted E1 and E2 (purple stars) and the 

assignment of the solid phases (SMenthol, , and ) are based on Alhadid et al. [23].    
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The thermograms of the eight glassforming mixtures (xThymol  0.3) in the region of the glass 

transition are illustrated in Fig. 2a. The glass transition is identified by a characteristic jump of the 

heat capacity that gradually shifts to lower temperature when the fraction of thymol increases. The 

glass transition temperature Tg and the magnitude of the heat capacity jump at Cp(Tg)  are shown 

in Fig. 2b.  

 

FIG. 2. (a) Thermograms measured during heating at 5°C.min-1 in the region of the glass transition 

of entirely vitrified thymol-menthol mixtures for eight different values of the thymol molar fraction 

x ranging from 0.3 to 1 from right to left (cf. arrow). (b) Dependence on the mixture composition 

of the glass transition temperature Tg and (inset) the heat capacity jump at Tg. Values of Tg 

evaluated from dielectric spectroscopy are added for four compositions (large symbols). Dashed 

line is fit with Gordon-Taylor model.  

 

We compared the compositional dependence of the glass transition temperature with prediction 

based on the configurational entropy theory of the glass transition with ideal mixing 
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approximation. According to the Gordon-Taylor theory, the glass transition of the mixture is given 

by eq. 1 with 𝐾 =  
∆𝐶𝑝2(𝑇𝑔2)

∆𝐶𝑝1(𝑇𝑔1)
, x being the molar fraction of thymol, and 1, 2 indices standing for 

thymol and menthol, respectively.[33, 34] 

      𝑇𝑔(𝑥) =  
𝑥𝑇𝑔1+(1−𝑥)𝐾𝑇𝑔2

𝑥+(1−𝑥)𝐾
    (1) 

The parameter K was not considered as an adjustable parameter, but determined from the 

experimental values of ∆𝐶𝑝(𝑇𝑔). To limit the effect of statistical fluctuations in the evaluation of 

K, we applied a linear regression, as indicated by the dashed line in the inset of Fig. 2b. The glass 

transition temperature of pure menthol being unknown, the Gordon-Taylor model was calculated 

using the values of the two extreme compositions (xThymol = 0.3 and 1). The predicted temperatures 

are illustrated by the dashed curve in Fig. 2b. Interestingly, the values of the heat capacity jump 

(∆𝐶𝑝(𝑇𝑔) = 0.48 J.K-1.g-1) and the glass transition temperature (Tg = 218.5 K) of the highly 

crystallizable menthol could therefore be determined by extrapolation. The obtained value of Tg  

is in good agreement with the previous prediction (Tg = 218.8 K) obtained from a comparable 

extrapolation method [32]. A positive deviation of the compositional dependence of the glass 

transition temperature with respect to ideal mixing is observed at intermediate compositions 

(xThymol = 0.5 and 0.6). The magnitude of this effect of non-ideality is however quite small, although 

significant within the experimental uncertainties. Additionally, this non-ideal variation of the 

calorimetric glass transition was also demonstrated by dielectric spectroscopy, as explained in the 

next section, by extrapolating the relaxation time to 102s (cf. large filled circles in Fig. 2b). This 

positive deviation signifies that, on approaching Tg, the glassy dynamics of the DESs are slower 

than anticipated for ideal mixtures. This is consistent with the formation of preferential menthol-
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thymol H-bond interactions for near equimolar compositions that are expected to increase the 

solvent viscosity.[24] 

 

  3.2 Dielectric spectroscopy – Phase behavior and dielectric strength  

While the calorimetric glass transition is usually associated to temperature at which the liquid 

dynamics is very slow (relaxation time of the order of 102 s), the DS allows scrutinizing the liquid 

dynamics on a much wider range of timescales and thus at different temperatures. The complex 

dielectric function of the sample 𝜀∗(𝑓) = 𝜀′(𝑓) − 𝑖𝜀′′(𝑓) was evaluated for the eleven DES 

samples where f denotes the frequency of the electric field, ´ and ´´ the real and loss part of the 

complex dielectric function and i symbolizes the imaginary unit. They are illustrated as 3D plots 

as a function of the temperature T and frequency f for the equimolar DES mixture in Figs. 3a and 

3b. Depending on the temperature and the frequency ranges, different contributions were observed 

in the instrumental frequency window. At high temperature and low frequency, the real part of the 

permittivity increases considerably (Fig. 3a). This is a well-known effect due to electrode 

polarization induced by moving ionic charges (possibly including impurities) that are eventually 

blocked and form a layer at the cell interface.   
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FIG. 3. 3D representation of the complex dielectric function measured for the equimolar thymol-

menthol mixture as a function of the temperature and frequency. (a) Real part and (b) imaginary 

part.  

Menthol-thymol being nonionic DESs, this contribution was rather limited and it could be easily 

separated from the physically interesting contributions. The most remarkable observed feature was 

the prominent dipolar relaxation process that is illustrated in Fig. 3a by the jump of ’(f) from static 

permittivity s to high-frequency permittivity∞. Likewise, this relaxation process appears as a 

distinct peak in the loss part ’’(f). Conductivity additionally contributes to ’’(f) at high 

temperature and frequency.  

For each sample, more than 150 spectra covering the frequency range (1Hz – 1Mhz) were acquired 

at varying temperatures by steps of 2K on cooling and heating. Isochronal representations of the 

real and imaginary parts of the complex dielectric function of all the studied menthol-thymol 

mixtures are illustrated in Figs. S2(a-v) for a limited selection of frequencies.  Despite the relaxed 

temperature resolution of DS compared to DSC, this representation provides a direct insight on 
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the occurrence of phase transitions and the nature of the thermodynamic state of the sample. 

Crystallization-melting of non-glassforming systems is obviously demonstrated by a hysteretic 

loop of the real part ’(T), as illustrated for instance for pure thymol in Fig. S2a. Good glassformers 

are indicated by a sudden drop of’(T) on heating (cold crystallization) followed by a second jump 

at melting, as illustrated in Fig. S2g by the typical case xThymol = 0.7. Finally, very good 

glassformers are demonstrated by a fully reversible temperature variation of ’(T) and ’’(T), with 

a frequency dependent gradual variation of both quantities that indicates the crossing of the dipolar 

relaxation with the experimental dynamical window. This last behavior is nicely illustrated in Fig. 

S2k,l for the equimolar DES composition.  Because no thermal quench was applied, and due to 

different sample geometry and much slower average scanning rate (ca. 0.3 K.min-1), the samples 

studied by DS were more often subject to crystallization than when studied by DSC. The 

freezing/melting transition temperatures evaluated by DS are indicated in Fig. 1 by open symbols. 

There is a general agreement between both methods, although crystallization being a partly 

stochastic phenomenon, a quantitative agreement is not expected in this case. The DS study of the 

dynamics on the temperature range encompassing the supercooled liquid down to the glassy state 

could be achieved, without any crystallization, for four compositions xThymol = 0.4-0.7.   
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FIG. 4. The dependence on the composition of the thymol-menthol binary systems of the measured 

dielectric permittivity in the limits of low frequency s  (black filled circles) and high frequency 

∞  (red open circles). The static permittivity corresponds to the temperature T = 323 K, in the 

liquid phase. Dashed lines and solid lines are fits with linear and quadratic functions, respectively.  

 

Before addressing the dynamical properties of the glassforming mixtures, we first discuss the 

dielectric strength ∆𝜀 =  𝜀𝑠 − 𝜀∞. It is a measure of the jump of ’(T) from the low temperature - 
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low frequency limit to the high temperature - high frequency limit. As shown in Figs. S2, 𝜀𝑠 varies 

with the temperature. It could be measured for all the eleven samples in the liquid state at a 

sufficiently high temperature T = 323 K. At low temperature, in the crystalline phase or in the 

supercooled liquid, provided that 𝜔𝜏 ≫ 1, all the ’(T)  curves converge towards the barely 

temperature dependent limit 𝜀∞.  𝜀∞ rather obeys a flat linear compositional dependence, as 

illustrated by the dashed line in Fig. 4. The latter is expected, because 𝜀∞ is associated to molecular 

electronic polarizability, and as such, it mostly depends on the molar concentration of each species. 

Minor deviations from a strict linear dependence are within the experimental uncertainties.  

Contrariwise, the static permittivity presents a significant dependence on the DES composition. It 

is properly described by an almost symmetric quadratic shape, with a maximum value 25% larger 

than for the pure systems, located close to the equimolar DES composition. The value of 𝜀𝑠 

emphasizes the correlations between the dipoles of different molecules present in the liquid. 

According to the Kirkwood−Fröhlich equation, when specific interactions such as H-bonds favor 

parallel alignment of the molecular dipoles, they lead to an enhanced effective dipole moment.[35] 

This phenomenon results in a larger dielectric strength. Contrariwise, antiparallel dipolar 

configurations reduce the value of the dielectric strength. In this framework, one may conclude 

that the H-bonded structures induced by the specific interactions between the unlike molecules 

promote parallel alignment of their dipoles. A similar phenomenon has been demonstrated for 

mixtures of monohydroxy alcohols.[36] Whereas ringlike low-dipole moment clusters prevail in 

the pure liquids, chainlike arrangements were adopted in the mixtures. This evolution of 

supramolecular structures with the composition, which was associated to non-ideal mixing effects, 

has been illustrated by the presence of a prepeak in the static structure factor. The relation between 

supramolecular H-bonded clusters and the prepeak in the static structure factor has been 



16 

 

established for many other different H-bonded liquids, including alcohols and amines.[37-40] 

Since it results from the balance between H-bond interactions and geometric constraints due to 

steric effects, it is often observed for H-bonding molecules comprising a globular group such as 

phenyl (e.g. m-toluidine and m-cresol). The structural similarity of such molecules with menthol 

and thymol is obvious and it is worth noting that a prepeak in the static structure factor has been 

actually observed for the equimolar menthol-thymol DES mixture.[24]    

 

  3.2 Dielectric spectroscopy – Dynamics of glassforming DES mixtures 

 

FIG. 5. The temperature dependence of (a) the real part and (b) the imaginary part of the complex 

dielectric function measured for the equimolar thymol-menthol mixture as a function of the 

frequency. For clarity, a limited number of temperatures were selected, varying by steps of 6 K in 

the range T = 220 – 292 K. Fitted functions (solid lines) are undistinguishable from the 

experimental data (circles). The two dipolar relaxations modeled by Havriliak–Negami functions, 
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peak I (red solid line) and peak II (black dashed line) are illustrated in panel (b) for the temperature 

232 K.  

 

We now discuss the dynamics of the DES for glassforming compositions xThymol = 0.4-0.7.  The 

complex dielectric function was analyzed quantitatively at each temperature that was actually 

corresponding to a liquid phase by fitting a model including a Havriliak and Negami functions 

(HN-model),[41] and a dc-conductivity term according to eq. 2  

    𝜀∗(𝜔) = 𝜀∞ +
∆𝜀

(1+(𝑖𝜔𝜏𝐻𝑁)𝛼𝐻𝑁 )𝛽𝐻𝑁
− 𝑖

𝜎

𝜔𝜀0
   (2) 

where 𝜔 = 2𝜋𝑓, 𝜀∞ is the sample permittivity in the limit of high frequency, ∆𝜀 and  are 

respectively the dielectric strength and the HN-relaxation time of the mode. The spectra are 

illustrated in Fig. 5 for the equimolar composition and for a selection of temperatures. The spectra 

corresponding to all the measured samples are provided in Figs. S3a-v.  stands for the dc-

conductivity of the sample and 𝜀0 the permittivity of vacuum. According to the formalism of the 

HN-model, the exponents  and  (0 < 𝛼𝐻𝑁 ; 𝛼𝐻𝑁𝛽𝐻𝑁 ≤ 1) are fractional parameters 

describing, respectively, the symmetric and asymmetric broadening of the complex dielectric 

function with respect to the Debye one. [42] Their values varied only a little with temperature and 

composition, with 0.54 < 𝛼𝐻𝑁 < 0.6 and 𝛽𝐻𝑁 > 0.94, which is close to the Cole-Davidson 

equation.  

For some temperatures, a small additional contribution which was generally overwhelmed by 

the main relaxation (peak I), appeared in the high frequency limit of the instrument. When needed, 

it was accounted for by an additional HN-model (peak II). The different contributions of the fitted 
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model are illustrated in Fig. 5b at a single temperature. The overall model (solid lines in Figs. 5) 

provided an excellent fit to the data and was undistinguishable from the experimental points 

(circles). Due to the very small intensity of peak II (more than 2 magnitudes less intense than peak 

I) and its location at frequency above the spectral limit of the measurement, no reliable parameters 

could be obtained out of it.    

The relaxation time associated to the maximum in the lost part of the complex dielectric 

function frequency was computed according to [43] 

    𝜏 =  𝜏𝐻𝑁 sin (
𝜋𝛼𝐻𝑁

2+2𝛽𝐻𝑁
)

−1
𝛼𝐻𝑁⁄

 sin (
𝜋𝛼𝐻𝑁𝛽𝐻𝑁

2+2𝛽𝐻𝑁
)

1
𝛼𝐻𝑁⁄

    (3) 

The Arrhenius plots of the relaxation time presented in Fig. 6 exhibit large deviations from an 

Arrhenius behavior. The increase of the apparent activation energy on approaching the glass 

transition is a salient feature of supercooled liquids, and it has been also observed for hydrophilic 

DESs based on choline chloride and their aqueous mixtures.[14, 28, 29] The classical Vogel–

Fulcher–Tammann (VFT) law (Eq. 4) was fitted to the dipolar relaxation time,  

 

    𝜏 = 𝜏0𝑒𝑥𝑝 (
𝐷𝑇0

𝑇−𝑇0
)     (4) 

where the pre-exponential factor 0 is a characteristic microscopic time, D and T0 are the 

strength parameter and the Vogel-Fulcher-Tammann temperature. The VFT fits (solid line in Fig. 

6) were used to extrapolate the relaxation time, and they provided a complementary estimation of 

the glass transition defined by Tg(102 s). A very good agreement was obtained with the 

calorimetric glass transition temperatures that are indicated by downward triangles in Fig. 6. Direct 
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comparisons between the values of Tg evaluated by DSC and by DS are also provided in Fig.1 and 

Fig. 2b.  

From Fig. 6, a systematic acceleration of the dipolar relaxation on increasing the mole fraction 

of thymol is observed. This is consistent with the decrease of Tg shown in Fig. 2b. This acceleration 

effect also depends on the temperature range and it is enhanced at low temperature. For instance, 

the relaxation times of the two extreme compositions (xThymol = 0.4, and 0.7) differ by a factor 2 at 

room temperature, but they differ by more than a factor 5 on approaching the glass transition. This 

observation can be paralleled with the predominance of H-bond interactions and non-ideal effects 

on cooling evidenced by Schaeffer et al. [24]. The temperature dependence of the dynamics of the 

different DES mixtures can be quantified by the strength parameter D. The smaller the value of D, 

the greater the deviation from Arrhenius behavior. It is also commonly rewritten in terms of the 

fragility index m, that categorizes glass-forming liquids as fragile (with marked super-Arrhenian 

character) or strong systems (obeying the Arrhenius law).[44] We obtained values of the fragility 

index of menthol-thymol DES in the range m = 77 to m = 86. They are characteristic of fragile 

liquids. As a comparison, values in the range from m = 60 to m = 40 were reported for the neat 

ionic DES ethaline and for different hydration levels thereof, which were thus classified as 

intermediate liquids.[14, 29] As illustrated in Fig. 6a, the fragility index m exhibits a systematic 

increase when increasing the fraction of thymol. A different conclusion was derived for water-

ethaline systems: indeed, while adding water also led to an acceleration of the dynamics, like for 

thymol in menthol-thymol DES, it had the opposite effect on the fragility.[14] This highlights the 

complexity of the physico-chemical properties of DESs, which result from a delicate balance of 

different intermolecular interactions.  
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FIG. 6. Arrhenius representation of the temperature dependence of the relaxation time of 

glassforming thymol-menthol binary liquids for thymol molar fraction xThymol = 0.4 (green circles), 

0.5 (orange squares), 0.6 (blue diamonds), and 0.7 (red triangles). Solid lines are fits with a VTF 

law. The glass transition temperatures measured by DSC are added at the corresponding relaxation 

time Tg) = 102 s (downward triangles). Inset (a): the fragility index m determined from the VTF 
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fits of the relaxation times. Inset (b): the Kohlrausch stretching exponent  determined from the 

fits of the dielectric relaxation functions. Dashed lines are linear regressions. 

 Another point of interest concerns the deviation of the dipolar relaxation function from a pure 

Debye process. It implies that, in the time domain, the relaxation function exhibits a non-

exponential character that is commonly represented by a stretched exponential function denoted 

as the Kohlrausch-William-Watts equation. The stretching exponents  were deduced from the 

HN parameters obtained in the frequency domain, applying the numerical ansatz = (𝛼𝐻𝑁𝛽𝐻𝑁)
1

1.23 

. [45]  They are significantly smaller than one, as illustrated in Fig. 6b, taking values in the range 

0.6 - 0.64, which are typical for the main structural relaxation of fragile glassforming liquids. This 

confirms that the observed dipolar process actually corresponds to the main liquid relaxation, as 

already supported by the agreement between Tg’s deduced by DSC and DS, and it rules out its 

hypothetical attribution to the Debye-like mode often observed for monohydroxy alcohols.[46-48]  

A tendency of modest decrease of 𝛽 with increasing xThymol is also perceived in Fig. 6b. This 

compositional dependence of 𝛽 can be correlated to the increase in the fragility index m, thus 

following the relationship between fragility and non-exponentiality that has been established for 

numerous glass-forming systems.[44] This indicates that, in this range of compositions, the dipolar 

relaxation of the DES is increasingly associated to the presence of dynamic heterogeneities.[49] It 

should be emphasized however that dynamic heterogeneities are salient features of deeply 

supercooled systems, and as such they are also often observed for pure liquids. [49] Therefore, 

they cannot be taken as direct evidence for the hypothesized tendency of DES to actually phase 

separate on a mesoscopic or larger scale. 
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FIG. 7. Dependence of the dc-conductivities  on the reorientational relaxation times  of 

glassforming thymol-menthol binary liquids for thymol molar fraction x = 0.4 (green circles), 0.5 

(orange squares), 0.6 (blue diamonds), and 0.7 (red triangles). The dashed lines are fits with power 

law 𝜎 ∝  𝜏−η while the solid line with slope -1 indicates inverse proportionality 𝜎 ∝  𝜏−1. Inset: 

the dependence of the exponent  on the composition of the thymol-menthol binary liquids. 

Dashed line is a linear regression. 
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A classical indirect indication of spatial dynamic heterogeneities is the decoupling between 

translational and rotational molecular diffusion.[49] This phenomenon stems from the fact that, in 

a heterogeneous system, the experimental evaluation of the rotation and the translation are 

averaged differently over the heterogeneity. This leads to an apparent violation of the Stokes-

Einstein and Stokes-Einstein-Debye relationships that relate both dynamics to viscosity at the 

hydrodynamic limit. This hypothesis is questioned in Fig. 7 where the reorientational relaxation 

times  is represented as a function of the dc-conductivities . A deviation from inverse 

proportionality 𝜎 ∝  𝜏−1 is observed. It was quantified by fitting a power law 𝜎 ∝  𝜏−η (dashed 

line in Fig. 7). The obtained values of the exponent  illustrated in inset of Fig. 7 gradually 

increases on increasing xThymol. Again, this points to the development of spatial dynamic 

heterogeneities in the glassforming menthol-thymol DES in this range of compositions. For 

comparison, in the case of the prototypical ionic DES ethaline, no translation-rotation decoupling 

was observed, even for moderately hydrated systems, until such large level of water content led to 

a truly biphasic system.[14]  

   

Conclusions 
 

Type V DESs have been very recently introduced as a novel class of DES. Due to their nonionic 

character, their hydrophobic nature and their biocompatibility, they currently constitute one of the 

most exciting sources of inspiration for the development of new applications of DESs. However, 

the field is still in its infancy and fundamental knowledge of this new family of solvents remains 
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incomplete. Even for the prototypical case of menthol-thymol, the comprehensive studies of its 

thermodynamic behavior and H-bonds structure lack equivalent investigations of its dynamics. 

Combining DSC and DS, the present study provides an extended description of the dynamics of 

menthol-thymol mixtures for eleven different compositions including the two pure constituents, 

and for a timescale spanning from 10-6 s to 102 s.  Several measured properties indicate a possible 

link between non-ideality, as induced by the preferential H-bond interactions between unlike 

molecules, and important features of the molecular dynamics.  

The quadratic compositional dependence of the dielectric strength with a maximum centered at 

about the equimolar DES definitely supports that the equilibrium between different populations of 

supramolecular H-bonded clusters is displaced towards more linear and less cyclic structures by 

thymol-menthol interactions. These preferential interactions are also highlighted by a resulting 

positive deviation of the glass transition, as determined by DSC and DS, with respect to predictions 

based on the ideal mixing approximation. 

The dipolar relaxation dynamics could be studied for a limited range of compositions, where the 

DESs exhibit excellent glassforming tendency xThymol = 0.4-0.7. They exhibit all the salient features 

of glassforming systems, and they can be classified as fragile liquids. The non-Arrhenius 

temperature dependence of the relaxation time quantified by the index of fragility m, the non-

Debye character of the dipolar relaxation function quantified by the Kohlraush exponent , and 

the translation-rotation decoupling all indicate the existence of spatial dynamic heterogeneities. In 

this limited range of compositions, their impact on the dynamics presents a systematic, though 

modest, increase with increasing of xThymol.   
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These conclusions emerge from an unprecedented extensive investigation of the dynamics of a 

type V DES, and their relationship with H-bonds and non-ideality. However, from the present 

study of the single prototypical menthol-thymol system, we cannot make a definite distinction 

between universal and specific features of type V DESs. Surely, the search for general conclusions 

about the behavior of this promising new class of DES will inspire further work in the near future. 
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Fig. S1. Thermograms of menthol-thymol mixtures for different values of the molar fraction of 
thymol going from pure thymol (upper panel) to pure menthol (lower panel). Lower curves 
(blue) correspond to cooling branches, and upper curves (red) correspond to heating branches. 
Scanning rates are 5 K.min-1, except for xThymol = 1, 0.9, 0.1, and 0 (panels a, b, j, and k), where 
fast cooling rates of 200 K.min-1 are applied.     
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Fig. S2. Isochronal representation of the complex dielectric function of menthol-thymol 
mixtures for different values of the molar fraction of thymol going from pure thymol (upper 
panels) to pure menthol (lower panels). Real part (left panels) and loss part (rights panels) of 
the complex dielectric function are presented for a selection of frequencies going from 10 Hz 
to 1 MHz (cf. arrow in panel (b)). Both cooling and heating branches are presented on each 
panel.  
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Fig. S3. Spectra of the complex dielectric function of menthol-thymol mixtures for different 
values of the molar fraction of thymol going from pure thymol (upper panels) to pure menthol 
(lower panels). Real part (left panels) and loss part (rights panels) of the complex dielectric 
function are presented for a selection of temperatures over a restricted range (indicated in right 
panels) corresponding to the liquid phase. A spectrum illustrating the onset of crystallization is 
also presented for non-glassforming compositions.  
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