Sensor location by joint entropy maximization

Rui S. Shibasaki 1,2 , Olivier Péton 1,2 , François Queyroi 2,3 , Maria I. Restrepo 1,2

¹IMT Atlantique, Nantes, France

²LS2N (UMR CNRS 6004), Nantes, France

³CNRS

EURO, Espoo, July 2022

Table of Contents

Context

- Sensor Location Problem
- Case Study: Nantes

Context - FLOTES Project

Main goal - Decision Support Tool (DST)

Macro estimation of the freight transportation flow after a modification of the street network

- Note: only specific types of vehicles are accounted for flow measurement
- Users: public authorities

Cities are subject to frequent changes

- New pedestrian areas,
- Blocked areas, limited traffic zones
- New logistic facilities

General approach

- Mathematical models for estimations
- Verify/correct estimations using real data collected by sensors

Freight transportation flow estimation

Freight transportation flow estimation

Input Data

- Graph (city's street network)
- Client and depot points
- Clients' demands and their assignments (depot)
- Demand quantities are uncertain.

Algorithm 1: Main algorithm

- 1 Define demand scenarios
- 2 while stopping criteria not reached do
- 3 Simulate the flow in the different scenarios (Traffic Map)
- 4 Determine best-fit scenarios according to real data
- 5 Discard unreal scenarios and derive others
- 6 Network modification: apply changes to the graph.
- 7 Define an average traffic map considering remaining scenarios

Scenarios & Simulation

Scenarios

- Demands are grouped by type
- Quantity of each demand type i in scenario k: $X_{ki} \sim N(\mu_{ki}, \sigma_{ki})$

Freight transportation flow simulation

- Several Vehicle Routing Problem (VRP) instances.
- Demand quantities randomly generated according to the scenarios
- Solved by Large Neighborhood Search Metaheuristic.
- Flow: number of tours routed on an arc.

Best-fit scenarios according to real data

- From simulations, we have flow data for each scenario. Which ones would best represent reality?

Sensor locations

- Place sensors.
- Use the simulation data on the sensor locations to train a Machine Learning algorithm (Decision Trees).
- Use the real data captured by the sensors in their locations to predict (in probabilities) the scenario of the real flow.

Decision Trees

- s: simulation, k: scenario
- 9 simulations \times 3 scenarios
- 27 lines

node 0	node 1	node 2			
$F_{sk}(0)$	$F_{sk}(1)$	$F_{sk}(2)$	scenario		
10	0	5	1		
20	5	10	1		
15	13	20	1		
20	25	23	2		
30	25	26	2		
25	30	31	2		
100	25	50	3		
200	50	41	3		
150	45	47	3		

Define a schematic way of reasoning for prediction, based on training data.

Decision Trees - Predict probabilities

Flow measured by sensors:

node 0	node 1	node 2
$\bar{F}_{sk}(0)$	$\bar{F}_{sk}(1)$	$\bar{F}_{sk}(2)$
56	10	50

- Prediction:

scenario 1: 0% (0/5)

scenario 2: 60% (3/5)

scenario 3: 40% (2/5)

Sensor location

Two approaches

Sensor Location by Maximum Entropy Sampling (future research) Sensor Location by Feature Selection

- Feature Selection X Maximum Entropy Sampling

Maximum Entropy Sampling

- The flow data on selected nodes tend to provide equal probabilities among scenarios
- A second problem: given the real flow, how to build a demand scenario to be tested?

Feature Selection

- The flow data on selected nodes tend to better distinguish scenarios

Sensor Location by Feature Selection

- Provide the entire simulation data to train the Decision Tree.
- The selection of nodes will be naturally done by feature selection.
- Place sensors on nodes used in branching.

node 0		node 100		
$F_{sk}(0)$		$F_{sk}(100)$		scenario
10		5		1
20		10		1
15		20		1
20		23		2
30		26		2
25		31		2
100		50		3
200		41		3
150		47		3
_		_		_
		:		

Limited number of sensors - Regularized Decision Trees

- The Decision Tree cannot select more than c features (nodes)

Case Study: Nantes

Graph

- OpenStreetMap
- OSMnx ¹

Depot/clients locations

- List of adresses OpenData: https://data.nantesmetropole.fr/
- Relate it to the graph nodes

Demands

- Random client-depot assignment.
- The types of demands of each client were randomly chosen
- The depot serving the demand was also randomly chosen

¹Boeing, G. 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks." Computers, Environment and Urban Systems. 65, 126-139.

Locations of 444 clients and 25 depots

First iteration

Second iteration

Final flow

Pedestrian Zone

Pedestrian Zone

Computational experiments

4 types of demands 10 scenarios x 10 simulations per scenario 5 runs per instance

Instance	Real	Avg Dev	Max Dev	Max JSDiv	Iters	Sensors
CF_1	No	0.37	3.3	0.0	2	6
CF_2	No	0.37	3.5	0.1	2	6
CF_3	No	0.38	3.5	0.0	3	6
CF _− 1	Yes	0.32	2.9	0.0	3	7
CF_2	Yes	0.36	3.0	0.0	2	6
CF_3	Yes	0.34	3.0	0.0	3	7
F_1	No	2.16	18.6	175.8	1	3
F_2	No	1.32	10.5	95.0	1	3
F_3	No	2.83	22.9	63.3	2	4
F_1	Yes	0.32	2.9	0.0	2	5
F_2	Yes	0.34	3.0	0.0	1	3
F_3	Yes	0.31	2.7	0.0	1	3

Dev: $|F(a) - \bar{F}(a)|/\max_{a \in A} {\bar{F}(a)}$ JSDiv: Jensen-Shannon Divergence

Computational experiments

12 types of demands

10 scenarios x 10 simulations per scenario

5 runs per instance

Instance	Real	Avg Dev	Max Dev	Max JSDiv	Iters	Sensors
CF ₋ 1	No	0.54	5.9	0.1	4	10
CF_2	No	0.53	4.9	0.1	4	11
CF_3	No	0.55	4.7	0.1	3	9
CF ₋ 1	Yes	0.52	5.5	0.0	4	12
CF_2	Yes	0.54	5.2	0.1	3	8
CF_3	Yes	0.53	4.7	0.1	5	13
F_1	No	0.80	6.2	50.0	2	5
F_2	No	1.65	12.2	50.0	2	5
F_3	No	2.98	21.5	105.4	3	9
F_1	Yes	0.59	5.5	4.1	3	8
F_2	Yes	0.53	4.4	0.0	1	3
F_3	Yes	0.51	4.7	0.0	1	3

Dev: $|F(a) - \bar{F}(a)|/\max_{a \in A} {\bar{F}(a)}$ JSDiv: Jensen-Shannon Divergence

Conclusion

Macro information about freight transportation flow

- Where the vehicles pass the most
- How the flow reacts to modifications in the network

Some assumptions have been made

- An idea of what is the real demand scenario is considered to exist
- Locations and assignments of clients/depots are well determined

Future research

- How to determine scenarios given some real flow data
- How to generalize the model: uncertain assignments client-depot

