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Abstract

The present work deals with ice particle fragmentation resulting from impact

on a solid wall. First, a semi-empirical model to predict the size of the largest

reemited fragment is presented. It is based on the energy-horizon theory of

fragmentation developed by Grady (J. Mech. Phys. Sol., 36(3),353-384,

1988 ) in combination with a strain rate scaling based on the indentation

radius formed upon impact. Model predictions are in good agreement with

experimental data from six different sources.

In addition, an empirical fit to the ice fragment volume distribution is

sought. Different candidate fits, namely power law, Weibull and lognor-

mal are proposed and evaluated both qualitatively and quantitatively. The

fragment volume distributions appear to exhibit different trends for impact

conditions representative of ice crystals and hailstones. For this reason, a less
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accurate yet more robust power law fit is proposed to model the available

fragment volume distribution data.

Keywords: ice crystal icing, impact, fragmentation, energy-horizon theory,

maximum fragment diameter, fragment volume distribution

1. Introduction1

Ice crystal icing of civil aircrafts generally occurs in the vicinity of deep2

convective clouds at cruise altitudes [1]. Ice crystals, whose diameters range3

between 5µm and 2mm approximately, may adhere to the surfaces they im-4

pinge on when the latter are heated or when the crystals themselves are par-5

tially melted [2]. Thus, ice crystal icing necessarily occurs within the engine,6

where significant fragmentation occurs as impact velocities are comprised7

between 50m s−1 to 250m s−1 approximately. The associated size reduction8

enhances melting, enabling the sticking of ice fragments on engine walls and9

favoring ice accretion. The latter may cause aerodynamic blockage, mechan-10

ical damage due to ice block detachment or even flameout. For this reason,11

ice crystal icing still represents a serious threat to aviation safety [3, 4, 5] and12

the characterization of reemited fragment properties is a necessary ingredient13

to improve the predictive capabilities of numerical icing tools [6, 7].14

Several experiments reproducing impact conditions representative of ice15

crystal icing were recently conducted. Hauk et al. [8] characterized the im-16

pacts of both spherical and nonspherical ice particles within a large size17

(30 µm - 3.5mm) and a moderate normal impact velocity range (5 - 70m s−1).18

Considering the portions of the crystal volumes shattered into fragments as19

well as the distinct disintegration patterns in their experiments, Hauk et20
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al. [8] proposed to classify fragmentation into minor, major and catastrophic21

regimes.22

Vargas et al. [9] carried out spherical ice particle impacts on a flat glass23

plate. The authors characterized ice particle diameters and velocities before24

impact. In addition, they placed a high resolution camera under the glass25

plate to capture the fragment contours and reported that the resulting frag-26

ment number distributions could be well approximated by lognormal laws.27

Experiments dedicated to the characterization of hailstone fragmenta-28

tion [10, 11] consider normal impact velocities up to 200m s−1 and ice parti-29

cle diameters ranging from 5 to 27.5mm. In order to determine the validity30

limits of the models proposed in the current work, measurements from hail-31

stone impact experiments are added to the validation database. Pan and32

Render [10] examined the fragmentation of hailstone sized ice particles on a33

flat plate. Among others, they derived empirical correlations to determine34

the fragments’ maximum diameter and proposed to model the reemited frag-35

ment volume distribution with a Weibull law. Guégan et al. [11] performed36

impact experiments of hailstone sized ice particles on a glass plate. They37

found the ratio of the average radial fragment velocity to the normal impact38

velocity to be approximately constant. From the same experiments, Guégan39

et al. [11] also provided unpublished size distribution data to the authors [12],40

which will be used for validation purposes.41

Tippman et al. [13] performed detailed numerical simulations of the im-42

pact of a hailstone sized ice particle on a rigid surface to reproduce their43

own experimental measurements for the force history resulting from such44

impact. They propose to distinguish between two main impact phases:45
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elastic-dominated structural response followed by cracking/ fragmentation.46

Performing numerical simulations of the impact of brittle spheres using the47

Discrete Element Method (DEM), Carmona et al. [14] reported that cracks48

formed within the particle in the region above a compressive cone delimited49

by the indentation radius formed upon impact. They also found the largest50

radial and circumferential stresses to occur in a ring shaped area delimiting51

the outer contact zone between particle and substrate, leading to the prop-52

agation of meridional cracks. Hauk et al. [8] also conclude that meridional53

cracks drive major and catastrophic fragmentation, while they assume lateral54

crack formation to dominate at lower impact velocities.55

Despite the numerous insights gained from these research efforts, current56

models predicting the properties of the reemited fragments remain essentially57

empirical. Villedieu et al. [15] proposed an empirical model yielding size and58

velocity properties of the reemited fragments based on regression fits to var-59

ious experimental data. Guégan et al. [11] provide correlations for the radial60

and normal velocities of the reemited fragments while Pan and Render [10]61

propose a Weibull fit for the reemited fragment volume distribution. On62

the contrary, Weiss [16] reports that ice fragment size distributions follow63

power-laws.64

The present work aims at deriving a model for the size of the largest65

reemited fragment based on a simple energy principle. First, a semi-empirical66

model relying on the energy-horizon theory of fragmentation [17, 18] is used67

to predict the maximum fragment size. The current model is closed via68

a strain rate scaling from the literature [19, 20] based on the indentation69

radius formed upon impact. The consistency of the model predictions is70
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demonstrated by comparison with a large experimental database. Then, the71

available fragment volume distribution data is examined. Different fits to the72

fragment volume distribution are proposed, namely power, lognormal and73

Weibull law. These fits are compared both qualitatively and quantitatively.74

The main findings and outlooks are summarized in the conclusion.75

2. Maximum fragment size modeling76

2.1. Energy based fragmentation model77

The main assumptions governing the choice of the current model, which78

will be further justified below, were those of a dynamic and brittle frag-79

mentation process. Furthermore, a simple and tractable model suitable for80

application purposes, hence based on a limited set of global impact parame-81

ters, was sought. In particular, the current model for the maximum reemited82

fragment size relies on an energy conservation principle between the initial83

and end states of fragmentation [17, 18]. It states that the energy con-84

tributions fuelling fragmentation, namely elastic and kinetic energies, must85

exceed the energy required to create new fracture surface at the local scale.86

The modeling framework is completed using two additional hypotheses:87

• first, a correlation distance set by the product of the crack propagation88

speed, taken as the speed of sound, and the characteristic time scale89

of fragmentation is defined. This correlation distance sets the upper90

bound on the fragment size.91

• second, a uniform dilatational expansion within the body under con-92

sideration is assumed93
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The resulting equation system then writes:94

s ≤ 2ct (1)

1

2

P 2
s

ρc2
+

1

120
ρε̇2s2 ≥ 6Gc

s
(2)

Ps = ρc2ε̇t (3)

In eq. 1, s denotes the characteristic correlation distance/ fragment size, t

the time variable, while the crack propagation velocity is given by the speed

of sound c. The latter is evaluated as:

c =

√
E

ρ
(4)

with E = 10.5 × 109 Pa the Young modulus and ρ = 917 kgm−3 the mate-95

rial density of ice1, which may both be assumed constant [21]. The resulting96

crack propagation speed appears to exceed the value reported by Tippman et97

al. [13], i.e. approximately 2000m s−1, by almost 70% and should thus rather98

be considered as providing the correct order of magnitude. Equation 2 rep-99

resents the energy balance between the contributions fuelling fragmentation,100

namely the elastic and kinetic energies on the left-hand side, which must101

exceed the energy required to create new fracture surface on the right-hand102

side. In eq. 2, Ps denotes the tensile pressure, ε̇ the strain rate and Gc103

the energy per unit area required to create new fracture surface. While the104

latter is assumed constant in the standard formulation of the model, with105

Gc = Gc,0 = 0.12 Jm−2 [22], a relation allowing to account for its temper-106

ature dependency is provided in Appendix A. Finally, eq. 3 describes the107

time history of tensile pressure leading to failure.108

1all physical parameters/ constants are written in SI units
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Writing eqs. 1 and 2 as equalities, the characteristic fragment size follows

a power law on the strain rate when combining eqs. 1-3:

s = Kε̇α (5)

with K = (45Gc/ρ)
1/3 and α = −2/3, a result characteristic of highly dy-109

namic fragmentation [23]. In addition, the lower bound α = −1 may be110

derived for quasi-static loadings [18].111

Following Glenn and Chudnovsky [23], two normalization parameters are112

defined for the fragment size and the strain rate:113

s0 = 12EGc P
−2
s,0 (6)

ε̇0 =
1

6
P 3
s,0 c

−3 ρ−2G−1
c (7)

with the constant reference tensile pressure set to Ps,0 = 1 × 106 Pa. Using

these expressions, eq. 5 may be rewritten in the following dimensionless form:

s

s0
= Cf

(
ε̇

ε̇0

)α

(8)

where Cf is a dimensionless parameter to be adjusted to available experi-114

mental data. The characteristic strain rate required for closure is presented115

in the following.116

2.2. Strain rate estimate117

A sketch of the envisioned fragmentation mechanism is shown in fig. 1.118

It is assumed that the early instants of impact are characterized by a rigid119

body motion of the particle while the latter is plastically deformed/ crushed120

in the contact area with the solid surface (top view of fig. 1). The assumption121
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of plastic deformation within the contact area is in line with the constitutive122

laws used to model the mechanical behavior of ice [24] and numerical sim-123

ulations of ice particle impact [13, 25]. Furthermore, it is assumed that the124

strong compressive deformation of the crystal remains restricted to the imme-125

diate vicinity of the contact area with the solid wall, whereas the remaining126

part of the crystal is subject to significant strain, eventually leading to its127

fragmentation via crack propagation (bottom view of fig. 1). This assump-128

tion is consistent with the respective impact and crack propagation speeds,129

the latter corresponding to the speed of sound and thus being an order of130

magnitude larger than the former. It also seems in line with the numerical131

simulations of brittle sphere impacts reported by Carmona et al. [14] as they132

observe crack initiation due to increasing tensile radial and circumferential133

stresses in a ring shaped region above the strongly compressive contact area.134

Contrary to compression, the tensile failure of ice shows brittle behavior and135

a negligible influence of strain rate [21], in agreement with the interpretation136

of the fragmentation process outlined in section 2.1.137

Following Hutchings [19], the characteristic strain driving fragmentation

is assumed to scale as the ratio of the indentation radius a to the initial

particle diameter D0:

ε ∼ a

D0

(9)

Assuming plastic deformation in the contact area, Roisman and Tro-

pea [20] found the indentation radius a to scale as:

a ∼ U
1/2
n,0 D0 ρ

1/4 Y −1/4
c (10)

with Un,0 being the normal impact velocity and Yc the compressive yield

strength of ice. Hutchings [19] obtained the same result as in eq. 10 but used
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Figure 1: Sketch of the envisioned two main fragmentation steps. Above: early instants

of impact, where the area of contact between the crystal and the surface is plastically

deformed /crushed. Below: the tensile strain level within the crystal is determined by the

indentation radius, leading to crack formation, propagation and eventually fragmentation.

a quasi-static indentation hardness to characterize the material’s compressive

resistance. The strain scaling in eq. 9 is then divided by the time necessary

to form the indentation [20]:

ti ∼ D0 ρ
1/2 Y −1/2

c (11)

Combining eqs. 9-11 finally yields:

ε̇ ∼ U
1/2
n,0 D−1

0 ρ−1/4 Y 1/4
c (12)

In the standard formulation, a constant quasi-static value is used for the138

compressive yield strength, Yc = Yc,0 = 5.2 × 106 Pa. Relations allowing to139

account for the strain rate and temperature dependency of this parameter140

are provided in Appendix A.141
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2.3. Validation142

The model predicting the size of the largest fragment given by eq. 8143

in conjunction with eq. 12 is evaluated using a large experimental dataset144

compiling data of Karpen et al. [26], Reitter et al. [27], Hauk et al. [8], Vargas145

et al. [9], Pan and Render [10] and previously unpublished data of Guégan146

et al. [12]. For the experiments of Hauk et al. [8] and Karpen et al. [28],147

data characterizing impacts without fragmentation were discarded. Also,148

size measurement data is only available for a subset of the fragment velocity149

data published by Guégan et al. [11]. Finally, the raw experimental data150

was not accessible for the experiments of Pan and Render [10] and was hence151

retrieved by digitizing the curves from their article.152

The resulting ranges for the normal impact velocities, initial diameters

and initial particle temperatures of each experiment are summarized in ta-

ble 1. In addition, the ranges spanned by two nondimensional numbers com-

monly used to characterize ice particle fragmentation thresholds in the liter-

ature are also provided. The nondimensional parameter ξ was introduced by

Hauk et al. [8] to estimate the probability of fragmentation:

ξ =
Un,0D

2/3
0

β
(13)

with β = 0.14m5/3 s−1. The probability of fragmentation approaches zero

for ξ → 0 while the probability of catastrophic fragmentation tends to one

for ξ > 1.1 [8]. Vidaurre and Hallet [22] define a nondimensional impact

parameter relating the kinetic energy upon impact to the surface energy:

L =
1

12

ρU2
n,0D0

Gc

(14)
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Variable Un,0 D0 T0 ξ L × 103

Units (m s−1) (mm) (K) (-) (-)

Karpen et al. [26] [5-75] [0.02-0.45] 255 [0.3-2.2] [0.06-0.8]

Reitter et al. [27] [7-74] [1.3-4.5] [258-263] [0.9-9.3] [0.07-6.0]

Hauk et al. [8] [15-70] [0.08-3] 248 [0.5-3.5] [0.08-2.9]

Vargas et al. [9] [22-65] [2.3-2.6] 266 [2.8-8.7] [2.3-21.4]

Pan and Render [10] [60-150] [12.7-19] 233 [23.3-76.3] [48.9-457]

Guégan et al. [12] [40-203] 6.2 255 [9.7-31.6] [7.7-124.1]

Table 1: Main impact parameter ranges of the experimental data used for validation. For

different reasons exposed in the present section, the data used for validation consists of a

subset of the original data for the experiments of Karpen et al. [26], Hauk et al. [8] and

Guégan et al. [12] (previously unpublished data for the latter).

The threshold for major/ catastrophic fragmentation is generally set to L2 =153

90 [15]. Considering the orders of magnitude of ξ and L in table 1, all154

impact experiments performed by Vargas et al. [9], Pan and Render [10]155

and Guégan et al. [12] lie well within the catastrophic fragmentation regime.156

On the contrary, impact outcome classifications performed by Karpen et157

al. [28] and Hauk et al. [8] confirm that their experiments also comprise158

minor and major fragmentation impacts. Thus, the present experimental159

data covers all fragmentation regimes according to the classification of Hauk160

et al. [8].161

First, the correlation of the maximum fragment diameter with the pro-162

posed strain rate estimate is examined. For this purpose, the scaling in eq. 12163

is interpreted as an equality with a unitary constant. In order to validate the164

assumption that the maximum fragment diameter and strain rate are linked165

by a power law relation, the data is plotted on a log-log scale. Because they166
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Figure 2: Experimental normalized maximum fragment diameter over the normalized

strain rate for the experimental data of Karpen et al. [26], Reitter et al. [27], Hauk et

al. [8], Guégan et al. [12] (previously unpublished data) and Pan and Render [10] on a

log-log scale. For the experimental dataset of Karpen et al. [26], the impact data was split

into initially spherical (”sph.”) and non-spherical (”non sph.”). The regression curve to

the entire dataset (ln (Dmax/s0) ≈ −0.896 ln (ε̇/ε̇0)+3.175) is displayed as a black dashed

line.
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contain significantly more datapoints, only one out of respectively six and167

ten datapoints is plotted for the experiments of Reitter et al. [27] and Karpen168

et al. [26]. The result is displayed in fig. 2 and illustrates an excellent cor-169

relation as all experimental datapoints approximately collapse on the linear170

regression curve. From a regression to the entire experimental dataset, the171

exponent α and the multiplicative constant Cf of the semi-empirical model172

are obtained as:173

α ≈ −0.896 (15)

Cf ≈ 23.936 (16)

Note that these model parameters are obtained assuming both the fracture174

surface energy per unit volume and the compressive yield strength to be con-175

stant, respectively Gc = Gc,0 = 0.12 Jm−2 and Yc = Yc,0 = 5.2 × 106 Pa .176

Modeling the variations of Gc with temperature and of Yc with both temper-177

ature and strain rate, see Appendix A, yields:178

αv ≈ −0.885 (17)

Cf,v ≈ 42.824 (18)

Thus, variations of Gc and Yc mostly affect the value of the multiplicative

constant of the model, but not its exponent. Further analysis shows that the

temperature dependencies of these material properties have a negligible influ-

ence on the increase of Cf,v with respect to Cf . Thus, this significant raise is

mostly due to the nonlinear dependency of the compressive yield strength Yc

on the strain rate, see eqs. A.2 and A.3, as well as the choice of a quasi-static

reference value for the latter in the model formulation based on constant
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material properties. While the value for the exponent α lies within the ex-

pected bounds, i.e. −1 (quasi-static loading) and −2/3 (dynamic loading),

see section 2.1, it was expected to lie somewhat closer to the upper bound

characteristic of highly dynamic loadings. Despite this fact, the quantitative

agreement with the different experimental data appears very satisfactory,

as may be seen in table 2, which provides the average modeling errors for

each dataset. As for the plot in fig. 2, the experimental data of Karpen et

al. [26] was split into initially spherical and non spherical particles to assess

the influence of the initial shape on modeling accuracy. In order to further

assess the accuracy of the present model, average errors are also computed

for the models of Villedieu et al. [15] and Pan and Render [10]. The model of

Villedieu et al. [15] expresses the maximum fragment diameter as a power of

the Vidaurre number (eq. 14) to its threshold value for fragmentation with

a constant exponent:

Dv
max/D0 =

(
L2

L

)2/11

(19)

The model of Pan and Render [10] reads:

Dpr
max/D0 = 0.437− 0.922

(
Un,0

aL

)
(20)

with a nondimensionalization constant taken as the speed of sound in air at179

ambient temperature, i.e. aL = 340m s−1. Since eq. 20 is only meaningful180

for Un,0 < 161m s−1, it becomes invalid for the largest impact velocity ex-181

periments of Guégan et al. [12]. Finally, the average errors obtained with182

varying fracture surface energy and compressive yield strength are given in183

parenthesis. The values of the latter indicate that uncertainties on material184

properties do not significantly affect the precision of the present model.185
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The accuracy of the present model appears good for all datasets, the186

lowest average error amounting to 12.6 % (both Pan and Render [10] and187

Vargas et al. [9]) and the largest to 26.3 % for the nonspherical impact data188

of Karpen et al. [26]. Error levels between the present model and the model189

of Villedieu et al. are comparable for the datasets of Hauk et al. [8] and190

Guégan et al. [12]. On the contrary, the present model performs better than191

the model of Villedieu et al. [15] for the datasets of Karpen et al. [26], Vargas192

et al. [9] and Pan and Render [10], with error reductions ranging between193

5 and 11 %. As expected, the model of Pan and Render [10] performs best194

for their own experimental data and its error levels with respect to the other195

models remain similar for the data of Reitter et al. [27] and Guégan et al. [12].196

For the remaining data, the model of Pan and Render [10] displays much197

larger average error levels. For the current model, the average errors do not198

seem to correlate with the main impact parameters as it performs similarly199

well for ice crystal and hailstone sized particles. On the contrary, it displays200

a significant increase in error levels when considering impacts of nonspherical201

particles. Such behavior could be expected as impacts of irregular particles202

are more difficult to model due to contact area variations and associated203

rotation effects. A more visual illustration of the present model accuracy204

is provided in fig. 3, where the modeled maximum fragment diameters are205

directly compared to experimental data in a scatterplot. While the model206

appears accurate on average, significant errors may be noted for single impact207

events.208
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Figure 3: Experimental maximum fragment diameter normalized by the initial diameter

plotted over the current model values for the different experimental data. For the exper-

imental dataset of Karpen et al. [26], the impact data was split into initially spherical

(”sph.”) and non-spherical (”non sph.”) particles.
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Experiment Particle Current Villedieu Pan

shape model et al. [15] and Render [10]

avg. error [%] avg. error [%] avg. error [%]

Karpen et al. [26] sph. 17.1 (17.2) 28.2 44.7

Karpen et al. [26] non sph. 26.3 (26.4) 31.6 46.4

Reitter et al. [27] sph. 16.1 (16.1) 14.7 19.2

Hauk et al. [8] mixed 23.0 (23.0) 26.5 45.7

Vargas et al. [9] sph. 12.6 (12.8) 20.9 27.0

Pan and Render [10] sph. 12.6 (7.9) 21.3 7.8

Guégan et al. [12] sph. 23.6 (23.1) 24.1 24.2

Table 2: Average errors of the maximum fragment diameter obtained with the current

model (the numbers in parentheses correspond to the average errors obtained with varying

material parameters, see Appendix A), the model of Villedieu et al. [15] and the model of

Pan and Render [10], each compared with data from the different experimental datasets.
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3. Fragment size distribution209

Fracture in brittle solids is weakly dissipative and may thus proceed on210

successively finer scales to dissipate the excess energy [29]. If the fragmenta-211

tion process is further considered scale invariant, it may be described using212

fractal theory. Size distributions resulting from fractal fragmentation pro-213

cesses follow power laws [30], also known as Dinger-Funk distributions [31],214

and the latter were reported to accurately reproduce fragment size distribu-215

tions in many experiments [16, 32].216

Considering ice fragmentation more specifically, size distributions indicat-217

ing fractal behavior were reported for uniaxial compression creep, crushing218

and indentation experiments [16]. On the other hand, the numerical simula-219

tions of brittle sphere impacts of Carmona et al. [14] indicate that only the220

smaller fragments follows a power law distribution. Thus, the authors chose a221

Weibull law to model their numerical fragment mass distributions, as do Pan222

and Render [10] for their hailstone impact experiments. Finally, Vargas et223

al. [9] report that the fragment number distributions are well approximated224

by lognormal laws in their ice particle impact experiments, indicating that225

the fragmentation process could be interpreted as the production of large226

fragments successively and randomly split into smaller fragments [33]. From227

the above discussion, it appears that the best candidate fit to the present228

size distribution data is unknown a priori.229

Following a brief description of the available experimental size distribu-230

tion data, the method used to derive power, Weibull and lognormal fits to231

the latter is presented. The predictions of these fits are then compared qual-232

itatively and quantitatively.233
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3.1. Experimental data234

Within the present dataset, three experiments provide information on the235

fragment size distribution resulting from impact, namely Reitter et al. [27],236

Vargas et al. [9] and previously unpublished size fragment data [12] from the237

experiments of Guégan et al. [11]. Vargas et al. [9] and Guégan et al. [12]238

obtain their size distribution measurements via high resolution images of the239

fragments once they have come to rest on the impinged surface. Reitter240

et al. [27, 34] detect the contour of the reemited fragments in motion and241

track each fragment separately. The raw experimental data is not available242

for the experiments of Guégan et al. [12], but only the number and volume243

size distributions discretized over 80 bins. For the experiments of Reitter244

et al. [27] and Vargas et al. [9], the raw data consists of approximately 200245

and 2000 fragment size measurements per impact experiment. The impact246

parameter ranges are identical to those reported in table 1 in section 2.3.247

Hence, the data of Vargas et al. [9] and Guégan et al. [12] entirely lie in the248

catastrophic fragmentation regime. While the experimental data of Reitter249

et al. [27] also cover minor and major fragmentation, only a few data of250

their data points lie in the latter regimes, which is insufficient to warrant251

meaningful conclusions. Thus, the analysis presented in the following only252

applies to the catastrophic fragmentation regime.253

3.2. Candidate fitting distributions254

When considering ice accretion, impact dynamics are driven by particle255

inertia as larger particles are more likely to impinge on solid walls within the256

engine. Further assuming broad size distributions, smaller particles may be257

expected to carry a negligible amount of mass and thus not to significantly258
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contribute to the accretion process. For this reason, a fit to the fragment259

volume distribution is sought.260

The definitions of the fragment diameter moments in the literature are

generally based on the number distribution pn:

Dn
ij =

(∫∞
0

pn(D)DidD∫∞
0

pn(D)DjdD

) 1
i−j

(21)

with i and j integer numbers. As the focus lies on statistical quantities261

characteristic of the largest fragments, a fit accurately matching the Sauter262

mean diameterDn
32 and the mean volume diameterDn

43 is sought. In addition,263

the volume median diameterDv
50 separating 50% of the fragment volume from264

the 50% remaining, is used. Similarly, the Dv
10 and Dv

90 diameters are also265

employed.266

Power, Weibull and lognormal laws are examined as candidate fits to267

the present fragment volume distribution data in the following. They are268

respectively defined as:269

pp,v(D) =
γ + 1

Dγ+1
max −Dγ+1

min

Dγ (22)

pln,v(D) =
1√

2πDσln

exp

(
−(ln(D)− µln)

2

2σ2
ln

)
(23)

pwb,v(D) =
β

λ

(
D

λ

)β−1

exp

(
−
(
D

λ

)β
)

(24)

with γ, Dmin, Dmax respectively representing the exponent, lower and upper270

bound of the power law in eq. 22, where the upper bound Dmax is deduced271

from the model presented in section 2. In eq. 23, µln and σln denote the log-272

arithmic mean and variance of the lognormal law while λ and β respectively273

represent the scale and shape parameters of the Weibull law in eq. 24.274
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The power law, Weibull and lognormal laws have analytical expressions275

for their (volume based) moments:276

Dv
ij,p =

[
γ + j + 1

γ + i+ 1

(Dγ+i+1
max −Dγ+i+1

min )

(Dγ+j+1
max −Dγ+j+1

min )

] 1
i−j

(25)

Dv
ij,ln = exp(µln)

[
exp

(
σ2
ln

2
(i+ j)

)] 1
i−j

(26)

Dv
ij,wb = λ

[(
Γ(1 + i

k
)

Γ(1 + j
k
)

)] 1
i−j

(27)

Noting that volume and number distributions are linked as pv(D)dD ∼

pn(D)D3dD, their repective diameter moments may be related as:

Dv
i−3 j−3 = Dn

ij (28)

3.3. Parameter evaluation of the candidate fitting distributions277

The most accurate fits to the present fragment volume distribution data278

were obtained when using the current strain rate estimate to model the Sauter279

mean and mean volume diameters of the fragments first and then computing280

the associated distribution parameters. This is because no clear correlation281

of the parameters driving the shapes of the distributions, namely γ, σln and282

β, could be found with respect to the impact parameters. On the contrary,283

the Sauter mean and mean volume diameters of the fragments appear to284

correlate rather well with the current strain estimate (based on constant285

material properties), as may be seen from figs. 4 and 5.286

While the regression curves indicate a somewhat poorer correlation com-287

pared to the maximum diameter, reasonably accurate fits to these quantities288

may be proposed for the data of Reitter et al. [27] and Vargas et al. [9]. On289
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Figure 4: Left: regression curve (ln (Dn
32/s0) ≈ −0.872 ln (ε̇/ε̇0) + 2.237) displayed as

a dashed black line on a log-log scale of the Sauter mean diameter over the strain rate

estimate given by eq. 12. Right: Evolution of the Sauter mean diameter over the strain

rate estimate and proposed fit (dash-dotted black line).
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Figure 5: Left: regression curve (ln (Dn
43/s0) ≈ −0.912 ln (ε̇/ε̇0) + 2.831) displayed as a

dashed black line on a log-log scale of the volume mean diameter over the strain rate

estimate given by eq. 12. Right: Evolution of the volume mean diameter over the strain

rate estimate and proposed fit (dash-dotted black line).
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Experiments
Dn

32 average

fitting error [%]

Dn
43 average

fitting error [%]

Reitter et al. [27] 13.87 20.42

Vargas et al. [9] 14.89 14.54

Guégan et al. [12] 35.09 48.17

Table 3: Average errors on the Sauter mean diameter D32 and volume weighted mean

diameter D43 for the different experiments using the fits given in eqs. 29 and 30

the contrary, poor agreement is obsverved for the data of Guégan et al. [12]290

which displays significantly larger values for both the Sauter mean diameter291

and mean volume diameter in comparison to the data of Reitter et al. [27]292

and Vargas et al. [9] for comparable strain rates. It is interesting to note293

that the regression slopes obtained for these quantities, respectively −0.872294

for the Sauter mean diameter and −0.912 for the mean volume diameter,295

are close to the value obtained for the maximum diameter, i.e. α ≈ −0.896296

for constant material properties. In addition, an asymptotic behavior seems297

visible for these quantities at the largest strain rates, such that a constant is298

added to the current fits. In order to further minimize the average error of299

the fits, it is chosen not to constrain their exponents, yielding:300

Dn
32

s0
= Cf,32

(
ε̇

ε̇0

)α32

+ a0,32 (29)

Dn
43

s0
= Cf,43

(
ε̇

ε̇0

)α43

+ a0,43 (30)

with respectively, Cf,32 ≈ 58.682, α32 ≈ −1.266, a0,32 ≈ 0.020 and Cf,43 =301

29.997, α43 = −1.051, a0,43 ≈ 0.171. The average error levels with respect to302

the experimental values of these parameters are provided in table 3.303

The parameters of the lognormal and Weibull distributions are separable304
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in eqs. 26 and 27 and may thus be directly determined from relations 29 and305

30. On the contrary, the parameters of the power law fit Dmin and γ are not306

separable in eq. 25 and the dedicated method used to determine the latter is307

presented below. Note that all distributions are renormalized when necessary308

to prevent the prediction of fragment volume beyond the maximum diameter309

estimate presented in section 2.310

3.4. Determination of the power law exponent311

Regression fits on a log-log scale may produce inaccurate estimates of

power law exponents. For this reason, Clauset et al. [35] proposed the fol-

lowing maximum likelihood estimator to determine both the exponent γ and

minimum diameter Dmin of powerlaws more accurately:

γ = 1 + n

[
n∑

i=1

ln

(
Di

Dmin

)]−1

(31)

where Di and n represent the diameter of the i-th fragment and the total312

number of fragments, respectively. The value of Dmin is chosen so as to mini-313

mize the Kolmogorov Smirnov statistic with respect to the input dataset [35].314

In the current work, the dedicated python package [36] power law is used to315

evaluate eq. 31.316

Unfortunately, the number of fragment size samples provided by Reitter317

et al. [27] for each of their impact experiments (about 200) appears insuffi-318

cient to apply the methodology described above. On the contrary, consistent319

results could be obtained for the experiments of Vargas et al. [9] as their data320

comprises about 2000 samples per impact. Finally, the use of the statisti-321

cal tools of Clauset et al. [35] requires access to the raw fragment size data,322

which is not available for the experiments of Guégan et al. [12]. Therefore,323
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this method may only be applied for the experiments of Vargas et al. [9],324

while a less precise regression approach must be employed for the datasets325

of Reitter et al. [27] and Guégan et al. [12].326

The uncertainty on power law exponent estimates obtained from regres-327

sions on a log-log scale may be reduced by fitting cumulated volume dis-328

tributions as they generally display lower statistical fluctations [35, 36]. In329

addition, a regression method adapted to the presence of outliers and im-330

plemented in python’s scikit-learn library and known as ’RANdom SAmple331

Consensus’ (RANSAC) is used [37]. The use of such method appears nec-332

essary as the fragment volume data does not follow a power law for the333

smallest fragment sizes, possibly due to resolution limitations inherent to334

such experiments.335

The exponent of the cumulated volume distribution function δ = γ + 1336

deduced for the different experiments is shown in fig 6. Considering the337

data of Vargas et al. [9], it appears that either estimates of the exponent,338

namely the RANSAC regressor [37] or the maximum likelihood estimator of339

Clauset et al. [35], yield very similar results. Since each impact experiment340

was repeated about 10 times in the experiments of Vargas et al. [9], an341

average over the repetitions could be performed to evaluate the exponent γ.342

This probably explains the low dispersion for the data of Vargas et al. [9] as343

the exponents cluster within the range [1.1 − 1.4]. More generally, no clear344

trend regarding the evolution of the exponent with normal impact velocity345

seems visible for any of the data sets and the same remark holds for the346

impact diameter (not shown). Therefore, an average value is used for the347

power law exponent, yielding δ ≈ 1.27, close to the value reported for glass348

25



25 50 75 100 125 150 175 200
Un, 0 [m/s]

0.0

0.5

1.0

1.5

2.0

2.5

 [-
]

Guegan et al. (unpubl., RANSAC)
Reitter et al. (RANSAC)
Vargas et al. (MLE)
Vargas et al. (RANSAC)

Figure 6: Exponent of the cumulated volume size distribution as a function of the normal

impact velocity for the different experimental datasets. For the experimental data of

Vargas et al. [9], results are computed with both the maximum likelihood estimator of

Clauset et al. [35] and the RANSAC regressor [37].

fragmentation in Kolsky torsion bar experiments [38]. Similarly, the ratio349

between the minimum diameter and the initial diameter is approximately350

constant on average, Dmin/D0 ≈ 0.052.351

3.5. Fit evaluation352

The quality of the proposed fits is illustrated by comparison to experi-353

mental cumulated volume distributions for moderate, intermediate and large354

impact velocities in figs. 7, 8 and 9. The data respectively correspond to355

distributions obtained from the experiments of Reitter et al. [27] (moder-356

ate impact velocity), Vargas et al. [9] (intermediate) and Guégan et al. [12]357

(large). In each case, distributions obtained for two almost identical impact358
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conditions are shown to illustrate their variability. Finally, the cumulated359

volume distributions predicted by the model of Pan and Render [10] are360

shown for comparison. Pan and Render [10] assume the fragment volume361

distribution to follow a Weibull distribution, see eq. 24. They express the362

parameters of their Weibull distribution as:363

λpr

D0

= 0.3−
(
Un,0

aL

)2

(32)

βpr = 3.512− 4

(
Un,0

aL

)
(33)

with aL = 340m s−1 a reference value for the speed of sound. The strict364

positivity constraint on these parameters limits the validity of relations 32-365

33 to Un,0 < 186m s−1 approximately.366

The cumulated volume distributions are either found to be ”s-shaped”,367

see fig. 7a, or ”upward concave”, see fig. 7b. The ”s-shaped” may best be368

reproduced with the lognormal law for the present fits. On the contrary, they369

are not well reproduced by the current Weibull fit because of the truncation370

performed at the predicted maximum fragment diameter. The fit proposed371

by Pan and Render [10] predicts comparatively larger shape parameters and372

results in cumulated volume distributions that are not truncated, hence ”s-373

shaped”. Finally, the current power law fit may only reproduce ”upward374

concave” cumulated volume distributions. It appears from all figures that375

there is significant variability in the distributions, apparently resulting in376

different best fit candidates, even for almost identical conditions, see for377

instance figs. 7a and 7b. Since the current fits are all normalized by the378

current maximum fragment diameter estimate, they are inherently sensitive379

to errors of the latter, as may be seen from fig. 9a.380
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Figure 7: Experimental and model cumulated volume distributions from the experiments

of Reitter et al. [27], comprising the power law, Weibull and lognormal fits of the present

work as well as the Weibull law proposed by Pan and Render [10]. The impact parameters

are provided above each plot.
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Figure 8: Experimental and model cumulated volume distributions from the experiments

of Vargas et al. [9], comprising the power law, Weibull and lognormal fits of the present

work as well as the Weibull law proposed by Pan and Render [10]. The impact parameters

are provided above each plot.
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Figure 9: Experimental and model cumulated volume distributions from the experiments

of Guégan et al. [12] (previously unpublished data), comprising the power law, Weibull

and lognormal fits of the present work as well as the Weibull law proposed by Pan and

Render [10]. The impact parameters are provided above each plot.

In order to provide a more quantitative analysis, the average errors for381

the Sauter mean diameter Dn
32, volume mean diameter Dn

43 as well as the D
v
10,382

Dv
50 and Dv

90 diameters are given in tables 4, 5 and 6, respectively for the383

data of Reitter et al. [27], Vargas et al. [9] and Guégan et al. [12]. The trends384

are somewhat similar for the data of Reitter et al. [27], Vargas et al. [9],385

both in terms of error levels and candidate fits. For these experiments, the386

current Weibull fit seems the best approximation to the fragment volume387

data. While this behavior is expected for the Dn
32 and Dn

43 diameters given388

the fitting strategy exposed in section 3.2, the low error levels observed on389

the Dv
10, D

v
50 and Dv

90 diameters confirm its ability to reproduce the experi-390

mental distributions with good accuracy. These conclusions do not apply for391

the data of Guégan et al. [12]. First, the fitting strategy proposed for the392

lognormal and Weibull laws suffers from the inability to accurately predict393
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the experimental Dn
32 and Dn

43 diameters for the data of Guégan et al. [12]394

using relations 29 and 30. The associated error levels may then be either mit-395

igated or further enhanced given the maximum diameter estimate used for396

normalization. The lognormal and Weibull laws predict excessively ”upward397

concave” shapes for the data of Guégan et al. [12], resulting in huge errors on398

the Dv
10, while recovering satisfactory error levels for the remaining quanti-399

ties. More generally, no clear trend in favor of any distribution seems visible400

for the data of Guégan et al. [12]. Because of a much more simple design,401

namely a maximum diameter estimate that seems accurate on average and402

a constant exponent obtained via averaging the entire size distribution data,403

the power law appears as the most robust distribution over the three exper-404

imental datasets, at the cost of larger error levels, in particular on the Dn
32405

diameter. While the Weibull fit of Pan and Render [10] also shows remarkable406

accuracy for the data of Reitter et al. [27] and Vargas et al. [9], it may not407

be extrapolated towards the largest normal impact velocities representative408

of engine ice crystal icing.409
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Experiments of Reitter et al. [27]
Average errors [%]

Dn
32 Dn

43 Dv
10 Dv

50 Dv
90

Pan and Render [10], Weibull law 16.07 19.71 22.52 18.61 20.95

Current, power law 30.78 24.95 26.49 17.45 17.03

Current, Weibull law 12.62 12.14 19.84 17.08 16.31

Current, lognormal law 14.05 13.39 19.22 13.27 14.38

Table 4: Average errors on the Sauter mean diameterDn
32, volume weighted mean diameter

Dn
43, the Dv

10, D
v
50 and Dv

90 diameters for the model of Pan and Render [10] as well as the

present power, Weibull and lognormal laws for the experimental data of Reitter et al. [27].

The minimum average error in each column is displayed in bold.

Experiments of Vargas et al. [9]
Average errors [%]

Dn
32 Dn

43 Dv
10 Dv

50 Dv
90

Pan and Render [10], Weibull law 15.68 28.45 37.02 24.37 28.48

Current, power law 32.06 15.03 16.89 13.93 15.07

Current, Weibull law 12.22 17.02 22.46 13.91 15.59

Current, lognormal law 13.16 23.67 20.01 22.53 17.66

Table 5: Average errors on the Sauter mean diameterDn
32, volume weighted mean diameter

Dn
43, the Dv

10, D
v
50 and Dv

90 diameters for the model of Pan and Render [10] as well as the

present power, Weibull and lognormal laws for the experimental data of Vargas et al. [9].

The minimum average error in each column is displayed in bold.
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Experiments of Guégan et al. [12]
Average errors [%]

Dn
32 Dn

43 Dv
10 Dv

50 Dv
90

Pan and Render [10], Weibull law 56.82 46.85 34.05 26.92 21.52

Current, power law 37.87 29.33 42.55 18.21 17.59

Current, Weibull law 20.07 21.64 91.16 21.85 14.96

Current, lognormal law 17.87 23.30 105.89 18.52 14.80

Table 6: Average errors on the Sauter mean diameterDn
32, volume weighted mean diameter

Dn
43, the Dv

10, D
v
50 and Dv

90 diameters for the present fits as well as the model of Pan and

Render [10] for the experimental data of Guégan et al. [12]. The minimum average error

in each column is displayed in bold.
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4. Conclusion410

The fragmentation of ice particles resulting from their impact on solid411

walls was examined in an attempt to model size characteristics of the reemited412

fragments. First, a new semi-empirical model predicting the diameter of the413

largest reemited fragment was proposed. The strong compression result-414

ing from impact is assumed to remain limited to the vicinity of the contact415

area, while inducing increasing tensile strain elsewhere, resulting in crack416

formation and eventually fragmentation. Accordingly, an energy formalism417

considering fragmentation to be driven by the conversion of tensile and ki-418

netic energies into fracture surface energy was applied. The tensile strain419

causing fragmentation was related to the indentation radius in the contact420

area assuming plastic deformation. The resulting model may incorporate421

strain rate and temperature dependent compressive yield strength as well422

as a temperature dependent surface fracture energy. Model predictions ap-423

pear in good agreement with all considered experimental data, thus covering424

broad normal impact velocity ([20-200m s−1]) and initial particle diameter425

([30 µm-20mm]) ranges.426

Modeling of the fragment volume distribution was then considered. In427

particular, the respective accuracy of power, lognormal and Weibull laws428

was evaluated to determine the best fitting candidate to the present frag-429

ment volume data. For the lognormal and Weibull laws, the fitting strategy430

is based on an estimate of the Sauter mean diameter and the mean volume431

diameters using the previously derived strain rate estimate. For the power432

law, a maximum likelihood estimator was used to determine its exponent433

when possible. Alternatively, a regression method adapted to the presence434
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of outliers on a log-log scale was applied. The current Weibull fit seems best435

suited to approximate the impact data up to moderate impact velocities, i.e.436

up to 80m s−1. However, this fit yields huge errors in the low diameter range437

of the fragment volume distributions at higher normal impact velocities. In438

particular, average errors on the Dv
10 diameter are unacceptably large for the439

current Weibull and lognormal fits. This is mainly due to the fact that the440

current Sauter mean and mean volume diameter estimates, which the current441

Weibull and lognormal fits are based on, exhibit large errors when extrapo-442

lated to higher impact velocities. Due to these uncertainties, a simple power443

law fit based on a constant exponent seems to yield higher yet more sta-444

ble average error levels over the entire available fragment volume data. The445

fragment volume distribution fit proposed by Pan and Render [10] performs446

almost as well as the current Weibull fit for the moderate impact velocity447

fragment data. As for the current fits, the accuracy of Pan and Render’s fit448

deteriorates when considering fragment distribution data at higher impact449

velocities, in particular for the Sauter mean and volume mean diameters.450

Moreover, the fragment volume distribution model of Pan and Render may451

not cover the entire normal impact velocity range representative of ice crys-452

tal icing (50-250m s−1 approximately) as it loses validity for normal impact453

velocities exceeding 186m s−1.454

Considering the outlooks, it seems worthwhile to further confirm the main455

underlying assumption of a link between the indentation radius and the ten-456

sile strain magnitude causing fragmentation. Detailed numerical simulations457

of ice particle impact seem best suited for such purpose. Regarding the frag-458

ment volume distributions, it seems important to gather additional fragment459
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data for high velocity impacts to assess whether the resulting volume distri-460

butions follow significantly different trends. More generally, a better char-461

acterization and understanding of the statistical variability of experimental462

impact data with respect to impact parameters seems crucial to improve463

modeling accuracy.464
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Appendix A. Accounting for varying material properties470

The energy per unit area required to create new fracture surface Gc is

assumed to depend on the material temperature [15]:

Gc = Gc,0 exp

(
Qs

RT
− Qs

RT0

)
(A.1)

with Gc,0 = 0.12 Jm−2 representing the reference surface energy per unit471

area [22], T0 = 253K the reference temperature, Qs = 4.82 × 104 Jmol−1
472

the reference activation energy [39] and R = 8.314 Jmol−1K−1 the universal473

molar gas constant.474

Regarding the compressive yield strength, experimental evidence suggests

that it depends on both strain rate and temperature [13, 21]. Regarding

strain rate dependency, a polynomial fit to the average curve given by Tipp-

mann [13] and gathering experimental measurements from several sources
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is used. The temperature dependency of the quasi-static compressive yield

strength of ice is described with the experimental data compiled by Petro-

vic [21]. It appears that a simple linear fit yields a satisfactory accuracy for

the latter quantity. The resulting expression reads:

Yc(T, ε̇) = Yc,0fyc(ε̇)gyc(T ) (A.2)

with:475

fyc(ε̇) = exp

(
3.595× 10−4 ln3(ε̇/ε̇0)− 7.470× 10−3 ln2(ε̇/ε̇0)

+ 1.118× 10−1 ln(ε̇/ε̇0) + 1.062

)
(A.3)

gyc(T ) = −28.70 (T/Tc,0) + 30.21 (A.4)

with Yc,0 = 5.2 × 106 Pa representing a reference value for the quasi-static476

compressive yield strength at Tc,0 = 273K [13, 21]. The maximum error re-477

mains below 2% for the strain rate dependency with respect to the numerized478

data of Tippmann [13] and below 0.5% for the temperature dependency with479

respect to the numerized data of Petrovic [21]. Note that the use of eq. A.2480

requires an iterative procedure to determine the characteristic strain rate in481

eq. 12.482
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