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Abstract: Today the world is full of time-dependent phenomena in all fields: physics, chemistry, mechanics and many others. 

Time acts on the performance of any system whatever its nature is. When a system operates over time, aging becomes a real 

concern. Regarding fuel cells, several degradation phenomena can occur in a short or long term. Short-term phenomena are 

generally referred to as reversible degradations, these degradations are of the order of the microsecond and can go up to hours and 

sometimes to days, such as problems related to water management. The long term degradations are usually called irreversible 

degradations; it can be defined as aging. This phenomenon is of the order of a day and can increase up to months. In order to 

mitigate the impact of aging on the fuel cell system performance, good corrective actions must be taken. To do so, the 

performance prediction during the aging of the fuel cell system must be conducted. In this paper a verified and tested prognosis 

approach applicable to fuel cells is presented. The novelty in the approach used is linked to its modular structure. In fact, this 

approach has three phases. The first one aims to identify the internal physical parameters of the stack using an optimization 

algorithm on experimental data and a static fuel cell model. The second one predicts the temporal evolution of these parameters 

using a prediction algorithm. Finally, the reconstruction phase consists in the prediction of parameters that are re-injected into the 

model to reconstruct polarization curves and thus reflect the performance degradation of the fuel cell. The reliability and 

repeatability of the proposed approach have been successfully validated on two data sets from two different experimental 

campaigns. 

Keywords: Proton Exchange Membrane Fuel Cell, Aging, Prognosis, ARMA Model, Stack Internal Parameters 

 

1. Introduction 

In the context of global warming and the development of 

intermittent renewable energies, the hydrogen energy vector 

can be considered as a key alternative to the existing energy 

sources. The hydrogen vector can be used with fuel cells to 

produce a green energy. Indeed, the fuel cell is a promising 

alternative regarding its high power conversion efficiency, 

zero pollution emission, low operating temperature and 

reduced noise [1, 2]. 

Despite its use in several fields, such as portable devices, 

stationary power supply, military equipment and 

transportation vehicles [3], its cost remains higher than the 

conventional energy sources. In order to achieve a larger 

industrial deployment, the fuel cell system has to be 

competitive in terms of cost, durability and reliability [4, 5]. 
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Regarding durability, The PEMFC remains quite limited 

due to the various degradation phenomena occuring during 

its operation [6, 7]. A viable solution, defined as Prognosis 

and Health Management (PHM), aims to reduce the 

performance degradation of the PEMFC and so, extend its 

lifetime. It allows the monitoring, diagnosis and prognosis 

of a system in order to plan a preventive maintenance using 

degradation indicators. The prognosis is the key process to 

predict the future behavior and the remaining useful life 

(RUL) of the fuel cell system. Three main approaches can 

be identified 1) model-based approach: it consists on using 

empirical or physical degradation models 2) data-based 

approach: it does not require a prior knowledge of the 

system, based on black box models such as artificial 

intelligence or signal processing and needs a large amount 

of data 3) hybrid approach: it combines the two previous 

ones. [8] 

PEMFCs are multiphysics & multiscale systems which 

makes their behavior modeling difficult. Moreover, a 

behavioral model contains several parameters which some 

of them are impossible to monitor. This makes the 

behavioral or physical model hardly exploitable for 

practical applications. However, physical models vary 

according to their purpose. Indeed, not the same models 

are requested for diagnosis, system command or 

prognosis. 

A data-based approach is presented by Wu Y et al. 

where the authors predict the voltage decrease of a fuel 

cell stack using Relevance Vector Machine (RVM) [9], 

Bressel et al. [10] also used this approach and applied an 

extended Kalman filter to predict the performance 

degradation of a PEMFC. The developed empirical model 

could accurately predict the state of health of the fuel 

cell. 

Another degradation model, where a deep understanding 

of PEMFC degradation phenomena and a comprehensive 

analysis of degradation mechanisms is proposed by two 

papers from Jouin M et al. [8, 12]. It has shown that 

electrodes and membrane are the most sensitive components 

in PEMFC degradation. The degradation model developed 

perfectly corresponds to the experimental results. The use of 

fuel cells in the transportation field exposes the membrane to 

intensive conditions that reduce their lifetime by exposing 

them to chemical and mechanical damage. Macauley et al. 

[11] suggested an empirical life model for heavy-duty fuel 

cell systems. The proposed empirical model is based on 

accelerated durability tests of the membrane. This model 

takes into consideration the effects of temperature, oxygen 

concentration and humidity. To obtain a good estimation of 

the remaining useful life of the fuel cell, a deep 

understanding of the degradation phenomenon is required to 

take the good corrective actions and extend the fuel cell 

lifetime. However, it is not an easy task due to the nature of 

the various degradation phenomena, which can be chemical, 

mechanical or thermal [13]. 

A good prediction is based on the choice of adequate 

degradation indicators that give information about the state 

of health of the studied system. Regarding fuel cells, several 

degradation indicators were used such as parameters that 

can be identified from characterizations, polarization curves 

and impedance spectra, [14] fuel cell stack or cell voltage / 

power [13-18] which are the most common. Indeed, the 

wide use of the voltage as a degrxadation indicator is due to 

the fact that it is easily measurable and also the 

performance decay is immediately observed on the stack 

voltage. 

Based on the fact that most of publications on fuel cell 

prognosis use stack voltage as a degradation indicator 

combined to a data-based approach [19], which can be 

limiting in terms of physical knowledge, needs a large 

amount of data and has no physical meaning, in this paper 

a novel prognosis approach is presented. An approach 

which is both modular and integrates a part of the physical 

knowledge of the fuel cell using new degradation 

indicators. On the one hand, the use of these degradation 

indicators allows, first, the prediction of the performance 

degradation of the fuel cell. Secondly, it gives information 

on the state of degradation of the most sensitive internal 

components of the fuel cell. On the other hand, the 

modular structure of the proposed approach presents an 

ease of use where the algorithms used can be replaced by 

others. The structure of the approach is based on three 

supports. The first one represents the phase of 

identification of the internal physical parameters of the 

stack, used as indicators of degradation, through the 

application of an optimization algorithm on experimental 

polarization curves and the static model of the fuel cell. 

The second one represents the prediction phase, where the 

identified parameters are modeled and predicted using a 

prediction algorithm, in this case an AutoRegressive 

Moving Average (ARMA) model. The third one represents 

the reconstruction phase, where the prediction of the 

parameters is injected into the static model in order to 

reconstruct forecasted polarization curves. 

The rest of the manuscript is organized as follows: first, a 

brief presentation of the operating of a PEMFC and the 

different characterizations. Then, the proposed prognosis 

approach is presented explaining its different phases. Then 

comes the data generation with experimental protocols and 

finally the results. 

2. Proton Exchange Membrane Fuel Cell 

PEMFC 

A fuel cell is an electro-chemical device, which converts 

chemical energy from hydrogen to electrical energy. The 

proton exchange membrane fuel cell (PEMFC), in figure 1, 

consists of two electrodes (anode and cathode) separated by a 

polymeric membrane. 
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Figure 1. Operating principle of a PEMFC. 

Each electrode is composed of two layers: a catalytic layer 

and gas diffusion layer (GDL). 

At the anode side, the reaction of reduction of the hydrogen 

takes place. In the presence of platinum, the hydrogen is 

dissociated of its electrons according to the following equation: 

H2 → 2H
+
 +2e

-
               (1) 

The ions H+, arrived through the membrane, to the cathode 

side reacts with electrons e- arrived from the electrical circuit 

and the oxygen. The reaction between these chemical 

components produces water and heat, according to the 

following half oxidation equation: 

1/2 O2 +2H+ + 2e
-
 → H2O + Q (heat)     (2) 

Which gives the redox equation: 

H2 + 1/2 O2 → H2O + Q (heat)        (3) 

 

Figure 2. Polarization curve. 

A PEMFC can be characterized in different ways; the most 

common are the polarization curve, represented in figure 2, 

and the electrochemical Impedance Spectroscopy (EIS). The 

polarization curve represents the voltage evolution versus the 

current. It models the losses that impact the reversible cell 

voltage Erev. Three main parts can be identified representing 

three voltage drops according to their dominance and 

depending on the current density; activation, ohmic and mass 

transport voltage losses (also called concentration losses), 

respectively ηact, ηohm, ηconc. Each voltage loss can be modeled 

according to the following equations. 

E = Erev + ηact + ηohm + ηconc         (4) 

The activation voltage loss, represented by the equation (5) 

is due to the slowness of the electrochemical reactions at the 

catalyst layer. 

ηact = 
��

��� ln 
���
��

�              (5) 

Where the parameters α, R, T, j, Jn, J0 respectively represent 

the charge transfer coefficient, the perfect gaz constant, the 

operating temperature [k], the current density [A/cm²], the 

cross-over current density [A/cm²], the internal current density 

[A/cm²]. 

The ohmic losses are due to the electrical resistance of the 

electrodes and the ionic resistance of the membrane. 

ηohm = j×Rint                 (6) 

Where Rint represents the internal resistance [Ω]. 

Mass transport losses, also known as concentration losses 

are due to the incapability to supply enough reactants at high 

current density, leading to a drop of their concentration on the 

surface of the electrodes. 

ηconc = 
��
�� ln 
1 � �

��
�           (7) 

Where Jl represents the limit current density. 
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The EIS is a powerful tool for providing information on the 

state of health of a fuel cell. It can be used to identify faulty 

operating conditions or a performance deterioration. Kurz et al. 

[20] could detect flooding conditions using EIS before they 

can be observed on the polarization curves. They have proven 

that an impedance measurement performed at only at high and 

low frequencies can be sufficient to predict the voltage drop 

due to flooding or drying failure conditions. In the work of 

Rubio et al. [21] the time evolution of ohmic resistances give 

information on the overall degradation of the component, 

since the ohmic resistance is linked to water content of the 

membrane and is significantly affected by aging [22]. 

 

Figure 3. Proposed prognosis process. 

3. The Prognosis Approach 

The fuel cell performance degradation can be observed on 

the stack/cell voltage temporal evolution but also on 

characterizations, (EIS) and polarization curves (IV). The 

proposed prognostic approach for PEMFCs, illustrated in 

figure 3, uses the identified internal parameters of the stack 

from losses modeling to predict the fuel cell ageing. and 

consists of three phases. The first one aims to identify the 

internal parameters of the stack using an optimization 

algorithm. The second phase uses a prediction algorithm for 

the modeling and forecasting of the identified parameters. The 

third one combines the parameter’s prediction and a fuel cell 

static model in order to reconstruct polarization curves. 

The identification phase is based on the model presented in 

our previous work [38] combined with experimental 

polarization curves, then, their time evolution is modeled and 

predicted using an ARMA model. Thus, predicted polarization 

curves are reconstructed from the prediction of the parameters 

and will represent the performance degradation of the fuel cell. 

3.1. The Identification Phase 

The parameters to be identified have been chosen according 

to their dependence with the components likely to be degraded 

during the fuel cell operation, in particular the catalyst layer and 

the membrane. The identified parameters, namely, charge 

transfer coefficient, internal current density, internal resistance 

and limit current density, are directly related to the stack 

components. The evolution of one of these parameters indicates 

a change in the component associated with this parameter. 

The charge transfer coefficient is the proportion of the 

electrical energy applied that is harnessed in changing the rate 

of an electrochemical reaction. It indicates the state of the 

active layer. And so, when hydrogen cross over occurs during 

which one molecule of hydrogen cross from the anode to the 

cathode side, two electrons are wasted and cross internally, it 

is called internal current density. This phenomenon leads to an 

increase of activation voltage losses. 

The internal resistance represents the resistance of the 

electrodes and the resistance of the ions in the electrolyte and 

affects the ohmic losses. The limit current density is the current at 

which the fuel is used up at a rate equal to its maximum supply 

speed. The current density cannot exceed this value, because the 

fuel gas cannot be supplied at a greater rate. It depends on the 

catalytic surface and affects the mass transport losses. 

These parameters vary during the stack aging. Assuming an 

exponential, linear or another trend of their evolution as it is 

presented in [35], gives an information about the state of the 

component, but remains limiting in the case where an unexpected 

fault occurs during the fuel cell operation. Basing on this, one of 

our main contributions of this work is the ability to predict the 

fuel cell performance degradation while having a part of physical 

knowledge related to the stack components. 

The identification of the internal parameters is processed 

through the fitting of the experimental polarization curves and 

the modeled one using a genetic algorithm. The use of this 

algorithm instead of a classic optimization algorithm was 

adopted because of its properties. The fact that the objective 

function in equation 8, is not linear this promotes the use of a 

metaheuristic method. In addition, it is important to find the 

value of the global minimum, since the parameters to be 

identified will reflect physical parameters related to the 

components of the stack. The objective function is defined as 

the mean square error between the two curves. The Ga 

function of the Matlab optimization toolbox was used and the 

default parameters of the algorithm were kept. 

��� = 	 �� 	∑ �� − ��̂�²�
� �               (8) 

Where n, y and ŷ respectively represent the number of 

samples, the modeled and experimental values. 
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The charge transfer coefficient, internal current density and 

limit current density of the two test campaigns and the internal 

resistance of the first test campaign, were identified according 

to the lower and upper bounds represented in table 1. However, 

the internal resistance of the second test campaign was 

identified using EIS. 

Table 1. Optimisation lower and upper bounds. 

Parameters α J0 J1 r 

Lower bound 0.3 1e-6 4 1e-4 

Upper bound 0.55 1e-3 0.9 1e-2 

3.2. Prediction Phase: Auto-Regressive Moving Average 

Process 

A time series is a finite sequence of time-indexed data. The 

time index may be expressed depending on the case, in 

seconds, minutes, hours or years. Time series analysis 

occupies an important place in the fields of observation and 

data collection. Their analysis has undergone a great 

development since its highlighting, through several research 

works, namely the statistical relationship between air 

pollution indicators and population state of health indicators 

[23]. Time series analysis is also widely used for predicting 

future data. This field has many applications, in finance, 

medicine, econometrics, meteorology and many other fields. 

The purpose is to take a sample of data and build the best 

model that fits it and then predict future values basing on the 

previous ones. Several tools are used to model and predict 

time series such as black box models (neural networks, 

support vector machine, fuzzy inference systems etc), time 

series linear models (linear regression models), etc. 

The Auto-Regressive Moving Average (ARMA) model is 

one of the most widely used time series models. This 

stochastic process describes stationary processes varying 

with time. The future values of an observation are described 

as a linear function that depends on the past observations, 

and random errors. The first ARMA process has been used by 

Box et al. [24] for time series prediction. 

The ARMA model is composed of two processes, the Auto 

Regressive (AR) and the Moving Average (MA) processes. 

The first use of the Autoregressive process was done by Yule 

[25] where he modeled the number of sunspot time series. 

The AR(p) model describes a variable at time “t” as a 

combination of past values and a white noise, where the “p” 

represents the order of the AR model. The moving average 

process has been introduced by Slutzky [26]. These two 

models can be described mathematically as follows: 

AR(p) : !" = 	 ∑ #$%
$&� !" $ + '"         (9) 

MA(q) : !" =	∑ ѳ$)
$&� '" $          (10) 

ARMA (p,q) = '" +	∑ #$%
$&� !" $ +	∑ ѳ$)

$&� '" $  (11) 

*̂"�+ =	#%*̂" %�+ +	ѳ)'" )�+ 		         (12) 

where, φk and ѳk are respectively, the autoregressive and 

moving-average models parameters, Xt-k is the observation k 

time-units before the current time t, εt is a white Gaussian 

noise and h is the step ahead point forecast. 

The ARMA model has proven its reliability and 

effectiveness in several fields, through a good prediction 

efficiency and limited computing resources. Indeed, it has 

proven its reliability in electronics, financial, mechanical, 

medical, chemistry and engineering domains [27 – 38]. 

The satisfactory and accurate results obtained using the 

ARMA model to predict time series in several fields partly 

motivated us to use it in our work. The lack, according to our 

research, of publications aimed to predict the performance of 

fuel cells using this approach is the second motivating factor 

to carry out this work. Thirdly, the use of this prediction 

algorithm is due to its implementation simplicity as well as 

the reduced computation time. 

Before using the ARMA model, the parameter’s time 

series stationarity must be checked first. To do this, the 

Augmented Dickey-Fuller test (ADF) and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) will be 

computed on the parameter’s time series. The ADF procedure 

allows to detect the stationarity of a time series. It tests 

whether the estimator of one of the roots of the 

autoregressive polynomial is significantly close to 1. To 

enhance the conclusion of the ADF test, it is necessary to 

conduct a complementary test to detect the non-stationarity. 

4. Experimental Tests 

To study the PEMFC’s aging, two experimental campaigns 

were carried out. The first one of a duration of 2250 hours was 

conducted on a 5 cells stack of 250cm² of active layer and a 

limit current density of 4A/cm², under constant operating 

conditions, presented in table 2. 

Table 2. First test campaign operating conditions. 

Parameter Value 

Cathode stoichiometry 1.7 

Cathode flow [l/min] 62.89 

Cathode inlet pressure [Bar] 1.00171 

Cathode inlet temperature [°C] 76.63 

Anode flow [l/min] 15.601 

Anode inlet pressure [Bar] 1.0034 

The results are derived from the tests carried out within the 

framework of the project GIANTLEAP [40]. 

During the tests, the stack was characterized (polarization 

curve) each 250h. The second one, of a duration of 750 hours, 

was carried out on a 5 cell stack of 100cm² of active layer 

under wide Worldwide harmonized light duty driving Test 

Cycle (WLTC) load profile. The tests were carried out under 

constant, temperature, relative humidity and stoichiometry, 

presented in table 3, however the reactants flow rate was 

regulated according to the current demand. 

The development of the WLTC, illustrated in figure 4, was 

carried out under a program launched by the World Forum for 

the Harmonization of Vehicle Regulations (WP.29) of the 

United Nations Economic Commission for Europe (UN-ECE) 

through the working party on pollution and energy transport 
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program (GRPE). The aim of this project was to develop a 

World-wide harmonized Light duty driving Test Cycle 

(WLTC), to represent typical driving characteristics around 

the world, to have the basis of a legislative worldwide 

harmonized type certification test and to develop a gearshift 

procedure which simulates representative gearshift operation 

for light duty vehicle. 

Table 3. Second campaign operating conditions. 

Parameter Value 

Cathode stoichiometry 3 

Cathode inlet pressure [Bar] 1.3 

Cathode inlet temperature [°C] 60 

Anode inlet pressure [Bar] 1.3 

Each cycle lasts 1200 seconds, the cycles were repeated 70 

times (sequence of cycles) to reach 20 hours of consecutive 

operation, the stack was characterized after each sequence of 

cycles (polarization curve and Electrochemical Impedance 

Spectroscopy (EIS)). 

 

Figure 4. WLTC load profile. 

This work is based on three assumptions: 1) no fault during 

the tests (only irreversible degradation linked to ageing), that 

means that no fault was caused to study the fuel cell reversible 

degradation but only its aging, 3) the internal cross-over 

current density was fixed due to its small variation during the 

fuel cell aging, which makes its identification difficult. 

5. Results and Discussion 

Due to the constant load profile of the first test campaign, 

only irreversible degradations were observed on the 

polarization curves, in figure 5, which is not the case for the 

second test campaign. Indeed, it was carried out under a 

dynamic load profil, reversible degradations can occur such as 

drying out or flooding of the membrane. Therefore, it is visible 

on the characterizations as a performance recovery. Reason 

why, in this work, only the polarization curves and impedance 

spectra representing aging are considered, illustrated in figure 

6, 7, in other words, the characterizations before performance 

recovery will not be taken into account. 

 

Figure 5. First campaign test polarization curves. 

 

Figure 6. Second test campaign polarization curves. 

 

Figure 7. EIS during the second test campaign. 

The time evolution of the identified parameters of the two 

test campaigns, in figures 8 and 9, corresponds to the expected 

results. Indeed, during the fuel cell operation, its internal 

components deteriorate over time. 
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Figure 8. Internal parameters time evolution of the first test campaign. 

 

Figure 9. Internal parameters time evolution of the first test campaign. 
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The charge transfer coefficient and the limit current 

density are direct indicators of the state of the active layer. 

Their decrease proves the degradation of the catalyst layer 

and leads to the stack performance degradation. The 

degradation of the catalyst layer is often linked to the 

platinum particles sintering, dissolution, migration… etc. 

Regarding the internal resistance and internal current density 

are related to the degradation of the membrane. Their 

increase can be interpreted as the increase of the ionic 

resistance of the membrane and the increase of the electrodes 

resistance; this may be due to the dehydration of the 

membrane or its mechanical degradation, pinholes formation 

or appearance of micro cracks, or even its chemical 

degradation caused by a poisoning. The same trends in the 

time series of each parameter are observed on the results 

obtained over the two test campaigns. 

Each parameter’s evolution affects the voltage losses. 

Indeed, the decrease of the charge transfer coefficient and the 

increase of the internal current density lead to an increase of 

the activation losses according to Eq (5). The increase of the 

internal resistance leads to the increase of the ohmic losses 

according to Eq (6) and the decrease of the internal limit 

current density leads to the increase of the mass transport 

losses according to Eq (7). When the losses increase, it 

consequently leads to a deterioration of the fuel cell 

performance. 

The time evolution of the internal parameters allows us to 

write the aging model of the fuel cell stack as follows: 

E (t) = Erev + 
��

���"�� ln 
���
���"�� + , - 	.��"�/� 	+ ��

�� ln 
1 −
�

���"�
�                         (13) 

In order to validate the fitting results, identified values of 

each parameter will be used in the static model and compared 

with the corresponding experimental polarization curves, two 

of them are represented in figures 10, 11. The fitting results 

give a Mean Square Error (MSE) of 0.005%, which is quite 

satisfying. 

 

Figure 10. Fitting result: polarization curve at 500 and 2000 operating hours (first test campaign). 

 

Figure 11. Fitting result: polarization curve at 10 and 29 cycle sequences (second test campaign). 
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The next step of the process consists on testing each 

parameter’s time series stationarity using the ADF and KPSS 

tests. To do this, the “adftest” and “kpss”, Matlab functions are 

used. The test rejection decision is returned as a logical value 

h= [1, 0]. If h = 0 (ADF) & h = 1 (KPSS), the time series has a 

unit root so it is admitted not stationary. If h = 1 (ADF) & h = 0 

(KPSS), the time series does not have a unit root so it is 

admitted stationary. The tests were conducted on the four 

parameters with three difference-lagged terms. Indeed, a time 

series can be unstationary but the same time series lagged with 

two or three terms might be stationary. The results are shown 

in the following table. The tests were processed using the 

Matlab® daftest & kpstest functions. 

Table 4. Test stationarity results. 

 ADF KPSS 

Charge transfer coeff. α 1 0 0 0 1 1 

Internal resistance r 0 1 0 1 0 1 

Limit current density Jl 0 0 1 1 1 0 

Internal current density J0 0 0 1 1 1 0 

The results, presented in table 4, show that the four parameters 

time series are stationary. charge transfer coefficient is strictly 

stationary, the internal resistance, limit current density and the 

internal current density are of low stationarity. According to the 

obtained results we can conclude that an ARMA process can 

model and predict the parameters evolution. 

Despite the fact that an AR and MA models can be adapted 

to model a time series, in some cases, it may be necessary to 

estimate a large number of parameters to adjust the model. 

According to [39], the combination of an AR and MA models 

can predict any time series as long as the orders p and q are 

well chosen. Indeed, the model order remains rather sensitive 

to have a good time series prediction. A model with a large 

order can lead to an over or under adjustment of the model and 

thus give compromising results. In order to avoid these 

problems, two information criteria, Akaike’s Information 

Criterion (AIC) and Bayesian Information Criterion (BIC), are 

used for the selection of the model order (explained in 

appendix). 

The model was adjusted on 75% of each time series of the 

two test campaigns, called learning base, illustrated as, model 

adjustment, and the forecasting was computed on the 

remaining 25%, called testing base, and then a prediction over 

the testing base was computed as shown in figures 12 and 13. 

The adjustment and prediction errors are presented in tables 5 

and 6. 

Table 5. Adjustment and prediction errors of the first test campaign. 

Parameters α J0 J1 r 

Lower bound 2 0.07 0.8 0.04 

Upper bound 0.01 0.001 5 0.05 

Table 6. Adjustment and prediction errors of the second test campaign. 

Parameters α J0 J1 r 

Lower bound 0.001 0.002 0.001 0.004 

Upper bound 0.006 0.08 0.002 0.001 

In order to check the reliability of the model the 

prediction is computed with 5 steps ahead during the 

adjustment and testing phases, which represents 165 hours 

of operation. Indeed, a one step ahead is usually not a good 

test for validating the model over the time span of the data. 

So a poor model may give good results for a one step ahead 

prediction. 

In a first time, the prediction computed on the testing base 

matches the real values of each parameter with an average 

MSE of the four parameters of 1.26%. The obtained results 

correspond to our expectations. The first test campaign was 

conducted under fixed operating conditions. Long-term 

operation implies aging, in other words, the absence of 

reversible losses. In fact, long-term operation can cause 

irreversible losses generally linked to water management. 

Flooding can occur increasing therefore the relative humidity 

and forming water droplets on the membrane. Their formation 

leads to a local pressure increase on the membrane, thus 

causing the appearance of microcracks that can spread along 

the membrane causing its failure. The increase of the relative 

humidity also dangerous for the components of the stack. 

Indeed, when it occurs it may lead to the corrosion of the 

carbon support and degradation of the catalytic layer through 

migration and agglomeration of the catalyst. These 

degradation phenomena are harmful for the stack and are the 

direct causes of the decrease of its lifespan. 

The second test campaign was conducted under dynamic 

load profile, this involves operating phases at the open circuit 

and sudden current solicitations, which is harmful for the stack 

and can cause more severe degradation than those observed 

during the first test campaign. The operation at the open 

circuit ca leads to the degradation of the membrane manifested 

in the pinholes formation or microcracks, and also the 

corrosion of the bipolar plate, whose resulting ions are 

harmful to the membrane as well as the catalyst layer. Sudden 

current solicitation can lead to the dissolution of the catalyst. 

Indeed, the electrical dynamics are faster than the fluidic ones, 

the delay during the delivery of the reactants inevitably leads 

to the dissolution of the catalyst. The dissolution will then 

contaminate the membrane leading to its degradation. 

All these degradation phenomena lead to the performance 

decay observed on the characterizations carried out. The 

evolution of the internal parameters illustrated in figures 12 

and 13 perfectly reflects these degradation phenomena. The 

internal resistance and internal current density are strongly 

linked to the state of health of the membrane, their increase 

demonstrates its deterioration. Regarding charge transfer 

coefficient and the limit current density, their decrease 

indicates the deterioration of the catalyst layer due to the 

degradation phenomena. 

To validate the prediction computed on the testing base, 

predicted and known polarization curves will be compared. To 

do this, predicted parameters are used in the fuel cell model to 

reconstruct “predicted polarization curve” which will be 

compared to the known ones “interpolated polarization 

curves”. The results are shown in figures 14 & 15. 
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Figure 12. Internal parameters prediction of the first test campaign. 

 

Figure 13. Internal parameters prediction of the second test campaign. 
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Figure 14. Prediction validation on polarization curves of the first test campaign. 

 

Figure 15. Prediction validation on polarization curves of the second test campaign. 

The predicted values of each parameter beyond the known 2 

250 operating hours, will be used in the fuel cell model in 

order to reconstruct “predicted polarization curves” figure 16. 

The last known polarization curve remains above the 

predicted polarization curves at the ohmic and diffusion losses. 

Visually, the predicted polarization curves prove the 

performance degradation of the stack. Physically, the 

performance degradation can be deduced at the ohmic losses. 

Indeed, the results obtained previously indicate an increase of 

the internal resistance which consequently lead to an increase 

of the ohmic losses. Their dominance in the polarization curve 

make the degradation more visible. 

 

Figure 16. Predicted polarization curves of the first and second test campaign left to right. 



28 Abdelkader Detti et al.:  Hybrid Ageing Model of a Proton Exchange Membrane Fuel Cell (PEMFC)  

 

 

6. Conclusions and Prospects 

In this paper a novel prognosis approach is used to predict 

the performance degradation of a fuel cell stack. The 

degradation indicator used to predict the performance 

degradation of a fuel cell is usually the stack or the cell 

voltage/power, however it does not give precise information 

about the physical phenomena occurring in the stack. In this 

work, the physical knowledge of the stack is used to predict its 

performance degradation. Two test campaigns were conducted, 

the first one under constant load profile and operating 

conditions, the second one under WLTC load profile. Static 

and dynamic characterizations were performed to monitor the 

performance decay of the PEMFC. 

A static model is combined with the experimental 

polarization curves to identify the internal parameters of the 

stack that vary over time and therefore reflect its aging, 

namely, charge transfer coefficient, internal current density, 

internal resistance, and limiting current density. EIS was 

performed during the second test campaign which allows the 

identification of the internal resistance. Each parameter 

depends on a component of the stack and its degradation. 

Although the two test campaigns and their load profile are 

different, there are strong similarities between the trend of 

their time evolution. The time series of the identified 

parameters were modeled and then predicted using an ARMA 

model. First a validation step is required, the model was 

adjusted on 75% of the time series of each parameter and then 

predicted on the remaining 25% and further more. The 

prediction on the remaining 25% gives satisfying results 

according to the resulted MSE. Secondly, the predicted values 

of each parameter over the known values are used to 

reconstruct the “predicted polarization curves” and then 

compared to the last one known. The results show that the 

predicted polarization curves remain under the last one known 

as expected. The performance degradation observed on the 

polarization curves indicates the aging of the stack through the 

degradation of the internal membrane and active layer. 

The satisfactory and consistent results obtained on the two 

test campaigns and the fact that the parameters evolve in an 

almost similar way, despite the difference between the two test 

campaigns, can confirm the effectiveness and the repeatability 

of the applied method. Despite the simplicity of the used 

identification and prediction algorithms the results are 

satisfactory, other algorithms can replace those used in order 

to improve the results in terms of prediction accuracy. 

Acknowledgements 

This project has received funding from the Fuel Cells and 

Hydrogen 2 Joint Undertaking under grant agreement No 

700101. This Joint Undertaking receives support from the 

European Union Horizon 2020 research and innovation 

program and Hydrogen Europe and N. ERGHY. Nadia Yousfi 

Steiner acknowledges the support from the EIPHI Graduate 

School (contract "ANR-17-EURE-0002"). 

 

References 

[1] Seyhan M, Akansu YE, Murat M, Korkmaz Y, Akansu So 
(2017). Performance prediction of PEM fuel cell with wavy 
serpentine flow channel by using artificial neural network. 
International Journal on Hydrogen Energy, Vol. 42 (40). 

[2] Zhang X, Yang D, Luo M, Dong Z (2017). Load profile based 
empirical model for the lifetime prediction of an automotive 
PEM fuel cell. International Journal on Hydrogen Energy, Vol. 
42 (16). 

[3] Mao L, Jackson L, Davies B (2018). Investigation of PEMFC 
fault diagnosis with consideration of sensor reliability. 
International Journal on Hydrogen Energy, Vol. 43 (35). 

[4] Steiner N. Y., Hissel D., Moçotéguy P., Candusso D. (2011), 
Diagnosis of polymer electrolyte fuel cells failure modes 
(flooding & drying out) by neural networks modeling, 
International Journal on Hydrogen Energy, Vol. 36, pp. 3067–
3075. 

[5] Mohammadi A, Djerdir A, Steiner N, Khaburi D. (2015). 
Advanced diagnosis based on temperature and current density 
distributions in a single PEMFC. International Journal on 
Hydrogen Energy, Vol. 40 (45). 

[6] Baik K. D., Kong I. M., Hong B. K., Kim S. H., Kim M. S. 
(2013). Local measurements of hydrogen crossover rate in 
polymer electrolyte membrane fuel cells, Applied Energy, Vol. 
101, pp. 560-566. 

[7] Jung G. B., Chuang K. Y., Jao T. C., Yeh C. C., Lin C. Y. 
(2012). Study of high voltage applied to the membrane 
electrode assemblies of proton exchange membrane fuel cells 
as an accelerated degradation technique, Applied Energy, Vol. 
100, pp. 81-86. 

[8] Jouin M., Gouriveau R., Hissel D., Pera M. C., Zerhouni N. 
(2015). PEMFC aging modeling for prognosis and health 
assessment, 9th IFAC Symposium on Fault Detection, 
Supervision and Safety for Technical Processes 
SAFEPROCESS 2015, pp. 790–795. 

[9] Wu Y., Breaz E., Gao F., Miraoui A. (2015). Prediction of 
PEMFC Stack Aging Based On Relevance Vector Machine, 
IEEE Transportation Electrification Conference 
ITEC’2015. 

[10] Bressel M., Hialiret M., Hissel D., Ould Bouamama B. (2016). 
Extended Kalman filter for prognostic of proton exchange 
membrane fuel cell, Applied Energy, Vol. 164, pp. 220-227. 

[11] Macauley N., Watson M., Lauritzen M., Knights S., Gary 
Wang G., Kjeang E. (2016). Empirical membrane lifetime 
model for heavy duty fuel cell systems, Journal of Power 
Sources, Vol. 336, pp. 240-250. 

[12] Jouin M., Gouriveau R., Hissel D., Péra M. C. and Zerhouni N. 
(2016). Degradations analysis and aging modeling for health 
assessment and prognostics of PEMFC, Reliability 
Engineering and System Safety, Vol. 148, pp. 78–95. 

[13] Pei P., Chen H. (2014). Main factors affecting the lifetime of 
proton exchange membrane fuel cells in vehicle applications: 
A review, Applied Energy, Vol. 125, pp. 60-75. 



 International Journal of Energy and Power Engineering 2022; 11(1): 17-29 29 

 

[14] Jouin M, Gouriveau R, Hissel D, Pera M, Zerhouni N. (2014). 
Prognostics of PEM fuel cell in a particle filtering framework. 
International Journal on Hydrogen Energy, Vol. 39, pp. 481–
94. 

[15] Blunier B., Miraoui A. (2010). Proton Exchange Membrane 
Fuel Cell Air Management in Automotive Applications, 
Journal of Fuel Cell Science and Technology, Vol. 7 (4). 

[16] Morando S., Jemei S., Hissel D., Gouriveau R., and Zerhouni 
N. (2015). ANOVA method applied to Proton Exchange 
Membrane fuel cell ageing forecasting using an echo state 
network, Mathematics and Computers in Simulation, Vol. 131, 
pp. 1–12. 

[17] Silva, R. E., Gouriveau R., Jemei S., Hissel D., Boulon L., 
Agbossou K. (2014). Proton exchange membrane fuel cell 
degradation prediction based on Adaptive Neuro-Fuzzy 
Inference Systems. International Journal on Hydrogen Energy, 
Vol. 39 (21). 

[18] Morando S., Jemei S., Hissel D., Gouriveau R. and Zerhouni 
N. (2017). Proton exchange membrane fuel cell ageing 
forecasting algorithm based on echo state network. 
International Journal on Hydrogen Energy, Vol. 42 (2). 

[19] Robin C., Gerard M., Franco A. A., Schott P. (2013). 
Multi-scale coupling between two dynamical models for 
PEMFC aging prediction. International Journal on Hydrogen 
Energy, Vol. 38 (11), pp. 4675–4688. 

[20] Kurz T., Hakenjos A., Krämer J., Zedda M., Agert C. (2008). 
An impedance-based predictive control strategy for the 
state-of-health of PEM fuel cell stacks. Journal of Power 
Sources, Vol. 180, pp. 742–747. 

[21] Rubio M. A., Urquia A., Dormido S. (2010). Diagnosis of 
performance degradation phenomena in PEM fuel cells. 
International Journal on Hydrogen Energy, Vol. 35. 

[22] Fouquet N., Doulet C., Nouillant C., Dauphin-Tanguy G. and 
Ould-Bouamama B. (2006). Model based PEM fuel cell 
state-of-health monitoring via ac impedance measurements. 
Journal of Power Sources, Vol. 159, pp. 905–1013. 

[23] Schwartz J. (1994). Air pollution and hospital admissions for 
the elderly in Birmingham, Alabama. American Journal of 
Epidemiology, Vol. 139, pp. 589-598. 

[24] Box G. E. P. and Jenkins G. M. (1970). Time series analysis: 
Forecasting and control. Wiley Series in Probability and 
Statistics, Wiley Ed. 

[25] Yule U. (1927). On a method of investigating periodicities in 
disturbed series, with special reference to wolfer’s sunspot 
numbers. Philosophical Transactions of the Royal Society, Vol. 
226. 

[26] Slutzky E. (1927). The summation of random causes as the 
source of cyclic processes. Econometrica, Vol. 5, pp. 105–146. 

[27] Erdem E., Shi J. (2011). ARMA based approaches for 
forecasting the tuple of wind speed and direction, Applied 
Energy, Vol. 88, pp. 1405–1414. 

[28] Hao Y., Tian C. (2019). A novel two-stage forecasting model 
based on error factor and ensemble method for multi-step 
wind power forecasting, Applied Energy, Vol. 238, pp. 368–
383. 

[29] Loi T. S. A., Ng J. L. (2018). Anticipating electricity prices for 
future needs – Implications for liberalized retail markets, 
Applied Energy, Vol. 212, pp. 244–264. 

[30] David M., Ramahatana F., Trombe P. J. and Lauret P. (2016). 
Probabilistic forecasting of the solar irradiance with recursive 
ARMA and GARCH models, Solar Energy, Vol. 133, pp. 55–
72. 

[31] Wang X., Huang L. and Yang C. (2018). Prediction model of 
slurry pH based on mechanism and error compensation for 
mineral flotation process, Chinese Journal of Chemical 
Engineering, Vol. 26, pp. 1766–1772. 

[32] Ervural B. C., Beyca O. F. and Zaim S. (2016). Model 
estimation of ARMA using genetic algorithms: A case study of 
forecasting natural gas consumption, Procedia - Social and 
Behavioral Sciences, Vol. 235, pp. 537–545. 

[33] Klepsch J., Klüppelberg C. and Wei T. (2017). Prediction of 
functional ARMA processes with an application to traffic data, 
Econometrics and Statistics, Vol. 1, pp. 128–149. 

[34] Ying Z., Rui K. and Shihong X., Research on Glucose 
Concentration Predicting Based on ARMA Model (2014). 
Prognostics and System Health Management Conference 
PHM’2014, Hunan, China. 

[35] Kexin W., Mingxing D. (2010). A Temperature Prediction 
Method of IGBT Based on Time Series Analysis, The 2nd 
International Conference on Computer and Automation 
Engineering ICCAE’10. 

[36] Dang P., Zhang H., Yun X. and Ren H. (2017). Fault 
prediction of rolling bearing based on ARMA model, 
International Conference on Computer Systems, Electronics 
and Control ICCSEC’17. 

[37] Ning C. X., Wang, J. S. (2015). Auto Regressive Monving 
Average (ARMA) prediction method of bank cash flow time 
series, proceedings of the 34th Chinese Control Conference, 
Hangzhou, China. 

[38] Detti A. H., Jemei S. and Yousfi Steiner N. (2018). Proton 
exchange membrane fuel cell model for prognosis, 2018 IEEE 
Vehicle Power and Propulsion Conference VPPC’18, Chicago, 
USA. 

[39] Wold H. (1938). A study in the Analysis of Stationary Time 
Series. Almgrist and Wiksell. 

[40] http://giantleap.eu/ 

 


