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We solve a few open problems related to a peculiar property of the integer tetration b a, which is the constancy of its congruence speed for any sufficiently large b = b(a). Assuming radix-10 (the well-known decimal numeral system), we provide an explicit formula for the congruence speed V (a) ∈ N 0 of any a ∈ N -{0} that is not a multiple of 10. In particular, for any given n ∈ N, we prove to be true Ripà's conjecture on the smallest a such that V (a) = n. Moreover, for any a ̸ = 1 : a ̸ ≡ 0 (mod 10), we show the existence of infinitely many prime numbers p j := p j (V (a)) such that V (p j ) = V (a).

Introduction

The aim of this paper is to give a general formula for the "congruence speed" of tetration [START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF][START_REF]Sequence A317905 in the On-line Encyclopedia of Integer Sequences[END_REF], affirmatively answering the final conjecture stated in [START_REF] Ripà | On the constant congruence speed of tetration[END_REF]. The properties that arise from our study [START_REF] Yan | Multiplex congruence network of natural numbers[END_REF] are valid for many different numeral systems [START_REF] Germain | On the Equation a x ≡ x (mod b). Integers: Learning, Memory[END_REF][START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF], but (from here on out) we assume radix-10.

First of all, let us introduce the constancy of the congruence speed of the integer tetration b a. 

a ( b-1 a) if b ≥ 2 .
Given b-1 a ≡ b a (mod 10 d ) ∧ b-1 a ̸ ≡ b a (mod 10 d+1 ), ∀b > a ≥ 2, V (a, b) returns the strictly positive integer such that b a ≡ b+1 a (mod 10 d+V (a) ) ∧ b a ̸ ≡ b+1 a (mod 10 d+V (a)+1 ), and we define V (a, b) as the "congruence speed" of the base a at the given height of its hyperexponent b. Consequently, if a = 2, the tetrations for b from 1 to 5 are 1 2 = 2, 2 2 = 4, 3 2 = 16, 4 2 = 65536, and 5 2 = . . . 19156736 (respectively), so we can see that V (2, 1) = V (2, 2) = 0, while V (2, 3) = V (2, 4) = 1. Now, let us assume a ∈ N : a ̸ ≡ 0 (mod 10) in the rest of the paper.

Since it is known [START_REF] Ripà | On the constant congruence speed of tetration[END_REF] that b -1 ≥ a ≥ 2 is a sufficient but not necessary condition for V (a, b) = V (a), let b : b > a ≥ 2 be (unless differently specified) such that we can simply indicate as V (a) the "constant congruence speed" of a, where V (a) has been already defined in Reference [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], Definition 2.1, assuming V (1) = 0 (see [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], pages 248-249). To this purpose, it is crucial to underline that the constancy of the congruence speed of a is a general property concerning also cases where the minimum value of b such that V (a, b) = V (a) is smaller than a itself (for a proof that b ≥ 2 implies V (3, b) = V (3), see [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], Lemma 4.3). Furthermore, for given pivotal tetrations, an in-depth analysis of the smallest b such that the related congruence speed is constant can be found in Reference [START_REF] Ripà | La strana coda della serie n n[END_REF].

A formula for the constant congruence speed of a

In the present Section we study V (a), taking into account every a ̸ ≡ 0 (mod 10) [START_REF]Sequence A317905 in the On-line Encyclopedia of Integer Sequences[END_REF]. In the first subsection, for any given V (a) = n ∈ N -{0, 1}, we show which are the smallest bases whose residues modulo 10 cover the whole set {1, 2, 3, 4, 5, 6, 7, 8, 9}. The second subsection is devoted to provide a general formula which maps any a whose constant congruence speed is given, for any V (a) ∈ N.

Finding bases with arbitrarily large V (a) in the ring of decadic integers

In order to describe the structure of V (a) ∈ N -{0} in radix-10, for any a ̸ ≡ 0 (mod 10), it can be useful to move the problem on Z 10 , the ring of 10-adic integers. Proposition 2.2. Any positive integer can be represented as a 10-adic integer α. α can be written as an infinitely long string of digits going to the left of a "fixed digit". The aforementioned fixed digit, that we indicate as s 1 , is the one which defines the congruence class (AKA residue modulo 10) of the corresponding base of the tetration b a. For any n = 1, 2, 3, . . . , let us consider S(n) := s n s (n-1) . . . s 2 s 1 ∈ Z 10 n Z , where the underscore symbol has been introduced in order to indicate the juxtaposition of nonnegative integers so that S(n+1) = s (n+1) S(n). The residues modulo 10 n satisfy the congruence relation S(n) ≡ S(n + 1) (mod 10 n ). Now, assume s 1 ∈ {1, 2, 3, . . . , 9} and, if n ≥ 2, let s j+1 ∈ {0, 1, 2, . . . , 9} for every j ∈ {1, . . . , n -1}. In particular, we have that

a s 1 (n) := n-1 j=0 s j+1 • 10 j ⇒ a s 1 (n) ≡ s 1 (mod 10
). Thus, given n, a s 1 (n) is a strictly positive decimal integer, smaller than 10 n+1 , having s 1 as its least significant digit.

On the other hand, we know that, ∀a

s 1 (n), ∃α ∈ Z 10 such that α = +∞ j=0 s j+1 • 10 j ≡ n-1 j=0 s j+1 • 10 j (mod 10 n ) = a s 1 (n).
Consequently, the idea to work with decadic integers can be an efficient approach to solve (radix-10) the problem of finding, for each congruence class modulo 10 belonging to the set {1, 3, 7, 9}, which is the smallest tetration base whose constant congruence speed is equal to any given positive integer n. Definition 2.1. For every n ∈ N -{0}, we define ã(n) := min n {a ̸ ≡ 0 (mod 10) : V (a) = n}. In addition, for any given s 1 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, let us denote with a {s 1 } (n) the generic element of the set

A s 1 (n) := {a : a ≡ s 1 (mod 10) ∧ V (a) = n}. Consequently, ∀n ≥ 1, ãs 1 (n) = min n A (s 1 ) (n) and ã{1,2,3,4,5,6,7,8,9} (n) = min n {ã 1 (n), ã2 (n), . . . , ã9 (n)} = ã(n).
In order to avoid notational misunderstandings, let us specify that, from here on, a {c,d} ∈ {A c ∪ A d } refers to every (generic) tetration base that is congruent modulo 10 to c or d (assuming that c and d represent two distinct elements of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}). We use the notation a [c,d] to indicate that we are considering one particular element from the congruence class c modulo 10 and also another one from the congruence class d modulo 10 so that ã[c,d] (see Section 2.2) returns the smallest base which is congruent modulo 10 to c and the smallest one which is congruent modulo 10 to d, while ã{c, d} = min(ã c , ãd ) gives the smallest base that is congruent modulo 10 to c or d. In particular, let us simply write a s 1 (omitting brackets) if, by selecting each one of the allowed congruence classes s 1 , we always get a unique base, making it clear that the elements belonging to special subsets of {a ∈ N : a ̸ ≡ 0 (mod 10)} will be uniquely marked by adding symbols on the top of a itself (such as the aforementioned ãc or even a * ), while different mathematical objects will be introduced by using other letters so that y c [START_REF] Mahler | Part 1: g-adic Numbers and Roth's theorem[END_REF], which indicates the c-th solution in Z 10 of the equation y 5 = y (see Proposition 2.6), should not be confused with any base ending in c (the decadic integer originated by y c (5) is in no way forced to have c as its rightmost digit). To this purpose, we finally observe that y 5 = y returns at most two decadic integers, say α ′ c and α ′′ c , both having the same c as their rightmost digit; since each of the α ′ s 1 is well defined for any given s 1 = 1, 2, . . . , 9, we are free to introduce some general properties pertaining to the α ′ s 1 without needing to add unnecessary brackets.

Proposition 2.3. Let us consider the standard decimal numeral system (radix-10). It follows that the corresponding g-adic ring that we have to take into account is the decadic one (g = 10) [START_REF] Mahler | Part 1: g-adic Numbers and Roth's theorem[END_REF], but 10 is not a prime number or a power of a prime (since 10 = 2 • 5 = p 1 • p 2 , p 1 ̸ = p 2 ). Thus, for every odd s 1 (as defined in Proposition 2.2), we can find more than one polymorphic α = . . . s 1 that arises when we solve in Z 10 := lim ←-Z 10 n Z (i.e., the set of formal series +∞ j=0 s j+1 • 10 j , s j+1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) the fundamental equation y t = y. Therefore, assuming s n+1 ̸ = 0, ∀s 1 ∈ {1, 3, 5, 7, 9}, we can find two order-n residues of as many polymorphic integers (i.e., α ′ ̸ = α ′′ such that α ′ ≡ α ′′ (mod 10)) whose expansions modulo 10 n are always characterized by a constant congruence speed equal to n (e.g., s 1 = 7 ⇒ α ′ s 1 = . . . 66295807 and α ′′ s 1 = . . . 92077057 both satisfy y 5 = y, and n = 7 implies that V (α ′ (mod 10 7 )) = V (6295807) = V (α ′′ (mod 10 7 )) = V (2077057) = 7 since the eighth rightmost digit of α ′ 7 and α ′′ 7 is not zero). 

≥ 3, 1 = V (a, b) ≥ V (a, b + 1) ≥ 1 so that V (a, b + 1) = V (a, b) = 1 (e.g., V (2, b : b ≥ 3) = V (2, b : b ≥ len(2) + 2) = 1 is consistent
with the expected result [START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF]).

Proposition 2.4. The constant congruence speed of a is well defined if and only if a ̸ ≡ 0 (mod 10) [START_REF] Ripà | On the constant congruence speed of tetration[END_REF]. In particular, V (a) ≥ 1 ⇒ a ≥ 2, and b ≥ a + 1 represents a sufficient, but not a necessary, condition for the constancy of the congruence speed of a. Moreover, ∃a * ≡ {3, 7} (mod 10) : = 5).

V (a * , 2 ≤ b ≤ len(a * ) + 2) = 1 + V (a * , b ≥ len(a * ) + 3) = 1 + V (a * ),
Proposition 2.5.

g = 10 = 2 • 5 = p 1 • p 2 ⇒ gcd(p 1 , p 2 ) = 1 (see Proposition 2.3). Since in Z 10 (which is not an integral domain) ∃h ̸ = 0 ∧ r ̸ = 0 such that h • r = 0, it follows that, for every n ∈ N, 5 2 n • 2 5 n ≡ 0 (mod 10 n ) by the ring homomorphism ϕ : Z 10 → Z 10 n Z . Since the sequence {5 2 n } n := 5 2 0 , 5 2 1 ,
. . . converges 5-adically to 0 and 2-adically to 1, and {2

5 n } ∞ = 1 -{5 2 n } ∞ ,
the above is the unique pair which induces the decomposition of Z 10 . Thus, Z 10 ∼ = Z 5 ⊕ Z 2 (where ⊕ indicates the direct sum) since, for p prime, the complete ring Z p contains only the two idempotents elements 0 and 1, and the 5-adically plus 2-adically convergence implies the 10-adically convergence (by Cauchy's convergence criterion). Hence, assume h(n) ≃ 5 2 n and r(n) ≃ 2 5 n in order to solve the fundamental equation y t = y, introduced by Proposition 2.3.

Given

s 1 = 5, if h n = 5 2 n (mod 10 n ), then lim ∞←n h n = . . . 92256259918212890625 [4]. Similarly, for s 1 = 2, r n = 2 5 n (mod 10 n ) ⇒ lim ∞←n r n = . . . 804103263499879186432.
Now, let {y i (t), i = 1, 2, . . . } be the set of the i solutions in Z 10 of y t = y, and also let {y î(t), î = 1, 2, . . . } be a subset of

{y i (t)}. If t = 2, then ∄ î : y î(t) ∈ {0, 1} ⇔ y î(2) ∈ {h, 1 -h} for any î, so let y 1 (2) = h and y 2 (2) = 1 -h.
Following the path above, it is possible to verify that all the solutions of y t = y belong to the set of the solutions of y 5 = y [START_REF] Michon | Polyadic Arithmethic[END_REF]. Thus, for every given î such that

y î(t) / ∈ {0, 1}, y î(5) → a(n) = s n s (n-1) . . . s 2 s 1 ⇒ V (a(n)) ≥ n. We point out that s n+1 = 0 ⇒ V (a(n)) > n and V (a(n)) = n ⇒ s n+1 ̸ = 0, since s n . . . s 2 s 1 ≡ s (n+1) s n . . . s 2 s 1 (mod 10 n ) ∧ s n . . . s 2 s 1 ̸ ≡ s (n+1) s n . . . s 2 s 1 (mod 10 n+1 ) is a necessary condition for V (a(n)) = n.
In particular, we should note that if y [START_REF] Caldwell | Largest Known Primes[END_REF][START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF][START_REF] Lubin | Why are p-adic numbers and p-adic integers only defined for p prime? In All Questions, Mathemathics Stack Exchange[END_REF][START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290373 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290375 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A317905 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF] Ripà | La strana coda della serie n n[END_REF] (5) originates all the pentamorphic integers coprime to 10 satisfying y t = y (see Proposition 2.6, Equation ( 2)), then y [START_REF] Caldwell | Largest Known Primes[END_REF][START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF][START_REF] Lubin | Why are p-adic numbers and p-adic integers only defined for p prime? In All Questions, Mathemathics Stack Exchange[END_REF][START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290373 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290375 in the On-line Encyclopedia of Integer Sequences[END_REF] [START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF][START_REF]Sequence A224473 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF] (n) characterized by a constant congruence speed which is at least equal to any given strictly positive integer n. Hence, considering each of the four mentioned congruence classes modulo 10, the ā [START_REF] Caldwell | Largest Known Primes[END_REF][START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF][START_REF]Sequence A224473 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF] 

(5) → ± 1 -2 • 5 2 n (mod 10 n ), ± 5 2 n -2 5 n (mod 10 n ), ± 5 2 n + 2 5 n (mod 10 n ) is enough to find all the smallest bases ā[1,3,7,9] (n) ≤ ã[1,
(n) (whose constant congruence speed is V ā[1,3,7,9] (n) ≥ n) are given by Equation (1), ā[1,3,7,9] (n) =              1 -2 • 5 2 n (mod 10 n ) iff a ≡ 1 (mod 10) ∧ a ̸ = 1 min n 5 2 n -2 5 n (mod 10 n ), -5 2 n + 2 5 n (mod 10 n ) iff a ≡ 3 (mod 10) min n 5 2 n + 2 5 n (mod 10 n ), 2 5 n -5 2 n (mod 10 n ) iff a ≡ 7 (mod 10) 2 • 5 2 n -1 (mod 10 n ) iff a ≡ 9 (mod 10)
.

(1) In Equation ( 1), the condition a ̸ = 1 follows from the definition of V (a) itself, which includes V (1) = 0 < n (for the reasons explained in Reference [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], pages 248-249). Since b 1 is congruent modulo 10 m to b+1 1 for any m ∈ N 0 , the constant congruence speed of a = 1 is special, and this explains why, in the next proposition, we will exclude y 15 (t) : 1 t = 1 from the set of the nontrivial solutions of y t = y. Proposition 2.6. Let h(n) ≃ 5 2 n and r(n) ≃ 2 5 n , as usual. Assume t ≥ 5 and let {y i (t), i ∈ Z + } represent the set of all the solutions in Z 10 of the fundamental equation y t = y (i.e., i ∈ {1, 2, 3, . . . , 14, 15}). Assume that α ′ s 1 ∈ Z 10 and α ′′ s 1 ∈ Z 10 (if any) are not equal each other for any s 1 ∈ {1, 2, . . . , 9} so that we denote with {α ′ s 1 ∪ α ′′ s 1 } := {y î(t), î = 1, 2, . . . } the subset formed by the y i (t) which are not congruent modulo 10 2 to {0, 1}. It follows that

{y i (5), i = 1, . . . , 15} ⊋ {α ′ 1 , α ′ 2 , α ′ 3 , α ′′ 3 , α ′ 4 , α ′ 5 , α ′′ 5 , α ′ 6 , α ′ 7 , α ′′ 7 , α ′ 8 , α ′ 9 , α ′′ 9 }
, since y 14 (t) : 0 t = 0 and y 15 (t) : 1 t = 1 show the existence of two (trivial) solutions of y 5 = y which are not included in the previously mentioned subset. In order to understand how the remaining y i (t) anticipate the recurrence rules stated in Section 2.2, it can be helpful to preliminary observe that the y i (t) follow from lim n→∞

5 2 n = 1 + √ 1 2 ⇒ y = lim n→∞ 5 2 n = lim n→∞ 5 2 n+1 = y 2 ⇒ y j≤i (2) = y (1,12,14,15) (t) = {α ′ 1 , α ′ 9 , 0, 1} = {- √ 1, √ 1 
, 0, 1}, and we can easily verify that α [START_REF]Sequence A224473 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A224474 in the On-line Encyclopedia of Integer Sequences[END_REF]. Considering t = 5, we find in a similar way all the other roots (e.g., see References [START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290373 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290374 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290375 in the On-line Encyclopedia of Integer Sequences[END_REF] for α ′ 3 , α ′′ 3 , α ′ 7 , and α ′′ 7 ), so it is possible to conclude that the y i≤13 (t ≥ 5) are such that

′ 9 = -α ′ 1 = √ 1 = lim n→∞ 5 n -2 n 5 n + 2 n [
α ′ 1 = -α ′ 9 , α ′ 2 = -α ′ 8 , α ′ 3 = -α ′ 7 , α ′′ 3 = -α ′′ 7 , α ′ 4 = -α ′ 6 , α ′ 5 = -α ′′ 5
, and α ′′ 9 = -1. Furthermore, for any n, r(n

) 2 + 1 = h(n) → 5 2 n ≡ 2 5 n 2 + 1 (mod 10 n ) if and only if 5 2 n ≡ 4 5 n + 1 (mod 10 n ).
In general, as clearly explained by Michon in Reference [START_REF] Michon | Polyadic Arithmethic[END_REF], we have

y i≤13 (t) =                                                                α ′ 1 = 1 -2 • h = . . . 538207781991786760045215487480163574218751 iff i = 1 α ′ 2 = r = . . . 553032451441224165530407839804103263499879186432 iff i = 2 α ′ 3 = h -r = . . . 90779454884838576212137588152996418333704193 iff i = 3 α ′′ 3 = -h -r = . . . 317662666830362972182803640476581907922943 iff i = 4 α ′ 4 = h -1 = . . . 23230896109004106619977392256259918212890624 iff i = 5 α ′ 5 = h = . . . 23423230896109004106619977392256259918212890625 iff i = 6 α ′′ 5 = -h = . . . 6576769103890995893380022607743740081787109375 iff i = 7 α ′ 6 = 1 -h = . . . 76769103890995893380022607743740081787109376 iff i = 8 α ′ 7 = -h + r = . . . 220545115161423787862411847003581666295807 iff i = 9 α ′′ 7 = h + r = . . . 5682337333169637027817196359523418092077057 iff i = 10 α ′ 8 = -r = . . . 967548558775834469592160195896736500120813568 iff i = 11 α ′ 9 = 2 • h -1 = . . . 1792218008213239954784512519836425781249 iff i = 12 α ′′ 9 = -1 = . . . 999999999999999999999999999999999999999999999 iff i = 13 . (2) Since ϕ : Z 10 → Z 10 n Z , it follows that α → a (mod 10 n ) ⇒ V α ′ s 1 (mod 10 n ) ≥ n and V α ′′ s 1 (mod 10 n ) ≥ n. More specifically, ∀n ≥ 2, s n+1 = 0 ⇒ V α ′ s 1 ̸ =5 (mod 10 n ) ∧ V α ′′ s 1 ̸ =5 (mod 10 n ) ≥ n + 1, while (V (α ′ 5 (mod 10 n )) ∧ V (α ′′ 5 (mod 10 n )))
≥ n + 1 is true for any s n+1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

In particular, if gcd(s 1 , 10) = 1, then we can easily verify that the relations shown in the next subsection are correct; so, ∀n ≥ 2, s n+1 ̸ = 0 ⇒ V α ′

(1,3,7,9) (mod 10 n ) = n and also V α ′′ (3,7,9) (mod 10 n ) = n.

Proposition 2.7. Let α ′ s 1 (n) := α ′ s 1 (mod 10 n ). Let us consider only the even values of s 1 so that ŝ1 ∈ {2, 4, 6, 8}. Since V α ′ s 1 (n) ≥ n for any n ∈ N -{0}, we only need to compute the residues modulo 2 • 5 n of α ′ ŝ1 (observing that (2 • 5 n )|P V α ′ ŝ1 (n) for any n > 1, see [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], Section 5) in order to find many of the bases ãŝ 1 (n) that are characterized by a constant congruence speed of n (e.g., if ŝ1 = 2 and n = 4, then V (α ′ 2 (4)) = V (6432) = 4, and

V (6432 (mod 2 • 5 4 )) = V (182) = 4 = V (ã 2 (4)) ⇒ ã2 (4) = 182). In general, we have that V α ′ ŝ1 (n) (mod 2 • 5 n ) ≥ n (e.g., V (α ′ 2 (14) (mod 2 • 5 n )) = 15
), and α ′ ŝ1 (n) (mod 2 • 5 n ) always returns the smallest base (congruent modulo 10 to ŝ1 ) which is characterized by a constant congruence speed equal or greater than n. Since we are interested in V (ã ŝ1 (n)) = n without any exception, we find every ã [START_REF] Germain | On the Equation a x ≡ x (mod b). Integers: Learning, Memory[END_REF][START_REF] Lubin | Why are p-adic numbers and p-adic integers only defined for p prime? In All Questions, Mathemathics Stack Exchange[END_REF][START_REF] Michon | Polyadic Arithmethic[END_REF][START_REF]Sequence A224474 in the On-line Encyclopedia of Integer Sequences[END_REF] (n) by adding, if necessary, 2

• 5 n to α ′ ŝ1 (n) (mod 2 • 5 n ) (e.g., V (α ′ 8 (9)) = V (120813568) = 9
, and 120813568 ≡ 3626068 (mod 2

• 5 9 ) would suggest that α ′ 8 (9) (mod 2 • 5 9 ) is equal to 3626068, but clearly V (3626068) = 9 + 1) so that α ′ ŝ1 (n) (mod 2 • 5 n ) + λ ŝ1 (n) • 2 • 5 n = ãŝ 1 (n) still holds for one λ ŝ1 (n) := λ (ŝ 1 , n) ∈ {0, 1} (in the two previous examples we verify that λ = 1 holds because (α ′ 2 (14) (mod 2 • 5 n ) + 1 • 2 • 5 14 = 23316686432 = ã2 (14) > ã2 (15) = α ′ 2 (14) (mod 2 • 5 9
), and also α ′ 8 (9) (mod 2

• 5 n ) + 1 • 2 • 5 9 = 7532318 = ã8 (9) > ã8 (10) = α ′ 8 (9) (mod 2 • 5 9
)). In particular, if ŝ1 ∈ {4, 6}, then ã4 (n) = 5 n -1 ∧ ã6 (n) = 5 n + 1 follows by construction (see y [START_REF] Mahler | Part 1: g-adic Numbers and Roth's theorem[END_REF][START_REF]Sequence A224474 in the On-line Encyclopedia of Integer Sequences[END_REF] (5) by Equation ( 2)). Trivially, for any n, 5 n -1 ≡ (5 n -1) (mod 2 • 5 n ) and also 5 n + 1 ≡ (5 n + 1) (mod 2 • 5 n ); thus, ŝ = (4 ∨ 6) ⇒ λ (4,6) = 0 for any positive integer n.

Finally, we have that

λ ŝ1 (n) = 1 if and only if ŝ1 = (2 ∨ 8) ∧ α ′ ŝ1 (n) (mod 2 • 5 n ) = α ′ ŝ1 (n + 1) (mod 2 • 5 n+1 ), while λ = 0 otherwise.
This concludes the proof that, for any n ≥ 1 and each ŝ1 ∈ {2, 4, 6, 8}, ∃k(ŝ

1 , n) ∈ N 0 : α ′ ŝ1 (n) -k • 2 • 5 n = ãŝ 1 (n).
Lastly, we can find bases congruent to 5 modulo 10 that are smaller than min n (α ′ 5 (n), α ′′ 5 (n)) and whose constant congruence speed is at least equal to n, by simply taking into account that

P ′ (α ′ 5 (n)) = P ′ (α ′′ 5 (n)) = 5 • 2 n+1
(see [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], Section 5) and introducing the additional condition n > 2.

Thus,

V (α ′ 5 (n) (mod 10 • 2 n )) ≥ n ∧ V (α ′′ 5 (n) (mod 10 • 2 n )) ≥ n, (3) 
and Equation (3) let us confirm the validity of Equation ( 5) (e.g., if n = 20, then α ′ 5 (20) = 92256259918212890625 is congruent modulo 10 • 2 20 to 9437185 and V (9437185) = 20, while

V (α ′′ 5 (20) (mod 10 • 2 20 )) = V (6291455) = 21 > n).

Main result

We show that Equation ( 4) is true for any n ≥ 2 (i.e., n ≥ 2 ⇒ ã5 (n) = ã(n), see Definition 2.1).

ã(n) = min n 2 n • 2 • cos π • (n -1) 2 -4 • sin π • (n -1) 2 + 5 + 1, 2 n • 4 • sin π • (n -1) 2 -2 • cos π • (n -1) 2 + 5 -1 . (4) 
Hence,

ã(n) =    2 n • 5 + 2 • sin π•n 2 + 4 • cos π•n 2 + 1 iff n ≡ {2, 3} (mod 4) 2 n • 5 -2 • sin π•n 2 -4 • cos π•n 2 -1 iff n ≡ {0, 1} (mod 4) . (5) 
Now, assume b > a ≥ 2 (as usual), even if for any a ≡ {1, 2, 4, 5, 6, 8, 9} (mod 10) we are persuaded that b ≥ len(a) + 2 represents a sufficient condition for V (a, b) = V (a), as predicted by Conjecture 2.1 [START_REF] Germain | On the Equation a x ≡ x (mod b). Integers: Learning, Memory[END_REF][START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF]. Then, for any given n ∈ N -{0, 1}, V a {s 1 } (n) = n, ∀s 1 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, if and only if Equations ( 6), ( 7), ( 8), ( 10), ( 11), ( 14), ( 15), [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], and (17) are satisfied. 

A 1 (n) =              2 4•5 n +1 -1 (mod 10 n ) + j n • 10 n , ∀j n ̸ ≡
With reference to Equation ( 6), we observe that the previously stated condition n ∈ N -{0, 1} assures n ̸ = 1 so that we have excluded a priori the possibility that 2 4•5 1 +1 -1 (mod 10 1 ) + 0 • 10 n = 1 > 0 gives a contradiction, inasmuch as V (1) = 0 by definition.

Since (k + 1)

• 10 n + 1 > 2 4•5 n +1 -1 (mod 10 n ) is always true, Equation (6) implies that if n : 2 4•5 n +1 -1 (mod 10 n ) ̸ ≡ 2 4•5 n+1 +1 -1 (mod 10 n+1 ), then ∃!a 1 (n) ≤ 2 4•5 n +1 -1 (mod 10 n ).
Thus, if the (n + 1)-th rightmost digit of α ′ 1 (see Equation ( 2)) is nonzero, then the unique base a 1 (n) ≤ 2 4•5 n +1 -1 (mod 10 n ) corresponds to the desired ã1 (n).

In general (as introduced in Proposition 2.6), V a {1,9} ≤ min (ń, ǹ), where ń :

5 ń | a 2 {1,9} -1 ∧ 5 ń+1 ∤ a 2 {1,9} -1 , and ǹ : 2 ǹ| a 2 {1,9} -1 ∧ 2 ǹ+1 ∤ a 2 {1,9} -1 (i.e., ń ̸ = 0 is equal to the 5-adic valuation of a 2 {1,9} -1 , while ǹ ̸ = 0 indicates the 2-adic valuation of a 2 {1,9} -1 ). It follows that, ∀n ≥ 2, 10 n + 1 ≥ ã1 (n) > √ 5 n + 1 (since 5 n + 1 is even). Similarly to Equation (6), if s 1 = 9, we have A 9 (n) =              2 • 5 2 n -1 (mod 10 n ) + j n • 10 n , ∀j n ̸ ≡ 2•5 2 n+1 -1 (mod 10 n+1 )-(2•5 2 n -1) (mod 10 n ) 10 n (mod 10) 10 n -1 + k • 10 n , ∀k ≡ {0, 1, 2, 3, 4, 5, 6, 7, 8} (mod 10) . (7) 
As previously shown, if n : 2

• 5 2 n -1 (mod 10 n ) ̸ ≡ 2 • 5 2 n+1 -1 (mod 10 n+1 ), then ∃!a 9 (n) ≤ 2 • 5 2 n -1 (mod 10 n ).
In general, V a {1,9} ≤ min (ń, ǹ) and Equation ( 7) imply that 10 n > ã9 (n) > √ 5 n + 1. We point out that, as a consequence of Proposition 2.6 (see the case s n+1 = 0), n :

2 4•5 n+1 +1 -1 (mod 10 n+1 ) -2 4•5 n +1 -1 (mod 10 n ) 10 n ≡ 0 (mod 10) ⇒ 2 4•5 n +1 -1 ≡ 2 4•5 n+1 +1 -1 (mod 10 n+1 ) ⇒ V 2 4•5 n+1 +1 -1 (mod 10 n ) > n, and similarly n : 2 • 5 2 n+1 -1 (mod 10 n+1 ) -2 • 5 2 n -1 (mod 10 n ) ≡ 0 (mod 10 n+1 ) ⇒ 2 • 5 2 n -1 ≡ 2 • 5 2 n+1 -1 (mod 10 n+1 ) ⇒ V 2 • 5 2 n -1 (mod 10 n ) > n (e.g., V (163574218751) = V 2 4•5 12 +1 -1 (mod 10 12 ) = 13).
Let us consider the case s 1 = 5. From [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], we know that, ∀n ∈ N -{0, 1},

A 5 (n) =    2 n • 5 + 2 • sin π•n 2 + 4 • cos π•n 2 + 1 + k • 5 • 2 n+1 , ∀k ∈ N 0 2 n • 5 -2 • sin π•n 2 -4 • cos π•n 2 -1 + k • 5 • 2 n+1 , ∀k ∈ N 0 . ( 8 
)
Equation ( 8) implies that

ã5 (n) ≤ 9 • 2 n + 1, (9) 
and the last inequality (trivially) holds because, ∀n ∈ N,

max ±x • cos π 2 • n ± y • sin π 2 • n = max (|x|, |y|).
If s 1 = 4 or s 1 = 6, for the reasons already discussed in the previous subsection, we have, respectively,

A 4 (n) = 5 n -1 + k • 2 • 5 n , ∀k ≡ {0, 1, 3, 4} (mod 5); (10) 
A 6 (n) = 5 n + 1 + k • 2 • 5 n , ∀k ≡ {0, 1, 3, 4} (mod 5). (11) 
Equations ( 10) and ( 11) imply that, ∀n, a

{4} (n) = a {6} (n) -2. Thus, min n (ã 4 (n), ã6 (n)) = ã4 (n) = 5 n -1.
Now, we study the cases s 1 = 2 and s 1 = 8. In general, V a {2,8} is less than or equal to n, the 5-adic valuation of a 2 {2,8} + 1 , and in particular we have

a {2,8} (n) = 5 n • c a {2,8} (n) -1 = 5 n-n • 5 n • c a {2,8} (n) -1 ⇒ V a {2,8} (n) = n ≤ n. ( 12 
)
Since c a {2,8} (n) for any n, Equation ( 12) states that min n (ã

2 (n), ã8 (n)) ≥ √ 5 n -1.
More specifically, picking any value of n, the constraint that c a {2,8} = 

to conclude that ã[2,8] (20) = {175120972936432, 15613890344818} ⇒ V ã[2,8] (20) = 20 ⇒ V (5 20 • (2 • m + 1) + 79753541295807) ≥ 20 and so is V (5 20 • 2 • m + 15613890344818) (the last inequality can be proved by observing that (n = 20, s 1 = 2, m = 1) ⇒ a 2 (n = 20, m = 1) = (5 20 • (2 • 1 + 1) + 79753541295807) = 365855836217682 = ã2 (21) ⇒ V (a 2 (20, 1)) = V (a 2 (21, 0)) = V (476837158203125 • 0 + 365855836217682) = V (ã 2 (21)) = 21 > 20 = V (ã 2 (20)); ditto for s 1 = 8).
Equation ( 13) provides also a valid upper bound for the constant congruence speed of every element of {A 3 ∪ A 7 }, since a 2 {2,3,7,8} + 1 = p j ̸ =5 p q j j • 5 n ≥ p j ̸ =5 p q j j • 5 V (a{2,3,7,8}) (where p j represents any prime divisor of a 2 {2,3,7,8} + 1 which is not equal to 5, while q indicates how many times the corresponding p appears in the factorization of a 2 {2,3,7,8} + 1 [START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF]).

Furthermore, V a {3,7} ≤ min(n, ǹ), where n :

5 n| a 2 {3,7} + 1 ∧ 5 n+1 ∤ a 2 {3,7} + 1 and ǹ : 2 ǹ| a 2 {3,7} -1 ∧ 2 ǹ+1 ∤ a 2 {3,7} -1 .
It follows that, for any (strictly) positive integer n, min n (ã 3 (n), ã7 (n)) > √ 5 n -1 (since 5 n -1 is even). As shown in Section 2.1, we can easily improve the above upper bound by taking advantage of the commutative ring of 10-adic integers, giving an explicit formula for V a {3,7} = n in the same way as we have already done for V a {1,9} . For this purpose, let V a {3,7} = n ≤ n.

Since

α ′ 7 = h -r = -α ′ 3 and α ′′ 7 = h + r = -α ′′ 3 (where h(n) ≃ 5 2 n and r(n) ≃ 2 5 n ), if s 1 = 3, then A 3 (n) =                      5 2 n -2 5 n (mod 10 n ) + j n • 10 n , ∀j n ̸ ≡ 5 2 n+1 -2 5 n+1 (mod 10 n+1 )-(5 2 n -2 5 n ) (mod 10 n ) 10 n (mod 10) -5 2 n -2 5 n (mod 10 n ) + j n • 10 n , ∀j n ̸ ≡ -5 2 n+1 -2 5 n+1 (mod 10 n+1 )-(-5 2 n -2 5 n ) (mod 10 n ) 10 n (mod 10) , (14) 
while the case s 1 = 7 is covered by Equation ( 15)

A 7 (n) =                      2 5 n -5 2 n (mod 10 n ) + j n • 10 n , ∀j n ̸ ≡ 2 5 n+1 -5 2 n+1 (mod 10 n+1 )-(2 5 n -5 2 n ) (mod 10 n )
10 n (mod 10)

5 2 n + 2 5 n (mod 10 n ) + j n • 10 n , ∀j n ̸ ≡ 5 2 n+1 +2 5 n+1 (mod 10 n+1 )-(5 2 n +2 5 n ) (mod 10 n ) 10 n ( mod 10) 
.

In order to complete the (constant) congruence speed map, we only need a formula for A 2 (n) and A 8 (n), as shown by Equations ( 6), ( 7), ( 8), [START_REF]Sequence A290373 in the On-line Encyclopedia of Integer Sequences[END_REF], [START_REF]Sequence A290374 in the On-line Encyclopedia of Integer Sequences[END_REF], [START_REF]Sequence A337392 in the On-line Encyclopedia of Integer Sequences[END_REF], and [START_REF] Ripà | La strana coda della serie n n[END_REF].

From Proposition 2.7, we know that α

′ (2,8) (n) := α ′ (2,8) (mod 10 n ) implies α ′ 2 (n) + α ′ 8 (n) = 10 n , α ′ 2 (n) (mod 2 • 5 n ) + α ′ 8 (n) (mod 2 • 5 n ) = 2 • 5 n , and ã(2,8) (n) = α ′ (2,8) (n) (mod 2 • 5 n ) + λ (2,8) (n) • 2 • 5 n , where λ (2,8) (n) =    0 iff α ′ (2,8) (n) (mod 2 • 5 n ) ̸ = α ′ (2,8) (n + 1) (mod 2 • 5 n+1 ) 1 iff α ′ (2,8) (n) (mod 2 • 5 n ) = α ′ (2,8) (n + 1) (mod 2 • 5 n+1 ) . A 2 (n) = ã2 (n) + k • 2 • 5 n , ∀k ̸ ≡ ã2 (n + 1) -ã2 (n) 2 • 5 n (mod 5), (16) 
A 8 (n) = ã8 (n) + k • 2 • 5 n , ∀k ̸ ≡ ã8 (n + 1) -ã8 (n) 2 • 5 n (mod 5), (17) 
where, as usual, ã2 (n) = 2 5 n (mod 10 n ) (mod 2

• 5 n ) + λ 2 (n) • 2 • 5 n and ã8 (n) = -2 5 n (mod 10 n ) (mod 2 • 5 n ) + λ 8 (n) • 2 • 5 n . Hence, ã2 (n) + ã8 (n) = α ′ 2 (n) (mod 2 • 5 n ) + α ′ 8 (n) (mod 2 • 5 n ) + 2 • 5 n • (λ 2 (n) + λ 8 (n)). Since α ′ 2 (n) (mod 2 • 5 n ) + α ′ 8 (n) (mod 2 • 5 n ) = 2 • 5 n , for any n, we have shown that ã2 (n) = 2 • 5 n • (1 + λ 2 (n) + λ 8 (n)) -ã8 (n), where (λ 2 (n) + λ 8 (n)) ∈ {0, 1, 2}.
In conclusion, if V (a) = 1, then a(1) ≡ {2, [START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF][START_REF] Lubin | Why are p-adic numbers and p-adic integers only defined for p prime? In All Questions, Mathemathics Stack Exchange[END_REF][START_REF] Michon | Polyadic Arithmethic[END_REF][START_REF]Sequence A224474 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290374 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290375 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A317905 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A337392 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF] Ripà | On the constant congruence speed of tetration[END_REF][START_REF] Selberg | An elementary proof of Dirichlet's Theorem about primes in an arithmetic progression[END_REF][START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF]21,22, 23} (mod 25).

(

Therefore, we have mapped all the bases a such that V (a) = n.

The constant congruence speed formula that we have shown in the present section confirms also Hypothesis 1 and Hypothesis 2, stated in Reference [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], as V (a) ≥ 2 ⇒ P(V (a)) = 10 V (a)+1 (see [START_REF] Ripà | La strana coda della serie n n[END_REF], Equation ( 10)). Now, we are finally ready to prove that n 1) , and this will be the goal of Section 3.

≥ 2 ⇒ ã(n) = ã5 (n) = 2 n •((-1) n-1 + 2)-i n•(n-
3 Smallest a for any given value of the constant congruence speed

In this section, we prove the last conjecture stated in [START_REF] Ripà | On the constant congruence speed of tetration[END_REF].

Theorem 3.1. Let ã(n) be defined as in Definition 2.1. ∀n ∈ N -{0, 1},

ã(n) =    2 n • 5 + 2 • sin π•n 2 + 4 • cos π•n 2 + 1 iff n ≡ {2, 3} (mod 4) 2 n • 5 -2 • sin π•n 2 -4 • cos π•n 2 -1 iff n ≡ {0, 1} ( mod 4) 
; while ã(1) = 2. Additionally, {a(0)} = {1} = ã(0).

Proof. From Section 2.2 (see Equations ( 6) to ( 17)), we know that, ∀n ≥ 2, 

ã{1,9} (n) = min n (ã 1 (n), ã9 (n)) > √ 5 n + 1; ã{2,8} (n) = min n (ã 2 (n), ã8 (n)) ≥ √ 5 n -1; ã{3,7} (n) = min n (ã 3 (n), ã7 (n)) > √ 5 n -1; ã{4,6} (n) = min n (ã 4 (n), ã6 (n)) = ã4 (n) = 5 n -1.
On the other hand, Equation [START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF] implies that ∄n ∈ N -{0, 1} : ã5 (n

) > 9 • 2 n + 1, since ã5 (n) =    2 n • 2 • cos π•(n-1) 2 -4 • sin π•(n-1) 2 + 5 + 1 iff n ≡ {2, 3} (mod 4) 2 n • 4 • sin π•(n-1) 2 -2 • cos π•(n-1) 2 + 5 -1 iff n ≡ {0, 1} (mod 4)
.

Thus, in order to prove the main statement of Theorem 3.1, it is sufficient to check the inequality √ 5 n -1 > 9 • 2 n + 1, observing that it is certainly true for every n ≥ 20 (since √ 5

x -1 = 9 As it follows from Equations ( 9) and [START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF], ∀n ∈ N -{0, 1}, ã(n) := ã{1,2,3,4,5,6,7,8,9} (n) = ã5 (n).

Therefore, in order to complete the proof, it is sufficient to observe that V (2) = 1 and V (1) = 0 (see [START_REF] Ripà | On the constant congruence speed of tetration[END_REF]). Corollary 3.2. Let ã(n) be defined as in Definition 2.1, and let

i 2 = -1. ∀n ∈ N -{0, 1}, ã(n) = 2 n • (-1) n-1 + 2 -i n•(n-1) . ( 20 
)
Proof. The statement of Corollary 3.2 easily follows from Theorem 3.1. Since, in September 2020, Bruno Berselli noted that Sequence A337392 of the OEIS is given by a(n) = (2 -(-1) n ) • 2 n + i (n+1)•(n+2) (see Formula in Reference [START_REF]Sequence A337392 in the On-line Encyclopedia of Integer Sequences[END_REF]), it trivially follows that Equation ( 5) can be further simplified if we prove the claim;

ã(n) =    2 n • 5 + 2 • sin π•n 2 + 4 • cos π•n 2 + 1 iff n ≡ {2, 3} (mod 4) 2 n • 5 -2 • sin π•n 2 -4 • cos π•n 2 -1 iff n ≡ {0, 1} (mod 4) = 2 n+1 + sin π • (n + 1) • (n + 2) 2 -2 n • sin(π • n) • i -2 n • cos(π • n) + cos π • (n + 1) • (n + 2) 2 . (21) 
Hence,

2 n • cos(π • n) -i • 2 n • sin(π • n) = -2 n • e i•π•n implies that ã(n) = 2 n+1 -2 n • e i•π•n + e i•π 2 •(n•(n+3)+2) . (22) 
Since

e i•π + 1 = 0 ⇒ e i•π 2 = i and e i•π•n = (-1) n , it follows that ã(n) = 2 n+1 -2 n • (-1) n + i n•(n+3)+2 . (23) 
Thus, Berselli's formula is correct and we have

ã(n) = 2 n+1 + 2 n • (-1) n-1 -i n•(n+3) . (24) 
Therefore, in order to confirm Equation ( 20) and conclude the proof, it is sufficient to observe that i n•(n+3) = i n•(n-1) . Remark 3.1. Corollary 3.2 provides also a short proof of Theorem 3.1, since

ã(n) = 2 n • (-1) n-1 + 2 -i n•(n-1) ≤ 2 n • (1 + 2) + 1. (25) 
Thus, √ 5 n -1 > 3 • 2 n + 1 holds for any n ≥ 10.

Corollary 3.3. ∀n ∈ N -{0, 1} and ∀k ∈ N 0 ,

A 5 (n) = 2 n • (-1) n-1 + 2 -i n•(n-1) ∨ 2 n • ((-1) n + 8) + i n•(n-1) + k • 10 • 2 n . ( 26 
)
Proof. Equation 5 and Corollary 3.2 (Berselli's formula) imply that

A 5 (n) = 2 n • (-1) n-1 + 2 -i n•(n-1) + k • 10 • 2 n ∪    2 n • 5 + 2 • sin π•n 2 + 4 • cos π•n 2 + 1 + k • 10 • 2 n iff n ≡ {0, 1} (mod 4) 2 n • 5 -2 • sin π•n 2 -4 • cos π•n 2 -1 + k • 10 • 2 n iff n ≡ {2, 3} ( mod 4) 
.

Since, ∀n ≥ 2, it easy to verify (as shown in the proof of the aforementioned Corollary 3.2) that    1) , the statement of Corollary 3.3 follows.

2 n • 5 + 2 • sin π•n 2 + 4 • cos π•n 2 + 1 iff n ≡ {0, 1} (mod 4) 2 n • 5 -2 • sin π•n 2 -4 • cos π•n 2 -1 iff n ≡ {2, 3} (mod 4) = 2 n • 2 3 + cos(π • n) + i • sin(π • n) + cos π • n • (n -1) 2 + i • sin π • n • (n -1) 2 = 2 n • ((-1) n + 8) + i n•(n-
Checking for smaller candidates than a * = c • 10 10 + 99 5 , by Hensel's lifting lemma, we can also see that any odd power of 499 ∈ A is congruent modulo 10 3 to 499, so 499 499 ≡ 499 (mod 10 3 ) and 3 = V (499, 1) ̸ = V (499, 2) = V (499) = 2 still holds. Proof. Since V (a) indicates the constant congruence speed of a (by Definition 1.1, we are allowed to assume the sufficient but not necessary condition b ≥ a + 1), it follows that a ̸ ≡ 0 (mod 10) ⇒ V (a) ∈ N 0 . Let us invoke Dirichlet's theorem on arithmetic progressions [START_REF] Selberg | An elementary proof of Dirichlet's Theorem about primes in an arithmetic progression[END_REF][START_REF] Shapiro | On primes in arithmetic progression[END_REF], which implies that ∀(t, d) such that gcd(t, d) = 1, there is an infinite number of primes of the form t + m • d, where m ∈ N 0 . Now, for any j ∈ N -{0}, let t := t(j), and similarly let d := d(j). In particular, assume (without loss of generality) t(j) = 10 j -1 and d(j) = 10 j , since it is trivial to point out that 10 j = 2 j • 5 j , so 2 ∤ (10 j -1) ∧ 5 ∤ (10 j -1).

By Lemma 4.3, we can state that a = t(j) + m • d(j) is always characterized by a constant congruence speed V a ≥ j.

Anyway, in order to clearly show that V a ≥ j holds, let x i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Hence,

a = h i=j x i • 10 i + 10 j -1 = x h x (h-1) . . . x (j+1) x j 9 9 . . . 9 9 (27) 
so that it is evident that V a only depends on the length of the rightmost repunit (9's) of q n < q n-1 , so q 20 < q 19 (as q 51 < q 50 ) and q 54 < q 53 imply that {q n } is a non-monotonic sequence of primes. Furthermore, we have also q 54 < q 52 .

Conclusion

V (a, b), the congruence speed of the integer tetration b a, certainly does not depend on b, for any a ∈ N -{0} which is not a multiple of 10, if b is larger than a (i.e., the criterion b > a always holds). Thus, let us take any b = b(a) that assures the constancy of the congruence speed of a; then Equations ( 6), ( 7), ( 10), ( 11), ( 14), ( 15), ( 16), ( 17), [START_REF] Shapiro | On primes in arithmetic progression[END_REF], and (26) return the set of all the bases whose (constant) congruence speed is any given V (a) ∈ N -{0}, and we know from [START_REF] Ripà | On the constant congruence speed of tetration[END_REF] that V (a) = 0 ⇔ a = 1. Therefore, we can easily determine ã (V (a)), the smallest a ≡ {1, 2, 3, 4, 5, 6, 7, 8, 9} (mod 10) whose constant congruence speed is equal to any given positive integer. Since ã(0) = 1, ã(1) = 2, and ã (V (a) : V (a) ≥ 2) = 2 n • ((-1) n-1 + 2) -i n•(n-1) [START_REF]Sequence A337392 in the On-line Encyclopedia of Integer Sequences[END_REF], we can finally conclude that the conjecture stated in Reference [START_REF] Ripà | On the constant congruence speed of tetration[END_REF] is true. In Section 4, for any n ∈ N -{0}, we also proved the existence of infinitely many prime numbers with a constant congruence speed of n, defining the related sequence {q n } of the smallest primes such that V (q(n)) = n, and consequently showing that {q n } is not monotonic.

In the present paper we have only considered radix-10, but our results can be clearly extended to different numeral systems, as shown by [START_REF] Germain | On the Equation a x ≡ x (mod b). Integers: Learning, Memory[END_REF] which was inspired by [START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF]; this observation suggests a topic for the next research article.

Definition 1 . 1 .

 11 Let a ∈ N -{0, 1} not be a multiple of 10. Let d ∈ N. The power tower of height b ∈ N -{0} represents the integer tetration b a :=

Proposition 2 . 1 .

 21 The 10-adic integers form a commutative ring, and we indicate it as Z 10 [4].

Conjecture 2 . 1 .Remark 2 . 1 .

 2121 Let the tetration base a be greater than 1. Let len(a) ∈ N -{0} : 10 len(a)-1 ≤ a < 10 len(a) denote the number of digits of a. If a ̸ ≡ {0, 3, 7} (mod 10), then b ≥ len(a) + 2 is a sufficient condition for V (a, b) = V (a). Assuming a ≡ {2,[START_REF]Tetration. In Hyper operators, Googology Wiki -Fandom[END_REF][START_REF] Lubin | Why are p-adic numbers and p-adic integers only defined for p prime? In All Questions, Mathemathics Stack Exchange[END_REF][START_REF] Michon | Polyadic Arithmethic[END_REF][START_REF]Sequence A224474 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290372 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290374 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A290375 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A317905 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF]Sequence A337392 in the On-line Encyclopedia of Integer Sequences[END_REF][START_REF] Ripà | On the constant congruence speed of tetration[END_REF][START_REF] Selberg | An elementary proof of Dirichlet's Theorem about primes in an arithmetic progression[END_REF][START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF] 21, 22, 23} (mod 25), by Reference[START_REF] Ripà | On the constant congruence speed of tetration[END_REF], Hypothesis 1, V (a) = 1. This confirms the statement of Conjecture 2.1 for any a as above, since we know that V (a) ≥ 1 ∧ V (a, b + 1) ≤ V (a, b) holds for any b ≥ 3[START_REF] Ripà | La strana coda della serie n n[END_REF][START_REF] Ripà | On the constant congruence speed of tetration[END_REF]; as a clarifying example of the property V (a, b + 1) ≤ V (a, b) extended to nontrivial congruence classes modulo 25, we can take a look at[START_REF] Ripà | La strana coda della serie n n[END_REF], page 27, which includes the phase shift analysis of the base 143 625 congruent to 18 modulo 25, explaining why V (143 625 , 1) = 0 ∧ V (143 625 , 2) = V (143 625 , 3) = 6 ∧ V (143 625 , 4) = 5 ∧ V (143 625 , b : b ≥ 5) = V (a) = 4 occurs. Thus, a : V (a) = 1 implies that, for any b

2 4 • 5

 45 n+1 +1 -1 (mod 10 n+1 )-(2 4•5 n +1 -1) (mod 10 n ) 10 n (mod 10) 10 n + 1 + k • 10 n , ∀k ≡ {0, 1, 2, 3, 4, 5, 6, 7, 8} (mod 10) .

5 n 2 {2,8} +1 5 20 =

 5220 have to be solved for c a {2,8} over the integers (as a) let us calculate the solutions (taking the natural logarithm) from example, we can see that n = 20⇒ a c ∈ N ⇒ a {2,8} (20) = (5 20 • 2 • m + 15613890344818) ∨ (5 20 • (2 • m + 1) + 79753541295807),where m ∈ N 0 . Hence, m = 0 ⇒ ã8 (20) = 15613890344818, ã2 (20) = 5 20 • 1 + 79753541295807 = 175120972936432, (since 5 20 • d + 79753541295807 is odd for any even value of d, including zero, while 5 20 • d + 15613890344818 is odd if and only if d assumes an odd value, and vice versa), and this is enough

  (n), ã{2,8} (n), ã{3,7} (n), ã{4,6} (n) ⇒ ã{1,2,3,4,6,7,8,9} (n) ≥ √ 5 n -1.

Theorem 4 . 4 .

 44 ∀a ̸ ≡ 0 (mod 10), ∃ ∞ a * ∈ P : V a * ≥ V (a).

10 j

 10 < a < 10 h+1 . Thus, picking any a ≥ 2 such that V (a) is arbitrarily large, we have shown that there always exist infinitely many prime numbers a * ≡ 9 (mod 10) which are characterized byV a * ≥ V (a)(x j ̸ = 9 ⇒ V a * = V (a) = j, see Equation (27)).Lastly, a = 1 ⇔ V (a) = 0 (see Reference[START_REF] Ripà | On the constant congruence speed of tetration[END_REF], Definition 2), so V a * > V (1) for any a * ∈ P. Therefore, we can write that ∀V (a) ∈ N, ∃ a * ∈ P : V a * ≥ V (a), and this concludes the proof of Theorem 4.4 (since a ̸ ≡ 0 (mod 10) ⇒ V (a, b) = V (a) ∈ N 0 , ∀b > a).

Corollary 4 . 5 .

 45 ∀V (a) ∈ N 0 , ∃ ∞ a * ∈ P : V a * > V (a).

Proof.

  In order to prove this corollary of Theorem 4.4, it is sufficient to take n = V (a) + 1, so we have a = (k + 1) • 10 V (a)+1 -1 (by Definition 4.2).Thus, V a ≥ V (a) + 1 is satisfied for any V (a), k ∈ N 0 .It follows that V a * > V (a), and (by Dirichlet's theorem on arithmetic progressions) we know that there are infinitely many bases a * ∈ A ⊂ P.Theorem 4.6. ∀a ̸ = 1 : a ̸ ≡ 0 (mod 10), ∃ ∞ a * ∈ P : V a * = V (a).

  n

Table 1 :

 1 • 2 x + 1 ⇒ 19.693374 < x < 19.693375). Consequently, we only need to verify that, ∀n ∈ [2, 19], ã5 (n) < ã{1,2,3,4,6,7,8,9} (n), and the values are listed in Table 1 (see Equations (6) to[START_REF] Selberg | An elementary proof of Dirichlet's Theorem about primes in an arithmetic progression[END_REF]). Comparison between the smallest a(n) congruent modulo 10 to 5, whose constant congruence speed is equal to n ≤ 19, and the minimum a(n) ≡ {1, 2, 3, 4, 6, 7, 8, 9} (mod 10).

	n = V (a) ã5 (n) ã{1,2,3,4,6,7,8,9} (n)
	1	∄ã 5 (1)	2
	2	5	7
	3	25	57
	4	15	182
	5	95	3124
	6	65	1068
	7	385	32318
	8	255	390624
	9	1535	280182
	10	1025	3626068
	11	6145	23157318
	12	4095	120813568
	13	24575	1220703124
	14	16385	1097376068
	15	98305	11109655182
	16	65535	49925501068
	17	393215	762939453124
	18	262145	355101282318
	19	1572865	19073486328124

Table 2 :

 2 {q n } for n ≤ 21 and 51 ≤ n ≤ 54.Table entries are in red if (and only if)

	{q n }
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 [START_REF] Lubin | Why are p-adic numbers and p-adic integers only defined for p prime? In All Questions, Mathemathics Stack Exchange[END_REF]The constant congruence speed of the prime numbers

The set of the prime numbers is very important in many fields of mathematics due to the fundamental theorem of arithmetic (in particular it is central in number theory, computer sciences, and cryptography), so we are interested in knowing if the constant congruence speed of any base which is a prime number maps to every (arbitrarily large) value V (a) ∈ N -{0}. Definition 4.1. Let a ∈ N -{0} not be a multiple of 10. P = {p ∈ N : p is prime} = {a : a is prime} indicates the set of prime numbers (the last equality holds since 1 and every multiple of 10 cannot be prime).

the generic element of A and (similarly) let a * ∈ A be the generic element of A.

In order to confirm that the set {V (p) : p ∈ P} is not bounded above, let us firstly introduce the following lemma.

Proof. Let n ≥ 2. The statement easily follows from Equation ( 7), since n ≥ 2 ⇒ V (10 n -1 + k • 10 n ) = n for every k ̸ ≡ 9 (mod 10), while k ≡ 9 (mod 10) ⇒ a ≡ (10 n+1 -1) (mod 10 n+1 ) for any n as above. Thus, k ≡ 9 (mod 10) ⇔ a * belongs to A 9 (n + c), where c ∈ N -{0}.

If n = 1, ∀k ∈ N 0 , a (k) ≡ {4, 9, 14, 19, 24} (mod 25). Consequently [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], V a (k) > 1 if and only if a (k) ≡ 24 (mod 25).

Hence, V a (k) ̸ = 1 for any k ≡ 4 (mod 5), including the case k ≡ 4 (mod 10).

Therefore, for any n ≥ 2, we have shown that V a = n ⇔ k ̸ ≡ 9 (mod 10), while

we note that, for any given pair j ∈ N -{0} and n ∈ N -{0, 1}, V (10 n -1) 5 j , 1 ̸ = V (10 n -1) 5 j , 2 = V (10 n -1) 5 j (see [START_REF] Ripà | La strana coda della serie n n[END_REF], p. 25). Thus, as a random choice, it is sufficient to take any prime number of the form c Proof. (a ̸ = 1 ∧ a ̸ ≡ 0 (mod 10)) ⇒ V (a) ∈ N -{0} [START_REF] Ripà | On the constant congruence speed of tetration[END_REF]. By Dirichlet's theorem on arithmetic progressions, gcd(t, d) = 1 ⇒ ∃ ∞ (t + m • d) ∈ P, where m ∈ N 0 . Let t(j) = 10 j -1 and d(j) = 2 • 10 j be defined for every j ∈ N -{0}. Since 2 • 10 j = 2 j+1 • 5 j and 10 j -1 ≡ 9 (mod 10), gcd (t(j), d(j)) = 1 (noticing again that 2 ∤ (10 j -1) ∧ 5 ∤ (10 j -1)).

Consequently, the arithmetic progression t(j)+m•d(j) = 10 j -1+2•m•10 j = (2•m+1)•10 j -1 contains infinitely many primes. Since, ∀m, 10 ∤ (2 • m + 1), t(j) + m • d(j) = h i=j x i • 10 i + 10 j -1 = x h x (h-1) . . . x (j+1) x j 9 9 . . . 9 9, where x j ∈ {0, 2, 4, 6, 8}. By Equation ( 7), for any given j ≥ 2, it follows that V ((2 • m + 1) • 10 j -1) = j holds for all integers m ≥ 0.

Finally, if V (a) = 1, then let m ≡ 1 (mod 10). Dirichlet's theorem on arithmetic progressions implies the existence of infinitely many primes congruent modulo 100 to 29, and we know that all of them have a unitary constant congruence speed (since 29 ≡ 4 (mod 25), a ≡ 4

• 10 j -1) = j, and this completes the proof of Theorem 4.6. Theorem 4.6 entails the existence of an infinite sequence of primes, which we indicate as {q n }, defined by the smallest prime numbers characterized by a constant congruence speed of n ∈ N -{0}.

More specifically, {q n } = 2, 5, 193, 1249, 22943, 2218751, . . . is not a monotonic sequence, because q 20 = 3640476581907922943 < 23640476581907922943 = q 19 , and also q 54 = 2 • 5 2 52 -1 (mod 10 52 ) < q 52 = -5 2 52 + 2 5 52 (mod 10 52 ) < q 53 = 2 • 10 53 -1 (see Table 2).

As an exercise, we can try to bound the value of q 1762063 . Since Theorem 4.6 implies that q 1762063 ∈ N, let us find a lower bound from the inequalities stated in Section 2.2, and in particular we get q 1762063 > √ 5 1762063 -1. From [START_REF] Caldwell | Largest Known Primes[END_REF], we know that 9 • 10 1762063 -1 = 1762063 j=1762063 8 • 10 j + 10 1762063 -1 is prime, and 9 • 10 1762063 -1 = 9 • 10 V (9•10 1762063 -1) -1 has a constant congruence speed of 1762063. It follows that √ 5 • 5 881031 < q 1762063 ≤ 9 • 10 1762063 -1 (since 2 ∤ n ∈ N -{0} ⇒ √ 5 n / ∈ N).