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(Dated: August 1, 2022)

We measure and analyze the drag force experienced by a rigid rod that penetrates vertically into
a granular medium, partially withdraws before sinking again. The drag during the successive re-
intrusions is observed to be significantly smaller than the force experienced in the first run. Two
force regimes are evidenced depending on how the re-intrusion depth compares with the withdrawal
distance ∆. These two regimes are characterized by a force curve of positive and negative curvature
and are separated by an inflection point which is characterized experimentally. We approach the
difference between the first intrusion and the following re-intrusions by considering a modification
in the stress field of the granular material after the partial extraction of the rod. A theoretical
model for the stress modification is proposed and allows to rationalize all the experiments realized
for different withdrawal distances ∆. This framework introduces a crossover length λ above which
the stress modification in the granular medium is maintained and that is shown to depend linearly
on ∆. Finally, the model provides a prediction for the location of the inflection points in reasonable
agreement with observations.

I. INTRODUCTION

Intrusion in a non-cohesive soils is a problem of pri-
mary importance for civil engineering, geophysical sur-
veys and animals living in sandy grounds. The devel-
opment of efficient drilling or probing techniques [1] re-
quires a detailed understanding of the interaction be-
tween the intruder and the soil. The survival of ani-
mals in sandy environments such as sandfish lizards or
sea clams also depends on their capacity to hide beneath
the sand surface [2, 3]. In all these situations, the burial
of the intruder causes a flow of material [4] and leads
to a large vertical resistance that can be seen as a drag
force. This drag force has been extensively studied in
dry granular media which provide an easy-to-use model
soil for modelling these problems.

The drag applied on a rod when it experiences a con-
tinuous vertical penetration or extraction in a gran-
ular medium at slow speed has already been studied
[5]. The force measured during intrusion is an order
of magnitude larger than that experienced during ex-
traction. To rationalize these observations, a power law
is proposed to describe the quasi-static drag force F
in both directions of motion with the following form
F/ρgπD3 = C(z/D)λ where z is the depth of the tip of
the intruder, D its diameter, ρ the material bulk den-
sity, g the gravity. C and λ are two non-dimensional
coefficients that depend on the direction of motion. For
a rod, they measured C ' 9.5 and λ ' 1.6 in pen-
etration, C ' −0.66 and λ ' 1.3 in extraction. In
the case of penetration alone, another model has been
proposed considering that the drag force comes from
the contribution of two terms: one coming from the
hydrostatic-like pressure at the tip of the rod F ∝ z
and another resulting from the friction applying on the
lateral surface F ∝ z2 [6]. Recently, the penetration

of objects at shallow depths has shown the presence of
a particular regime where the drag force is closely re-
lated to the Archimedean force with a pre-factor that
strongly increases with the effective friction coefficient
of the granular medium [7, 8]. This hydrostatic-like
regime is not dominant as soon as the depth of the in-
truder becomes large enough, i.e. after a few object
diameters (z & 2D). In the case of extraction, the force
corresponds approximately to the weight of the granular
column above the object. The asymmetric behaviour of
the drag force between intrusion and extrusion phases
has also been demonstrated in other experimental stud-
ies [9, 10]. This difference is explained by the fact that
in extraction the drag force corresponds essentially to
friction on the surface of the rod, unlike penetration
where most of the force comes from the compression of
the packing under the rod, i.e. the increase of the vol-
ume fraction under the rod. The geometry of the object
has been modified and this difference between penetra-
tion and extraction remains similar [11].

Nonetheless, all these studies focus on a single and
continuous intrusion or extrusion of the intruder in a
granular medium. However, the motion of intruders in
practical applications and natural conditions are often
more complex than a continuous motion and may in-
clude vibrations of small amplitude, rotations and back
and forth movements. This is the case in ground drilling
where penetration/extraction cycles are required to re-
move the excess of material and in anchoring problems
where the anchor must resist periodic loads [12]. In na-
ture, sea clams use a cyclical movement strategy called
"push and pull" to penetrate up to two meters deep into
the sediment [3, 13]. On earth, the burrowing worms
employ peristaltic waves to progress into non-cohesive
substrates [14]. The presence of mechanical vibrations
at the surface of the intruder has been proved to fluidize
locally the granular medium and to reduce significantly
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the intrusion force [15, 16]. Adding a rotational com-
ponent to the progressive motion has been shown to
be an effective strategy for reducing the resistance to
intrusion [17] and the drag force of an object moving
horizontally [18]. The case of back and forth motions
was studied by examining the response of granular ma-
terials in a shear cell subjected to repeated cycles [19–
23] and to cyclic horizontal motion of an object [24].
These experiments reveal that after shear reversal, the
shear stress follows an exponential evolution towards
its nominal value which is due to the reorientation of
force chains in the medium. However, the effect of back
and forth motions on the intrusion force to penetrate a
granular medium is under-explored while this configu-
ration cannot be inferred from previous studies because
the orientation of gravity changes the flow of material
and the structure of the force network. The goal of
this study is to fill this gap and consider the force ex-
perienced by an intruder in a granular medium has it
undergoes a succession of vertical intrusion and extru-
sion phases.

In this paper, we study experimentally the re-
intrusion of a rigid rod after a first intrusion step and
a partial extraction. By performing successive cycles
of extrusion and re-intrusion of asymmetric amplitude,
we evidence two different regimes for the drag force
during re-intrusions. Depending on the depth of re-
intrusion and the withdrawal distance, the drag can ei-
ther increase supralinearly or sublinearly with depth.
The transition between these two behaviors is charac-
terized by an inflection point in the evolution of the
drag force with depth. We first detail the experimental
procedure followed to measure the drag force. Then,
we present the results that demonstrate the existence
of two regimes. Finally, we propose a model based on
regularization of the stress in the granular medium af-
ter the passage of the intruder and that captures our
observations.

II. EXPERIMENTAL SETUP

The experiments consist in plunging downwards a
vertical rigid rod into a dry granular medium (Fig. 1).
The rod has a diameter D = 12 mm, a length L =
300 mm and is ended by a conical tip of angle 60◦. The
rod is made of steel and its surface has been polished to
reduce the effect of surface roughness. Granular matter
is made of sieved glass beads of diameter d = 1 mm and
density ρ = 2.5×103 kg.m−3. The dispersion in size for
these beads is smaller than 10%. The grains are poured
in a cylindrical container of diameter Dc = 80 mm and
height 250 mm. In all our experiments, a minimal dis-
tance of 50 mm is let between the tip of the rod and
the bottom of the container in order to avoid the in-
fluence of the bottom wall [25]. The initial prepara-
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Figure 1. Sketch of the experimental setup and notations.

tion of the granular medium is realized by tapping the
containers at least ten times before each experiment, a
procedure that permits to reach an initial packing frac-
tion of φ ' 0.63 with a good reproducibility. The rod
is mounted on a translation stage that allows a precise
control of the vertical displacement of the rod. In our
experiments, the intruder velocity V0 is maintained con-
stant between 0.1 and 1 mm/s which insures to lay in
the quasi-static regime where granular forces does not
depend on the velocity of the intruder [26, 27]. The
vertical force experienced by the rod during its motion
is measured with a force sensor placed at the base of
the rod and that has a resolution of 10 mN. A typical
experiment consists in placing the tip of the intruder
just above the horizontal granular surface and plung-
ing the rod up to a given depth z0 below the surface
and then extracting the rod by a withdrawal distance
∆ before plunging again the rod up to larger depths.
Note that the variation of the filling level of the grains
corresponds to the volume of immersed rod. This intru-
sion/extrusion cycles can eventually be repeated several
times at different depths z0 and for different cycle am-
plitudes ∆.

III. RESULTS

In this study, we consider as a reference case the in-
trusion of the rod at a constant and low velocity without
cycles. A previous study has shown that this force re-
sults from two contributions: the hydrostatic-like pres-
sure applying on the tip of the rod and the frictional
force exerting along its length [6]. They provided the
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following expression for the vertical force F0 experi-
enced during a continuous intrusion:

F0

πφρgD3/4
= C1

( z
D

)
+ C2

( z
D

)2

(1)

where C1 and C2 are non-dimensional coefficients that
are determined experimentally. In our system, the ver-
tical force F0 experienced by the rod as a function of
depth z is shown in figure 2 by the way of a black solid
line. The best fit of our data with Eq. (1) is found for
C1 = 10 ± 2 and C2 = 19 ± 1. These values lay in the
same range as previous estimations for flat-ended rods
penetrating into glass beads [6].

Due to the finite size effect of the container, possible
wall effect generated by friction may be expected [28–
30]. However, the effective friction due to the presence
of these walls is contained in the value of the coefficients
C1 and C2 of the equation 1. We therefore expect that
the dimensions of the container will influence these two
coefficients. We always keep the same container dimen-
sions for all measurements.

A. Successive re-intrusions at constant ∆

We are first interested in the resistance experi-
enced by the rod as it undergoes successive intru-
sion/extrusion cycles for given z0 and ∆. Figure
2 shows the vertical force F as a function of the
intrusion depth z for the first (black solid line) and
nine successive extrusion/intrusion cycles (color solid
lines). We observe that when the rod moves upwards,
the force decreases over a very short distance, of the
order of a millimeter, the diameter of a grain. This
behavior is related to the fact that the surface of
the rod is smooth and would be different for rough
surfaces. Since the extrusion force remains at a very
low level during all the extrusion phase, we did not
focus on this phase in the following of the study. When
the rod moves downwards again (blue solid line), the
depth-force curve follows a very different path than
the first intrusion and finally recovers the nominal
value, F0, at the initial depth, z ' z0. The evolution of
the force F with z during the successive re-intrusions
is clearly below the initial force. In term of energy,
the work necessary to re-intrude on a distance ∆
is about 36 % lower than the initial work required
to penetrate on the same distance during the first
intrusion. Importantly, we note that all the following
cycles do superimpose. This observation is confirmed
by the inset of Fig. 2 which presents the relative
normalized depth (`− `0)/D as a function of the cycle
number N where ` corresponds to the depth for which
F = 10 N and `0 to the same quantity when N = 0
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Figure 2. Drag force F experienced by a rod of diameter
D = 12 mm as a function of the depth z for successive
intrusion/extrusion cycles realized for z0 = 170 mm and
∆ = 80 mm. The rod is displaced at constant velocity V0 =
0.3 mm.s−1 in glass beads of mean diameter d = 1 mm. The
gray solid line corresponds to the force experienced during
the first continuous intrusion. Color solid lines from blue to
red represent the following nine extrusion/intrusion cycles.
The dark dashed line corresponds to the best fit of the first
intrusion with Eq. (1). The horizontal dash line indicates
F = 10 N which intersects the force curves in `0 and ` for the
first and successive intrusions respectively. Inset: (`−`0)/D
as a function of the cycle number N .

. This graph shows that (` − `0)/D increases with N
before saturating towards a constant value. Finally,
the variation of (` − `0)/D after the first re-intrusion
remains small (less than 5 % in relative value) and
the most significant changes occur during the first
intrusion/extrusion cycle. For this reason, we will only
consider the first cycle in the following of the article.

B. Re-intrusions at different values of ∆

In this section, we focus on the drag force F as the rod
undergoes successive re-intrusion cycles with different
amplitudes ∆ but constant initial intrusion depth z0.
These results are shown in figure 3 for z0 = 170 mm and
extrusion distances ∆ ranging from 3 mm to 100 mm.
As noted previously, one can notice the significant dif-
ferences between the first intrusion and the second re-
intrusions. For each withdrawal distance ∆, the path
followed by the re-intrusion force is different and the
curves only superimpose when the depth reaches ap-
proximately z0. At this depth, the re-instrusion force
recovers the nominal value experienced during the first
intrusion. We remark that the beginning of the re-
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Figure 3. Drag force F on the rod as a function of the
penetration depth z for different cycle amplitudes ∆ and a
constant initial depth z0 = 170 mm. Color code spans from
blue to red for 3 ≤ ∆ ≤ 100 mm respectively. The black
line represents the initial run. Inset: Zoom in of the same
data around z0. Crosses indicate the inflection points where
d2F/dz2 = 0.

intrusion force curve has a similar shape to the curve
of the first intrusion with a supralinear growth, corre-
sponding to a positive curvature. At larger re-intrusion
depths, the force curve changes in behavior to tangent
the initial curve and recovers the same level as during
the first intrusion. In this domain, the curvature of the
force curve is negative. These two regimes are separated
by an inflection point of the force curve, whose depth
is noted zi. We estimate the location of the inflection
point by calculating the curvature of the experimental
force curve and determining the depth at which the cur-
vature changes its sign. The results of this procedure
are indicated with crosses in Fig. 3. These results are
also presented separately in Fig. 4 which shows the nor-
malized depth of the inflection point zi/z0 as a function
of the normalized withdrawal distance ∆/z0. We ob-
serve a decrease of the depth of the inflection point as
the withdrawal distance increases before the data be-
come dispersed at large ∆. Note that we do not present
the extreme case ∆ = 170 mm since the curve obtained
is similar to the curve of the first run. To summarize,
the re-intrusion curves show two regimes: a first regime
where the force growth is similar to the first intrusion
and that takes place at the beginning of the re-intrusion
(z0 −∆ < z < zi) and a second regime where the force
inflects toward the initial curve which occurs when z
gets closer to z0 (zi < z < z0). Overall, this behav-
ior describes the fact that the effort to partially plunge
back into a granular material is weaker at shallow re-
intrusion depths but ultimately, the initial force level
is recovered as soon as the the intruder returns to z0.
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Figure 4. Normalized depth of the inflection point zi/z0 as a
function of the normalized withdrawal distance ∆/z0. The
inflection points (crosses) are deduced from the re-intrusion
curves presented in figure 3. The circles represent the mea-
surements where the force curvature at z = zr is lower than
signal fluctuations and thus the determination of zi is uncer-
tain. The prediction of Eq. (5) for λ = 0.70∆ is represented
by solid line for short withdrawal distances and dashed line
for large withdrawal distances.

As a consequence, it is illusory to attempt reducing the
drag force on a intruder by realizing non-symmetric in-
trusion/extrusion cycles since the force always recover
its nominal value F0 at the initial depth.

IV. DISCUSSION

In order to understand the origin of the force reduc-
tion during re-intrusion, we look for a change in the
packing fraction of the granular medium along the suc-
cessive cycles . We deduce the mean packing fraction
of the medium by tracking the height of the free sur-
face during intrusion/extrusion cycles. These experi-
ments show that the volume change detected at the
free-surface is equal to the volume of the intruder that
plunges or retracts from the medium within measure-
ments uncertainties. Thus, the change in the force-
curve between first and following intrusions is unlikely
to be the result of dilatancy effects but should rather
result from stress modification in the medium [31, 32].
The modeling of the drag force on objects in granu-
lar media is most often based on the granular resistive
force theory [18, 33–37]. In the current experiment,
the extraction generates a local decrease of the packing
fraction at the end of the stem, creating a flow of grains
from dense to less dense zones. Thus, the reorganization
of the medium during extraction causes a modification
of the initial stress in the granular medium and it is dif-
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Figure 5. (a) Normalized drag force F/F0(z0) as a function
of the normalized effective depth zeff/z0. Color code spans
from blue to red for 3 ≤ ∆ ≤ 100 mm respectively. The
black line correspond to Eq. (3). (b) Crossover length λ as
a function of the re-intrusion depth ∆. The dashed line cor-
responds to the equation λ/z0 = 0.70 ∆/z0 and correspond
to the best fit of the data.

ficult to place oneself in the framework of this theory.
In the following, we develop a description of the stress

σzz in the granular material along the successive rein-
trusions. During the first intrusion up to a depth z0,
the stress σzz in the granular column has a hydrostatic-
like dependency such that σzz ∼ φρgz. During the ex-
traction, the intruder returns to a depth zr = z0 − ∆
and granular avalanches fill the wake left by the ob-
ject during its ascension [38], thus creating a new col-
umn of grains. When stopping at a depth zr, a free
surface is created just below the tip of the intruder,
which is compatible with a zero force measured on the
intruder at this position (Fig. 2). During re-intrusion,
the intruder should experience a new stress that writes
σzz

(r) ∼ φρg (z − zr), since the free surface is now lo-

cated at zr = z0 − ∆. However, in the depths of the
medium, the stress σzz still respects σzz(i) ∼ φρgz.
These two states of stress field are not compatible and
should be reconciled at intermediate depths. For short
extrusion distances ∆ and large depths z0, the depth-
force curve is sub-linear and is a concave function (inset
of Fig. 3). On the contrary, for large extrusion distances
and small depths, the depth-force curve is supra-linear
with a positive curvature (Fig. 3). In order to unify the
two stress profiles, we suggest a continuous transition
between them that is accounted by introducing an ef-
fective depth zeff which is a weighted average between
z and z − zr:

zeff = (z − zr) e
−z − zr

λ + z

1− e
−z − zr

λ

 , (2)

where λ is the characteristic length of this transition.
Note that the two exponential terms in this relation
correspond to an arbitrary choice of weighting func-
tions and do not correspond to a Janssen saturation
of the stress in the granular medium. With this def-
inition, the effective depth zeff is equals to z − zr at
small re-intrusion depths (z − zr � λ) and tends to z
at large depths (z − zr � λ). Implementing the regu-
larized stress profile φρ g zeff in the equation 1, we get
the following expression for the re-intrusion drag force:

F (zeff)

πφρgD3/4
= C1

zeff

D
+ C2

(zeff

D

)2

, (3)

where zeff is given by Eq. (2). This expression can be
re-expressed preferably by normalizing the drag force
by the initial force at a depth z = z0, F0(z0), resulting
in:

F (zeff)

F0(z0)
= C̃1

zeff

z0
+ C̃2

(
zeff

z0

)2

, (4)

where C̃1 = πφρgD2C1F0(z0)z0/4 and C̃2 =
πφρgDC2F0(z0)z0/4.

This prediction can be compared with our observa-
tions realized for different cycle amplitudes (Fig. 3).
For this purpose, we consider the crossover length λ as
a free parameter and we look for the values that provide
the best fit of our data. Figure 5(a) presents the experi-
mental result of the drag force F (zeff) normalized by the
nominal force at a depth z0, F0(z0) as a function of the
effective depth zeff normalized by the initial depth z0.
The normalization with respect to the length z0 is jus-
tified by the fact that the reintrusion force recovers its
nominal value around this depth. It can be seen that all
the curves of Fig. 3 collapse on a master curve which is
the prediction of Eq. (3) with the coefficients C1 and C2
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determined for the first intrusion (see section III). This
collapse proves the validity of the proposed model over
the range of parameters investigated in this study. In
addition, the characteristic length λ estimated through
this procedure is shown as a function of the withdrawal
distance ∆ in Fig. 5(b). We observe a linear relation
between λ and ∆ over two decades which is consistent
with the qualitative observations made previously. The
best fit of these data with a linear trend provides a slope
of 0.70± 0.05.

Besides, this model also gives a prediction for the
depth zi at which the inflection occurs. The inflection
point corresponds mathematically to

(
d2F/dz2

)
z=zi

=

0 which can be calculated from Eqs. (2) and (3). It
leads to an implicit relation for zi:

2e
−zi − zr

λ +

(
λ− zi
zr

− C1D

2C2zr

)
+

(
λ

zr

)2

e

zi − zr
λ = 0

(5)
with zr = z0 −∆. The previous relation has no trivial
solution and we solve it numerically. The numerical
solution of Eq. (5), zi, is plotted in Fig. 4 as a function
of ∆ with a black line where we have assumed that
λ = 0.70 ∆ consistently with the fit of our data. We
observe that the predicted depth of the inflection
point coincides with z0 for zero withdrawal distances
∆ and moves closer to the surface when ∆ increases
before falling back z0 for larger ∆ (dashed portion of
the line in Fig. 4). In addition, no inflection points
are expected above a critical withdrawal distance
of ∆ ' 0.34 z0. The predictions of the model are
in very good agreement with our measurements for
small withdrawal distances (∆ < 0.25 z0). For larger
withdrawal distances, we do not observe experimen-
tally the increase of zi with ∆, showing the range
of application of this model. Concerning the large
shrinkage distances ∆ > 0.34 z0, we are not able to
rule out experimentally the presence of an inflection
point because of the existence of experimental noise.
However, we distinguish in figure 4, the measurements
of zi where the initial curvature

(
d2F/dz2

)
z=zr

is
larger than the mean fluctuations of the force curvature
(this situation is indicated by crosses) and where it is
smaller (indicated by circles) and the existence of the
inflection point is not certain. With this distinction,
the disappearance of the inflection point predicted
theoretically for ∆/z0 > 0.34 is not incompatible
with our measurements. Finally, the proposed model
is accurate to rationalize our observations at small
withdrawal distances ∆/z0 < 0.25 and give potential

trends for large ∆.

V. CONCLUSION

In this paper, we focus on the drag force during
the re-intrusion of an object into a granular material
after its partial extraction. Experiments show that
the re-intrusion force at the beginning is significantly
lower than the force experienced during the first
penetration. When the object regains its initial depth
in the medium, this behavior fades and the drag force
returns to its nominal level. We evidence two force
regimes: a first regime where the re-intrusion force
starts from zero and increases rapidly with depth
adopting a positive curvature and a second regime
where the force bends back to the initial intrusion curve
and exhibits a negative curvature. These two regimes
are separated by an inflection point which has been
characterized experimentally. The transition between
these two regimes is rationalized by the introduction of
a crossover length λ. This length ensures a continuous
transition between the two stress profiles present in the
granular packing: the stress profile existing before the
initial penetration and the stress profile created during
the extraction by the filling of the wake of the object.
The predictions of this model compare well to our
observations both in term of force curve and location
of the inflection point. The crossover length λ is shown
to scale linearly with the withdrawal distance ∆.

The understanding of the transition between two
force regimes during re-intrusion relies on the mi-
croscopic properties of the material and the internal
structure of the packing. This should motivates future
numerical simulations to establish how the stress field
in the granular medium evolves during the partial-
extrusion and the successive intrusions of an object.
Also, it would be interesting to extend the present
study in specific regimes where the intruder motion
should be faster than the characteristic avalanche time
at the tip of the rod and to immersed granular medium
where the interstitial fluid flow add further physical
ingredients to the problem.
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