
HAL Id: hal-03741115
https://hal.science/hal-03741115

Submitted on 31 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform strong and weak error estimates for numerical
schemes applied to multiscale SDEs in a

Smoluchowski-Kramers diffusion approximation regime
Charles-Edouard Bréhier

To cite this version:
Charles-Edouard Bréhier. Uniform strong and weak error estimates for numerical schemes applied to
multiscale SDEs in a Smoluchowski-Kramers diffusion approximation regime. Journal of Computa-
tional Dynamics, 2023, 10 (3), pp.387-424. �10.3934/jcd.2023005�. �hal-03741115�

https://hal.science/hal-03741115
https://hal.archives-ouvertes.fr


Uniform strong and weak error estimates for numerical schemes applied to
multiscale SDEs in a Smoluchowski–Kramers diffusion approximation regime

Charles-Edouard Bréhier

Abstract. We study a family of numerical schemes applied to a class of multiscale systems of stochastic
differential equations. When the time scale separation parameter vanishes, a well-known Smoluchowski–
Kramers diffusion approximation result states that the slow component of the considered system converges
to the solution of a standard Itô stochastic differential equation. We propose and analyse schemes for strong
and weak effective approximation of the slow component. Such schemes satisfy an asymptotic preserving
property and generalize the methods proposed in the recent article [4]. We fill a gap in the analysis of
these schemes and prove strong and weak error estimates, which are uniform with respect to the time scale
separation parameter.

1. Introduction

In this article, we consider multiscale systems of stochastic differential equations of the type

(1)

$

’

&

’

%

dqεptq “
pεptq

ε
dt

dpεptq “ ´
pεptq

ε2
dt`

fpqεptqq

ε
dt`

σpqεptqq

ε
dβptq,

where ε P p0, ε0q is a time-scale separation parameter. The unknowns qεptq and pεptq and the Wiener process
β take values in Rd, and the mapping f and σ satisfy appropriate regularity conditions. The objective of
this article is to study numerical schemes for the approximation of the component Qε, for arbitrary values
of the time-scale separation parameter ε, in particular when it vanishes. This is not a trivial task since the
component pε evolves at the fast time scale t{ε2, and a crude discretization would impose stringent conditions
on the time-step size ∆t.

It is a well-known result in the analysis of multiscale stochastic systems that qεptq converges, at least
in distribution, when ε Ñ 0, to q0ptq, for all t ě 0, where X0 is the solution of the stochastic differential
equation

(2) dq0ptq “ fpq0ptqqdt` σpq0ptqqdβptq

where the noise is interpreted in the sense of Itô. We refer for instance to [18, Chapter 11] for a description
of this thype of convergence result, and see Proposition 2.2 below for a precise statement, where convergence
is understood in a stronger sense than convergence in distribution. The convergence result qε Ñ q0 is often
called a Smoluchowski–Kramers diffusion approximation result in the literature. If σ is constant and equal
to the identity, and if f “ ´∇V for some potential energy function V : Rd Ñ R, the SDE system (1)
describes the Langevin dynamics, whereas the SDE (2) describes the overdamped Langevin dynamics, see
for instance [14, Sections 2.2.3 and 2.2.4], and also the recent article [20] and references therein.

In order to define numerical schemes which perform better than crude methods when ε varies and may
vanish, it is relevant to resort to the notion of asymptotic preserving schemes as studied in the recent
article [4]: if ∆t “ T {N denotes the time-step size with given T P p0,8q and N P N, one has a commutative
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diagram property
qε,∆tN

NÑ8
ÝÝÝÝÑ qεpT q

§

§

đ
εÑ0

§

§

đ
εÑ0

q0,∆t
N

NÑ8
ÝÝÝÝÑ q0pT q,

where
`

qε,∆tn , pε,∆tn

˘

0ďnďN
is the scheme for given values of ε and ∆t, and one needs to check that

‚ the scheme is consistent for any value of ε ą 0 when ∆tÑ 0,
‚ there exists a limiting scheme

`

q0,∆t
n

˘

0ďnďN
when εÑ 0 for any value of ∆t ą 0,

‚ the limiting scheme is consistent with the limiting equation when ∆tÑ 0.
As explained in [4], the last property may fail to hold for some crude methods. However in the situation
considered in this article there are no such subtleties for instance related to the interpretation of the noise.

In this article, we study numerical schemes and obtain strong and weak error estimates which are uniform
with respect to the time-scale separation parameter ε P p0, ε0q, meaning that qεpT q can be approximated by
qε,∆tN with a cost which is independent of ε. On the one hand, for the numerical scheme

(3)

$

’

&

’

%

qε,∆tn`1 “ qε,∆tn `
∆t

ε
pε,∆tn`1

pε,∆tn`1 “ pε,∆tn ´
∆t

ε2
pε,∆tn`1 `

∆tfpqε,∆tn q

ε
`
σpqε,∆tn q

ε
∆βn,

one obtains uniform strong error estimates

(4) sup
εPp0,ε0q

`

Er|qε,∆tN ´ qεpN∆tq|2s
˘

1
2 ď CpT q∆t,

see Theorem 3.1 for a precise statement. On the other hand, for the numerical scheme

(5)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

qε,∆tn`1 “ qε,∆tn ` ε
`

1´ e´
∆t
ε2
˘

pε,∆tn `
`

∆t´ ε2p1´ e´
∆t
ε2 q

˘

fpqε,∆tn q

` σpqε,∆tn qpβptn`1q ´ βptnqq ´ σpq
ε,∆t
n q

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq

pε,∆tn`1 “ e´
∆t
ε2 pε,∆tn ` εp1´ e´

∆t
ε2 qfpqε,∆tn q `

1

ε
σpqε,∆tn q

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq,

and functions ϕ : Rd Ñ R of class C3, one obtains weak error estimates
ˇ

ˇErϕpqε,∆tN qs ´ ErϕpqεpT qqs
ˇ

ˇ ď CpT, ϕq
`

∆t` ε
˘

,(6)

sup
εPp0,ε0q

ˇ

ˇErϕpqε,∆tN qs ´ ErϕpqεpT qqs
ˇ

ˇ ď CpT, ϕq∆t
1
2 .(7)

See Theorem 3.3 for a precise statement, and Proposition 2.1 for explanations concerning the construction
of the numerical scheme (5).

The uniform weak error estimate (7) may be suboptimal: indeed one only obtains order 1{2, and there-
fore (7) is a straightforward corollary of the uniform strong error estimate (4). The weak error estimate (6)
is not uniform with respect to ε but may be more precise in regimes where ε is negligible compared with ∆t.
The weak error estimate (6) is also similar to error bounds which may be obtained for different multiscale
numerical schemes, for instance based on the Heterogeneous Multiscale Method. Improving the uniform
weak error estimate (7) to obtain order 1 is left for future works.

To the best of our knowledge, the strong error estimates (4) and the weak error estimates (6)–(7) have
not been obtained previously and our results thus fill a gap in the literature. These proofs require delicate
and non trivial arguments. On the one hand, proving (4) is based on an appropriate change of unknowns
and analysis of multiple error terms. On the other hand, proving (6)–(7) is based on the standard approach
using solutions of Kolmogorov equations for weak error analysis. Proposition 6.1 gives the required bounds
on the derivatives of these solutions, with a careful analysis of the dependence with respect to ε.

Note that the recent preprint [3] is also concerned with the proof of uniform (strong) error estimates
for a class of multiscale SDE systems in a diffusion approximation regime. However, the structure of the
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systems, the results and the techniques of proof are substantially different, which justifies to perform the
analysis in separate articles.

The analysis of numerical methods for multiscale stochastic differential equations is an active research
area. The recent articles [2] and [12] propose uniformly accurate methods for SDE systems which are differ-
ent from (1) considered in this article. The recent article [4] has introduced a notion of asymptotic preserving
schemes which applies to (1), and some uniform error estimates were proved for SDE systems in an averaging
regime. We also refer to the PhD thesis [19] for supplementary results and numerical experiments. In this
article, as already mentioned, we fill a gap in [4] and prove some uniform error estimates in the diffusion
approximation regime, for the schemes (3) and (5) applied to (1). The articles [7] and [15] illustrate why
effective numerical approximation of solutions of SDEs may be more subtle than for deterministic problems.
Many other techniques have been introduced to design effective methods for the numerical approximation of
multiscale SDE systems, let us mention spectral methods [1], heterogeneous multiscale methods [6], projec-
tive integration methods [8], equation-free methods [10], parareal methods [13], micro-macro acceleration
methods [23] for instance. We refer to the monographs [9, 11, 16, 17] for general results on numerical
methods applied to stochastic differential equations.

This article is organized as follows. Section 2 describes the setting, in particular the considered multi-
scale SDE systems are presented in Section 2.1 and the numerical schemes studied in this work are given
in Section 2.2. The main results of this article are stated and discussed in Section 3: uniform strong error
estimates are given in Theorem 3.1 (Section 3.1) and weak error estimates are given in Theorem 3.3 (Sec-
tion 3.2). Moment bounds are stated and proved in Section 4. Theorem 3.1 is proved in Section 5 whereas
Theorem 3.3 is proved in Section 6. Auxiliary regularity results for solutions of Kolmogorov equations, with
a careful analysis of the dependence with respect to ε, are stated in Section 6.1 and proved in Section 6.3.

2. Setting

Let d P N be an integer. The norm and inner product in the standard Euclidian space Rd are denoted
by | ¨ | and x¨, ¨y respectively. The set of d ˆ d matrices with real-valued entries is denoted by MdpRq. The
same notation is used to denote the norm and inner product in the space R2d. Let

`

βptq
˘

tě0
be a Rd-valued

standard Wiener process, defined on a probability space pΩ,F ,Pq which satisfies the usual conditions. The
expectation operator is denoted by Er¨s.

The time-scale separation parameter is denoted by ε. Without loss of generality, it is assumed that
ε P p0, ε0q, where ε0 is an arbitrary positive parameter. The time-step size of the numerical schemes is
denoted by ∆t. It is assumed that ∆t “ T {N where T P p0,8q is an arbitrary positive real number, and
N P N is an integer. For all n P t0, . . . , Nu, let tn “ n∆t. Without loss of generality, it is assumed that
∆t P p0,∆t0q, where ∆t0 “ T {N0 is an arbitrary positive real number. Equivalently, it is assumed that
N ě N0. For all n P t0, . . . , N ´ 1u, set ∆βn “ βptn`1q ´ βptnq.

If ϕ : Rd Ñ R is a mapping of class C3, its first, second and third order derivatives are denoted by ∇ϕ,
∇2ϕ and ∇3ϕ respectively. Set

~ϕ~1 “ sup
xPRd

sup
h1PRd

|∇ϕpxq.h1|,

~ϕ~2 “ ~ϕ~1 ` sup
xPRd

sup
h1,h2PRd

|∇2ϕpxq.ph1, h2q|,

~ϕ~3 “ ~ϕ~2 ` sup
xPRd

sup
h1,h2,h3PRd

|∇3ϕpxq.ph1, h2, h3q|.

If φ : pq, pq P Rd ˆ Rd Ñ R is of class C1, ∇qφ and ∇pφ are the partial derivatives of φ with respect to the
variables q and p respectively. Similar notation is used for higher order derivatives.

2.1. The multiscale SDE system. We consider the following class of multiscale SDE systems

(8)

$

’

&

’

%

dqεptq “
pεptq

ε
dt

dpεptq “ ´
pεptq

ε2
dt`

fpqεptqq

ε
dt`

σpqεptqq

ε
dβptq,
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where qεptq P Rd and pεptq P Rd for all t ě 0. The mappings f : Rd Ñ Rd and σ : Rd Ñ MdpRq satisfy
Assumption 1 below.

Assumption 1. Let f : Rd Ñ Rd and σ : Rd ÑMdpRq be mappings of class C3, with bounded derivatives
of order 1, 2, 3. The mapping σ is assumed to be bounded.

For all q P Rd and i, j P t1, . . . , du, set

(9) aijpqq “
d
ÿ

k“1

σikpqqσjkpqq.

Note that a is of class C3, and since σ and its derivatives are bounded, a and its derivatives are bounded.
Therefore the mapping a is globally Lipschitz continuous: there exists C P p0,8q such that for all q1, q2 P Rd
one has

(10)
d
ÿ

i,j“1

|aijpq2q ´ aijpq1q| ď C|q2 ´ q1|.

The initial values for the SDE system (8) are given by qεp0q “ qε0 and pεp0q “ pε0, such that Assumption 2
below is satisfied.

Assumption 2. There exists q0
0 P Rd such that

qε0 Ñ
εÑ0

q0
0 .

Moreover, one has the following uniform upper bound:

sup
εPp0,ε0q

|pε0| ă 8.

It is assumed that the initial values qε0 P Rd and qε0 P R are deterministic. The case of random initial
values, independent of the Wiener process

`

βptq
˘

tě0
, can be treated by a standard conditioning argument,

provided that suitable moment bounds are satisfied. This treatment is omitted in the sequel.
All the estimates below depend on the value of sup

εPp0,ε0q

|pε0|, but this is not indicated explicitly.

Under Assumptions 1 and 2, the SDE system (8) admits a unique solution
`

qεptq, pεptq
˘

tě0
, since f and

σ are globally Lipschitz continuous. The solution can be expressed as follows: for all t ě 0, one has

(11)

$

’

’

’

&

’

’

’

%

qεptq “ qε0 `
1

ε

ż t

0

pεpsqds,

pεptq “ e´
t
ε2 pε0 `

1

ε

ż t

0

e´
t´s

ε2 fpqεpsqqds`
1

ε

ż t

0

e´
t´s

ε2 dβpsq.

The following change of unknowns is employed below: for all t ě 0, set

(12)

#

Qεptq “ qεptq ` εpεptq

P εptq “ εpεptq.

The R2d-valued process
`

Qεptq, P εptq
˘

tě0
is then solution of the SDE system

(13)

$

&

%

dQεptq “ f
`

Qεptq ´ P εptq
˘

dt` σ
`

Qεptq ´ P εptq
˘

dβptq,

dP εptq “ ´
P εptq

ε2
dt` f

`

Qεptq ´ P εptq
˘

dt` σ
`

Qεptq ´ P εptq
˘

dβptq.

To retrieve properties of qεptq, note that for all t ě 0 one has

qεptq “ Qεptq ´ P εptq.

The change of unknowns is instrumental in the proofs of moment bounds and strong error estimates for Qε
and P ε, however weak error analysis is performed using only the unknowns qε and pε.
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2.2. The numerical schemes. We introduce two numerical schemes: the first one is used to obtain
strong approximation of qεptq, whereas the second one is used to obtain weak approximation of qεptq. The
same notation is used for the two schemes, since it will always be clear in the statements of the results and
in the analysis below which scheme is considered.

The first numerical scheme is defined as follows:

(14)

$

’

&

’

%

qε,∆tn`1 “ qε,∆tn `
∆t

ε
pε,∆tn`1

pε,∆tn`1 “ pε,∆tn ´
∆t

ε2
pε,∆tn`1 `

∆tfpqε,∆tn q

ε
`
σpqε,∆tn q

ε
∆βn

with the initial values qε,∆t0 “ qε0 and pε,∆t0 “ pε0 (given by Assumption 2). In the scheme (14), the q-
component is discretized explicitly, whereas the p-component is treated implicitly. This choice is made to
ensure stability properties (in particular to be able to choose the time-step size ∆t independently of the time
scale separation parameter ε) in the second equation, and to ensure good behavior of qε,∆tn when ε vanishes, in
the first equation, as will be explained below. In addition, discretizing the q-component explicitly is needed
to have consistent approximation in the sense of Itô of the contribution of the noise. Note that, in fact,
the scheme (14) can be implemented explicitly in practice owing to the following equivalent formulation,
computing first pε,∆tn`1 and then qε,∆tn`1 :

$

’

’

&

’

’

%

qε,∆tn`1 “ qε,∆tn `
∆t

ε
pε,∆tn`1

pε,∆tn`1 “
1

1` ∆t
ε2

´

pε,∆tn `
∆tfpqε,∆tn q

ε
`
σpqε,∆tn q

ε
∆βn

¯

.

The second numerical scheme is defined as follows:

(15)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

qε,∆tn`1 “ qε,∆tn ` ε
`

1´ e´
∆t
ε2
˘

pε,∆tn `
`

∆t´ ε2p1´ e´
∆t
ε2 q

˘

fpqε,∆tn q

` σpqε,∆tn qpβptn`1q ´ βptnqq ´ σpq
ε,∆t
n q

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq

pε,∆tn`1 “ e´
∆t
ε2 pε,∆tn ` εp1´ e´

∆t
ε2 qfpqε,∆tn q `

1

ε
σpqε,∆tn q

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq.

The numerical scheme (15) is appropriate to obtain approximation in distribution of qεptnq and pεptnq:
indeed, it suffices to sample at each iteration a R2d-valued centered Gaussian random variable

´

βptn`1q ´ βptnq,

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq
¯

,

or equivalently of a family of d independent R2-valued centered Gaussian random variables
´

βjptn`1q ´ βjptnq,

ż tn`1

tn

e´
tn`1´s

ε2 dβjpsq
¯

,

with j “ 1, . . . , d, which have the same covariance matrix with entries given by

Erpβjptn`1q ´ βjptnqq
2s “ ∆t

Erpβjptn`1q ´ βjptnqq

ż tn`1

tn

e´
tn`1´s

ε2 dβjpsqs “

ż tn`1

tn

e´
tn`1´s

ε2 ds “ ε2p1´ e´
∆t
ε2 q

Er
`

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq
˘2
s “

ż tn`1

tn

e´2
tn`1´s

ε2 ds “
ε2

2
p1´ e´

2∆t
ε2 q.

It suffices to compute the square root or the Cholesky decomposition of the covariance matrix to sample the
required Gaussian random variables. The construction of the second numerical scheme (15) is motivated by
the following result.
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Proposition 2.1. Let ε P p0, ε0q and ∆t P p0,∆t0q. Introduce the continuous-time auxiliary process
`

q̃ε,∆tptq, p̃ε,∆tptq
˘

tě0
defined such that for all n P t0, . . . , N ´ 1u and t P rtn, tn`1s, one has

(16)

$

’

’

&

’

’

%

dq̃ε,∆tptq “
p̃ε,∆tptq

ε
dt

dp̃ε,∆tptq “ ´
p̃ε,∆tptq

ε2
dt`

fpq̃ε,∆tptnqq

ε
dt`

σpq̃ε,∆tptnqq

ε
dβptq,

with initial values q̃ε,∆tp0q “ qε0 and p̃ε,∆tp0q “ pε0, and such that t P r0, T s ÞÑ q̃ε,∆tptq and t P r0, T s ÞÑ p̃ε,∆tptq
are continuous. Then for all n P t1, . . . , Nu one has

`

qε,∆tn , pε,∆tn

˘

“
`

q̃ε,∆tptnq, p̃
ε,∆tptnq

˘

.

Proof of Proposition 2.1. Let n P t0, . . . , N ´ 1u, then for all t P rtn, tn`1s, one has

p̃ε,∆tptq “ e´
t´tn
ε2 p̃ε,∆tptnq ` εp1´ e

´
t´tn
ε2 qfpq̃ε,∆tptnqq `

1

ε
σpq̃ε,∆tptnqq

ż t

tn

e´
t´s

ε2 dβpsq.

This then gives the equality

q̃ε,∆tptn`1q “ q̃ε,∆tptnq `
1

ε

ż tn`1

tn

p̃ε,∆tptqdt

“ q̃ε,∆tptnq ` εp1´ e
´∆t
ε2 qp̃ε,∆tptnq `

`

∆t´ ε2p1´ e´
∆t
ε2 q

˘

fpq̃ε,∆tptnqq

`
1

ε2
σpq̃ε,∆tptnqq

ż tn`1

tn

ż t

tn

e´
t´s

ε2 dβpsqdt,

where using the stochastic Fubini theorem one obtains
ż tn`1

tn

ż t

tn

e´
t´s

ε2 dβpsqdt “

ż tn`1

tn

ż tn`1

s

e´
t´s

ε2 dtdβpsq

“

ż tn`1

tn

ε2p1´ e´
tn`1´s

ε2 qdβpsq

“ ε2pβptn`1q ´ βptnqq ´ ε
2

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq.

Since q̃ε,∆tp0q “ qε,∆t0 and p̃ε,∆tp0q “ pε,∆t0 , it is then straightforward to check that q̃ε,∆tptnq “ qε,∆tn and
p̃ε,∆tptnq “ pε,∆tn for all n P t1, . . . , Nu. The proof of Proposition 2.1 is thus completed. �

As a consequence of Proposition 2.1, observe that if f and σ are constant, then the scheme (15) is exact:
qε,∆tn “ qεptnq and pε,∆tn “ pεptnq. Using the implementation of the scheme explained above, this means
that one obtains a scheme which is exact in distribution. The numerical scheme (15) is thus constructed by
freezing the values of the q-component on each interval rtn, tn`1s when applying the mappings f and σ, and
by computing the exact solution of the SDE depending on fpqε,∆tn q and σpqε,∆tn q on each interval.

Note that the continuous auxiliary processes
`

q̃ε,∆tptq, p̃ε,∆tptq
˘

tě0
play a role below in the proof of the

uniform weak error estimates for the numerical scheme (15).
Like in the continuous-time setting (see (12)), it is convenient to introduce auxiliary unknowns

(17)

#

Qε,∆tn “ qε,∆tn ` εpε,∆tn

P ε,∆tn “ εpε,∆tn .

After proving some properties for the unknowns Qε,∆tn and P ε,∆tn , the identity qε,∆tn “ Qε,∆tn ´ P ε,∆tn is then
used to retrieve properties of the unknown qε,∆tn .

If the first numerical scheme (14) is used, the system after the change of variables reads

(18)

$

’

&

’

%

Qε,∆tn`1 “ Qε,∆tn `∆tfpQε,∆tn ´ P ε,∆tn q ` σpQε,∆tn ´ P ε,∆tn q∆βn

P ε,∆tn`1 “
1

1` ∆t
ε2

´

P ε,∆tn `∆tfpQε,∆tn ´ P ε,∆tn q ` σpQε,∆tn ´ P ε,∆tn q∆βn

¯

.
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If the second numerical scheme (15) is used, the system after the change of variables reads

(19)

$

’

&

’

%

Qε,∆tn`1 “ Qε,∆tn `∆tfpQε,∆tn ´ P ε,∆tn q ` σpQε,∆tn ´ P ε,∆tn q∆βn

P ε,∆tn`1 “ e´
∆t
ε2 P ε,∆tn ` ε2p1´ e´

∆t
ε2 qfpQε,∆tn ´ P ε,∆tn q ` σpQε,∆tn ´ P ε,∆tn q

ż tn`1

tn

e´
tn`1´s

ε2 dβpsq.

It is straightforward to check that the numerical schemes (14) and (15) give consistent strong and weak
approximation respectively of the solution of the system (8) when ∆t Ñ 0, for any fixed value of the time-
scale separation parameter ε P p0, ε0q. Since the objective of this article is to prove that these schemes can
be run with a cost independent of ε, it is relevant to study the behavior when εÑ 0 of qεptq and of qε,∆tn .

2.3. Asymptotic behavior when the time scale separation parameter vanishes. Consider the
stochastic differential equation

(20) dq0ptq “ fpq0ptqqdt` σpq0ptqqdβptq,

where q0ptq P Rd, with initial value q0p0q “ q0
0 “ lim

εÑ0
qε0 (see Assumption 2). Owing to Assumption 1, f

and σ are globally Lipschitz continuous, therefore the SDE (20) admits a unique solution
`

q0ptq
˘

tě0
. This

solution satisfies the identity

(21) q0ptq “ q0
0 `

ż t

0

fpq0psqqds`

ż t

0

σpq0psqqdβpsq

for all t ě 0.
Consider also the standard Euler–Maruyama scheme applied to the SDE (20), with time-step size ∆t:

set q0,∆t
0 “ q0

0 and for all n P t0, . . . , N ´ 1u, set

(22) q0,∆t
n`1 “ q0,∆t

n `∆tfpq0,∆t
n q ` σpq0,∆t

n q∆βn,

where we recall that ∆βn “ βptn`1q ´ βptnq.
One has the following convergence result when εÑ 0.

Proposition 2.2. Let Assumptions 1 and 2 be satisfied. For all T P p0,8q, there exists CpT q P p0,8q
such that for all ε P p0, ε0q, one has

(23) sup
0ďtďT

Er|qεptq ´ q0ptq|2s ď CpT q
´

|qε0 ´ q
0
0 |

2 ` ε2
`

1` |qε0|
2 ` |pε0|

2
˘

¯

Ñ
εÑ0

0.

In addition, for all ∆t P p0,∆t0q, one has

(24) sup
n“0,...,N

Er|qε,∆tn ´ q0,∆t
n |2s ď CpT q

´

|qε0 ´ q
0
0 |

2 ` ε2
`

1` |qε0|
2 ` |pε0|

2
˘

¯

Ñ
εÑ0

0,

where
`

qε,∆tn , pε,∆tn

˘

n“0,...,N
is given either by (14) or by (15).

The proof of Proposition 2.2 is postponed to Section 4.4, since it requires moment bounds (uniform with
respect to ε) which are stated and proved in Section 4.

3. Main results

We are now in position to state the main results of this article. First, in Section 3.1, we study strong error
estimates when the numerical scheme (14) is used. Second, in Section 3.2, we study strong error estimates
when the numerical scheme (15) is used.

3.1. Uniform strong error estimates. In this subsection, let us consider the numerical scheme (14).
One has the following result concerning the strong error Er|qε,∆tn ´ qεpn∆tq|2s for the q-component, when
∆tÑ 0.

Theorem 3.1. Let Assumptions 1 and 2 be satisfied, and let
`

qε,∆tn

˘

ně0
be given by the numerical

scheme (14). For all T P p0,8q, there exists CpT q P p0,8q such that for all ∆t “ T {N P p0,∆t0q and
n P t1, . . . , Nu, one has

(25) sup
εPp0,ε0q

Er|qε,∆tn ´ qεpn∆tq|2s ď CpT qp1` |q0
0 |

2q∆t`
CpT q

pn` 1q2
.
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The remarkable property of (25) is that the error estimate is uniform with respect to the time-scale
separation parameter ε. In fact, the proof provides a more precise error estimate, which is combined with
Assumption 2 to obtain (25): one has

(26) Er|qε,∆tn ´ qεpn∆tq|2s ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t`
CpT qε2

pn` 1q2
|pε0|

2.

As a consequence, one obtains the following uniform strong error estimates. First, choosing N “ n,
and using the fact that 1{N2 “ ∆t2{T 2, one obtains the uniform strong error estimate at the final time
T “ N∆t:

(27) sup
εPp0,ε0q

Er|qε,∆tN ´ qεpN∆tq|2s ď CpT qp1` |q0
0 |

2q∆t.

Second, if pε0 “ 0, one also obtains

sup
εPp0,ε0q

sup
n“0,...,N

Er|qε,∆tn ´ qεpn∆tq|2s ď CpT qp1` |q0
0 |

2q∆t,

where the error estimate is uniform with respect to both ε P p0, ε0q and n P t0, . . . , Nu.
Observe that by letting εÑ 0 in the strong error estimate (26) and using Proposition 2.2, one retrieves

the standard strong error estimate for the Euler–Maruyama scheme (22) applied to the SDE (20): one has

(28) sup
n“0,...,N

Er|q0,∆t
n ´ q0pn∆tq|2s ď CpT qp1` |q0

0 |
2q∆t.

In general, when σ is not constant, the error estimate (28) above is optimal: the Euler–Maruyama scheme
has strong order of convergence equal to 1{2, thus the order of convergence in Theorem 3.1 is also optimal
in general. If the diffusion coefficient σ is constant, the strong order of convergence of the Euler–Maruyama
scheme applied to the SDE (20) driven by additive noise is in fact equal to 1: one can replace ∆t by ∆t2

in the right-hand side of (28). However, it does not seem possible to improve the order of convergence in
Theorem 3.1 when σ is assumed to be constant using the arguments of the proof: in that case Theorem 3.1
may not be optimal.

Let us also provide a strong error estimate for the second numerical scheme (15).

Proposition 3.2. Let Assumptions 1 and 2 be satisfied, and let
`

qε,∆tn

˘

ně0
be given by the numerical

scheme (15). For all T P p0,8q, there exists CpT q P p0,8q such that for all ∆t “ T {N P p0,∆t0q, one has

(29) sup
εPp0,ε0q

sup
n“0,...,N

Er|qε,∆tn ´ qεpn∆tq|2s ď CpT qp1` |q0
0 |

2q∆t.

The proof of Proposition 3.2 would follow the same strategy as the proof of Theorem 3.1. In fact,
compared with the proof of Theorem 3.1 several of the error terms vanish, which is due to replacing 1

1`∆t
ε2

by e´
∆t
ε2 in the expressions. This explains why the extra term in (26) does not appear in (29). The details

are omitted.

3.2. Uniform weak error estimates. In this subsection, let us consider the numerical scheme (15).
One has the following result concerning the weak error |Erϕpqε,∆tn qs ´ Erϕpqεpn∆tqqs| for the q-component,
when ∆tÑ 0.

Theorem 3.3. Let Assumptions 1 and 2 be satisfied, and let
`

qε,∆tn

˘

ně0
be given by the numerical

scheme (15). For all T P p0,8q, there exists CpT q P p0,8q such that for all ∆t “ T {N P p0,∆t0q, any
function ϕ : Rd Ñ R of class C3 with bounded derivatives of order 1, 2, 3, and all ε P p0, ε0q, one has

(30) sup
n“0,...,N

ˇ

ˇErϕpqε,∆tn qs ´ Erϕpqεpn∆tqqs
ˇ

ˇ ď CpT q~ϕ~3p1` |q
0
0 |

2q
`

∆t`Rpε,∆tq
˘

,

where the residual error term Rpε,∆tq is defined by

(31) Rpε,∆tq “
ż ∆t

0

ε

∆t

`

1´ e´
t
ε2
˘

dt ě 0

8



and satisfies the following inequality: there exists C P p0,8q such that for all ∆t P p0,∆t0q and ε P p0, ε0q
one has

(32) Rpε,∆tq ď C min
`

ε,∆t
1
2 ,

∆t

ε

˘

.

The proof of the inequality (32) is straightforward: indeed, one has the inequalities 0 ď 1´ e´s ď 2 and
0 ď 1 ´ e´s ď s, and therefore 0 ď 1 ´ e´s ď p2sq

1
2 , for all s ě 0. Observe that one obtains the uniform

upper bound

sup
εPp0,ε0q

Rpε,∆tq ď C∆t
1
2

which is optimal: indeed, choosing ε “
?

∆t, one has

1

∆t
1
2

Rp
?

∆t,∆tq “
1

∆t

ż ∆t

0

p1´ e´
t

∆t qdt “

ż 1

0

p1´ e´sqds “ e´1

for all ∆t P p0,∆t0q.
Let us state two immediate consequences of Theorem (3.3). On the one hand, one obtains the following

uniform weak error estimate

(33) sup
εPp0,ε0q

sup
n“0,...,N

ˇ

ˇErϕpqε,∆tn qs ´ Erϕpqεpn∆tqqs
ˇ

ˇ ď CpT q~ϕ~3p1` |q
0
0 |

2q∆t
1
2

where the order of convergence is equal to 1{2 (and this cannot be improved when using (30) owing to the
observation above). On the other hand, letting ε Ñ 0, one retrieves the standard weak error estimate with
order 1 for the Euler–Maruyama scheme (22) applied to the SDE (20): one has

(34) sup
n“0,...,N

ˇ

ˇErϕpq0,∆t
n qs ´ Erϕpq0pn∆tqqs

ˇ

ˇ ď CpT q~ϕ~3p1` |q
0
0 |

2q∆t.

For a fixed value of ε, the weak error estimate (30) also gives order of convergence 1 with respect ∆t, but
the corresponding error estimate is not uniform with respect to ε.

Note that it would suffice to apply (29) from Proposition 3.2 above to obtain the uniform weak error
estimate (33), but to retrieve (34) one needs the refined error analysis which gives (30). Even if the order of
convergence in the uniform weak error estimate (33) is 1{2, one has the following error estimate

(35) sup
n“0,...,N

ˇ

ˇErϕpqε,∆tn qs ´ Erϕpqεpn∆tqqs
ˇ

ˇ ď CpT q~ϕ~3p1` |q
0
0 |

2q
`

∆t` ε
˘

,

owing to (30) and (32), which is relevant in situations where ε is negligible compared with ∆t.

4. Moment bounds

This section is devoted to state and prove moment bounds, which are uniform with respect to ε P p0, ε0q
and ∆t P p0,∆t0q, for the solutions of (8), of (14) and of (15). The proofs are based on the changes of
unknowns introduced in Sections (2.1) and (2.2). Even if the arguments are mostly elementary, it is worth
giving full details for completeness. The proofs of Propositions 4.2 and 4.3 are variants of the proof of
Proposition 4.1 in discrete-time situations. After proving the moment bounds, the proof of Proposition 2.2
is provided.

4.1. Moment bounds for the SDE system.

Proposition 4.1. Let Assumption 1 be satisfied. For all T P p0,8q, there exists CpT q P p0,8q such
that for all ε P p0, ε0q, one has

(36) sup
0ďtďT

´

Er|qεptq|2s ` Er|pεptq|2s
¯

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

.
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Proof of Proposition 4.1. Let
`

Qεptq, P εptq
˘

tě0
be the solution of the SDE system (13). For all

t P r0, T s, one has

(37)

$

’

’

’

&

’

’

’

%

Qεptq “ Qεp0q `

ż t

0

f
`

Qεpsq ´ P εpsq
˘

ds`

ż t

0

σ
`

Qεpsq ´ P εpsq
˘

dβpsq

P εptq “ e´
t
ε2 P εp0q `

ż t

0

e´
t´s

ε2 f
`

Qεpsq ´ P εpsq
˘

ds`

ż t

0

e´
t´s

ε2 σ
`

Qεpsq ´ P εpsq
˘

dβpsq.

Using Itô’s isometry formula, and the Lipschitz continuity property of the mappings f and σ (Assumption 1)
one obtains the inequality

Er|Qεptq|2s ` Er|P εptq|2s ď CpT q
´

1` Er|Qεp0q|2s ` Er|P εp0q|2 `
ż t

0

`

Er|Qεpsq|2s ` Er|P εpsq|2s
˘

ds
¯

.

for all t P r0, T s. Since Qεp0q “ qε0 ` εpε0 and P εp0q “ εpε0, applying Gronwall’s lemma yields the moment
bound

sup
0ďtďT

`

Er|Qεptq|2s ` Er|P εptq|2s
˘

ď CpT q
´

1` |qε0|
2 ` }pε0|

2
¯

.

Using the identity qεptq “ Qεptq ´ P εptq then gives

sup
0ďtďT

Er|qεptq|2s ď CpT q
´

1` |qε0|
2 ` |pε0|

2
¯

.

Using the second identity from (11) and writing Qεptq ´ P εptq “ qεptq, applying Itô’s isometry formula, and
using the Lipschitz continuity properties of f and σ and the moment bounds for qεptq obtained above, one
then obtains, for all t P r0, T s,

Er|pεptq|2s ď C|pε0|
2 `

CT

ε2

ż t

0

e´
2pt´sq

ε2
`

1` Er|qεpsq|2s
˘

ds

ď CpT q
´

1` |qε0|
2 ` |pε0|

2
¯´

1`
1

ε2

ż t

0

e´
2pt´sq

ε2 ds
¯

ď CpT q
´

1` |qε0|
2 ` |pε0|

2
¯

,

which gives the required moment bounds for pεptq, using the identity

1

ε2

ż 8

0

e´
2r
ε2 dr “

1

2
.

This concludes the proof of Proposition 4.1. �

4.2. Moment bounds for the first numerical scheme.

Proposition 4.2. Let
`

qε,∆tn , pε,∆tn

˘

n“0,...,N
be given by the numerical scheme (14). Let Assumption 1

be satisfied. For all T P p0,8q, there exists CpT q P p0,8q such that for all ε P p0, ε0q and ∆t P p0,∆t0q, one
has

(38) sup
n“0,...,N

´

Er|qε,∆tn |2s ` Er|pε,∆tn |2s

¯

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

.

Proof of Proposition 4.2. Let
`

Qε,∆tn , P ε,∆tn

˘

n“0,...,N
be given by (18). One has the identities

(39)
$

’

’

’

’

&

’

’

’

’

%

Qε,∆tn “ Qε,∆t0 `∆t
n´1
ÿ

k“0

fpQε,∆tk ´ P ε,∆tk q `

n´1
ÿ

k“0

σpQε,∆tk ´ P ε,∆tk q∆βk

P ε,∆tn “
1

p1` ∆t
ε2 q

n
P ε,∆t0 `∆t

n´1
ÿ

k“0

1

p1` ∆t
ε2 q

n´k
fpQε,∆tk ´ P ε,∆tk q `

n´1
ÿ

k“0

1

p1` ∆t
ε2 q

n´k
σpQε,∆tk ´ P ε,∆tk q∆βk
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for all n P t0, . . . , Nu. Using Itô’s isometry formula and the Lipschitz continuity property of the mappings
f and σ (Assumption 1), one obtains the inequality

Er|Qε,∆tn |2s ` Er|P ε,∆tn |2s ď CpT q
´

1` Er|Qε,∆t0 |2s ` Er|P ε,∆t0 |2s `∆t
n´1
ÿ

k“0

`

Er|Qε,∆tk |2s ` Er|P ε,∆tk |2s
˘

¯

for all n P t0, . . . , Nu. Since Qε,∆t0 “ qε0 ` εpε0 and P ε,∆t0 “ εpε0, applying discrete Gronwall’s lemma yields
the moment bound

sup
n“0,...,N

´

Er|Qε,∆tn |2s ` Er|P ε,∆tn |2s

¯

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

.

Using the identity qε,∆tn “ Qε,∆tn ´ P ε,∆tn then gives

sup
n“0,...,N

Er|qε,∆tn |2s ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

.

Using the identity pε,∆tn “ P ε,∆tn {ε, one has

pε,∆tn “
1

p1` ∆t
ε2 q

n
pε0 `

∆t

ε

n´1
ÿ

k“0

1

p1` ∆t
ε2 q

n´k
fpqε,∆tk q `

1

ε

n´1
ÿ

k“0

1

p1` ∆t
ε2 q

n´k
σpqε,∆tk q∆βk.

Applying Itô’s isometry formula, and using the Lipschitz continuity properties of f and σ and the moment
bounds for qε,∆tn obtained above, one has, for all n P t0, . . . , Nu

Er|pε,∆tn |2s ď C|pε0|
2 `

CT∆t

ε2

n´1
ÿ

k“0

1

p1` ∆t
ε2 q

2pn´kq

`

1` Er|qε,∆tk |2s
˘

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘`

1`
∆t

ε2

n´1
ÿ

k“0

1

p1` ∆t
ε2 q

2pn´kq

˘

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

,

which gives the required moment bounds for pεn, using the inequality

τ
8
ÿ

`“1

1

p1` τq2`
“

1

2` τ
ď

1

2

with τ “ ∆t{ε2 ě 0. This concludes the proof of Proposition 4.2. �

4.3. Moment bounds for the second numerical scheme.

Proposition 4.3. Let
`

qε,∆tn , pε,∆tn

˘

n“0,...,N
be given by the numerical scheme (15). Let Assumption 1

be satisfied. For all T P p0,8q, there exists CpT q P p0,8q such that for all ε P p0, ε0q and ∆t P p0,∆t0q, one
has

(40) sup
n“0,...,N

´

Er|qε,∆tn |2s ` Er|pε,∆tn |2s

¯

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

.

Proof of Proposition 4.2. Let
`

Qε,∆tn , P ε,∆tn

˘

n“0,...,N
be given by (19). One has the identities

Qε,∆tn “ Qε,∆t0 `∆t
n´1
ÿ

k“0

fpQε,∆tk ´ P ε,∆tk q `

n´1
ÿ

k“0

σpQε,∆tk ´ P ε,∆tk q∆βk

P ε,∆tn “ e´
n∆t
ε2 P ε,∆t0 `∆t

n´1
ÿ

k“0

e´
pn´kq∆t

ε2 fpQε,∆tk ´ P ε,∆tk q `

n´1
ÿ

k“0

e´
pn´kq∆t

ε2 σpQε,∆tk ´ P ε,∆tk q∆βk

for all n P t0, . . . , Nu. Using Itô’s isometry formula and the Lipschitz continuity property of the mappings
f and σ (Assumption 1), one obtains the inequality

Er|Qε,∆tn |2s ` Er|P ε,∆tn |2s ď CpT q
´

1` Er|Qε,∆t0 |2s ` Er|P ε,∆t0 |2s `∆t
n´1
ÿ

k“0

`

Er|Qε,∆tk |2s ` Er|P ε,∆tk |2s
˘

¯
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for all n P t0, . . . , Nu. Since Qε,∆t0 “ qε0 ` εpε0 and P ε,∆t0 “ εpε0, applying discrete Gronwall’s lemma yields
the moment bound

sup
n“0,...,N

´

Er|Qε,∆tn |2s ` Er|P ε,∆tn |2s

¯

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

.

Using the identity qε,∆tn “ Qε,∆tn ´ P ε,∆tn then gives

sup
n“0,...,N

Er|qε,∆tn |2s ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

.

Using the identity pε,∆tn “ P ε,∆tn {ε, one has

pε,∆tn “ e´
n∆t
ε2 pε0 `

∆t

ε

n´1
ÿ

k“0

e´
pn´kq∆t

ε2 fpqε,∆tk q `
1

ε

n´1
ÿ

k“0

e´
pn´kq∆t

ε2 σpqε,∆tk q∆βk.

Applying Itô’s isometry formula, and using the Lipschitz continuity properties of f and σ and the moment
bounds for qε,∆tn obtained above, one has, for all n P t0, . . . , Nu

Er|pε,∆tn |2s ď C|pε0|
2 `

CT∆t

ε2

n´1
ÿ

k“0

e´
2pn´kq∆t

ε2
`

1` Er|qε,∆tk |2s
˘

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘`

1`
∆t

ε2

n´1
ÿ

k“0

e´
2pn´kq∆t

ε2
˘

ď CpT q
`

1` |qε0|
2 ` |pε0|

2
˘

,

which gives the required moment bounds for pεn, using the inequality

τ
8
ÿ

`“1

e´2τ` “
τ

e2τ ´ 1
ď C ă 8

with τ “ ∆t{ε2 ě 0. This concludes the proof of Proposition 4.2. �

4.4. Proof of Proposition 2.2. As a consequence of Proposition 4.1, we are now in position to provide
the proof of the inequalities (23) and (24) from Proposition 2.2.

Proof of the inequality (23). For all t P r0, T s, the error is decomposed as

qεptq ´ q0ptq “ Qεptq ´ q0ptq ´ P εptq

“ qε0 ´ q
0
0 `

ż t

0

`

fpqεpsqq ´ fpq0psqq
˘

ds`

ż t

0

`

σpqεpsqq ´ σpq0psqq
˘

dβpsq ´ εpεptq.

Applying Itô’s isometry formula, using the Lipschitz continuity property of f and σ and the moment
bound (36), one obtains, for all t P r0, T s,

Er|qεptq ´ q0ptq|2s ď CpT q
´

|qε0 ´ q
0
0 |

2 `

ż t

0

Er|qεpsq ´ q0psq|2sds` ε2
`

1` |qε0|
2 ` |pε0|

2
˘

¯

.

Applying Gronwall’s lemma and using Assumption 2, the proof of the inequality (23) is completed. �

The proof of the inequality (24) is identical for the two choices of numerical schemes (14) and (15), and
is a variant of the proof of the inequality (23) in a discrete time situation.

Proof of the inequality (24). For all n P t0, . . . , N ´ 1u, the error is decomposed as

qε,∆tn ´ q0,∆t
n “ Qε,∆tn ´ q0,∆t

n ´ P ε,∆tn

“ qε0 ´ q
0
0 `∆t

n´1
ÿ

k“0

`

fpqε,∆tk q ´ fpq0,∆t
k q `

n´1
ÿ

k“0

`

σpqε,∆tk q ´ σpq0,∆t
k q

˘

´ εpε,∆tn .
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Applying Itô’s isometry formula, using the Lipschitz continuity property of f and σ and the moment
bound (38), one obtains, for all n P t0, . . . , N ´ 1u,

Er|qε,∆tn ´ q0,∆t
n |2s ď CpT q

´

|qε0 ´ q
0
0 |

2 `∆t
n´1
ÿ

k“0

Er|qε,∆tk ´ q0,∆t
k |2s ` ε2

`

1` |qε0|
2 ` |pε0|

2
˘

¯

.

Applying Gronwall’s lemma and using Assumption 2, the proof of the inequality (24) is completed. �

5. Proof of the strong error estimates

Before proceeding with the proof of Theorem 3.1, let us state two useful inequalities:

(41) sup
τPr0,8q

|1´ e´τ |

τ
1
2

ă 8,

and

(42) sup
nPN

sup
τPp0,8q

pn` 1q
` 1

p1` τqn
´ e´nτ

˘

ă 8.

The proof of the inequality (41) is straightforward: the mapping τ P r0,8q Ñ e´τ is bounded and Lipschitz
continuous. To prove the inequality (42), it suffices to check that the maximum of the function

τ P r0,8q ÞÑ
1

p1` τqn
´ e´nτ P r0,8q

is attained for a real number τ “ τn satisfying e´nτn “ 1
p1`τnqn`1 : as a consequence

sup
τPp0,8q

` 1

p1` τqn
´ e´nτ

˘

“
1

p1` τnqn
´ e´nτn “

τn
p1` τnqn`1

ď
τn

pn` 1qτn
ď

1

n` 1
.

Before proceeding with the proof, let us also state and prove the following auxiliary result, concerning
temporal regularity of the processes Qε and P ε, uniformly with respect to ε.

Lemma 5.1. Let Assumption 1 be satisfied. For all T P p0,8q, there exists CpT q P p0,8q such that for
all ε P p0, ε0q and all s1, s2 P r0, T s, one has

(43) Er|Qεps2q ´Q
εps1q|

2s ` Er|P εps2q ´ P
εps1q|

2s ď CpT qp1` |qε0|
2 ` |pε0|

2q|s2 ´ s1|.

Proof of Lemma 5.1. On the one hand, for all s1, s2 P r0, T s, with s1 ď s2, one has

Qεps2q ´Q
εps1q “

ż s2

s1

fpqεpsqqds`

ż s2

s1

σpqεpsqqdβpsq,

therefore using Itô’s isometry formula, the Lipschitz continuity property of the mappings f and σ (Assump-
tion 1) and the moment bounds (36) from Proposition 4.1, one obtains

Er|Qεps2q ´Q
εps1q|

2s ď CpT q

ż s2

s1

`

1` Er|qεpsq|2s
˘

ds ď CpT qp1` |qε0|
2 ` |pε0|

2q|s2 ´ s1|.

On the one hand, for all s1, s2 P r0, T s, with s1 ď s2, one has

P εps2q ´ P
εps1q “

`

e´
s2´s1
ε2 ´ 1

˘

P εps1q `

ż s2

s1

e´
s2´s

ε2 fpqεpsqqds`

ż s2

s1

e´
s2´s

ε2 σpqεpsqqdβpsq.

Using the inequality (41), the identity P εps1q “ εpεps1q, Itô’s isometry formula, the Lipschitz continuity
property of the mappings f and σ (Assumption 1) and the moment bounds (36) from Proposition 4.1, one
obtains

Er|P εps2q ´ P
εps1q|

2s ď C|s2 ´ s1|Er|pεps1q|
2s ` CpT q

ż s2

s1

`

1` Er|qεpsq|2s
˘

ds

ď CpT qp1` |qε0|
2 ` |pε0|

2q|s2 ´ s1|.

Gathering the estimates then concludes the proof of Lemma 5.1. �

We are now in position to provide the proof of Theorem 3.1
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Proof of Theorem 3.1. Let us first describe the decomposition of the error. Using the identities

qεptnq “ Qεptnq ´ P
εptnq , qε,∆tn “ Qε,∆tn ´ P ε,∆tn ,

the mean-square error is bounded as follows:

Er|qε,∆tn ´ qεptnq|
2s ď 2Er|Qε,∆tn ´Qεptnq|

2s ` 2Er|P ε,∆tn ´ P εptnq|
2s.

Let Eε,∆tn “ Er|Qε,∆tn ´Qεptnq|
2s ` Er|P ε,∆tn ´ P εptnq|

2s. Recall the expressions (37) for Qεptnq and P εptnq,
and the expressions (39) for qεn and pεn.

On the one hand, one has

Qε,∆tn ´Qεptnq “ Qε,∆t0 ´Qεp0q

`∆t
n´1
ÿ

k“0

fpQε,∆tk ´ P ε,∆tk q ´

ż tn

0

fpQεptq ´ P εptqqdt

`

n´1
ÿ

k“0

σpQε,∆tk ´ P ε,∆tk q∆βk ´

ż tn

0

σpQεptq ´ P εptqqdβptq

“ eε,∆tn,Q,1,1 ` e
ε,∆t
n,Q,1,2 ` e

ε,∆t
n,Q,2,1 ` e

ε,∆t
n,Q,2,2,

where one sets

eε,∆tn,Q,1,1 “

n´1
ÿ

k“0

ż tk`1

tk

`

fpQεptkq ´ P
εptkqq ´ fpQ

εptq ´ P εptqq
˘

dt

eε,∆tn,Q,1,2 “ ∆t
n´1
ÿ

k“0

`

fpQε,∆tk ´ P ε,∆tk q ´ fpQεptkq ´ P
εptkqq

˘

eε,∆tn,Q,2,1 “

n´1
ÿ

k“0

ż tk`1

tk

`

σpQεptkq ´ P
εptkqq ´ σpQ

εptq ´ P εptqq
˘

dβptq

eε,∆tn,Q,2,2 “

n´1
ÿ

k“0

`

σpQε,∆tk ´ P ε,∆tk q ´ σpQεptkq ´ P
εptkqq

˘

∆βk.

On the other hand, one has

P ε,∆tn ´ P εptnq “
1

p1` ∆t
ε2 q

n
P ε,∆t0 ´ e´

tn
ε2 P ε0

`∆t
n´1
ÿ

k“0

1

p1` ∆t
ε2 q

n´k
fpQε,∆tk ´ P ε,∆tk q ´

ż tn

0

e´
tn´t

ε2 fpQεptq ´ P εptqqdt

`

n´1
ÿ

k“0

1

p1` ∆t
ε2 q

n´k
σpQε,∆tk ´ P ε,∆tk q∆βk ´

ż tn

0

e´
tn´t

ε2 σpQεptq ´ P εptqqdβptq

“ eε,∆tn,P,0

` eε,∆tn,P,1,1 ` e
ε,∆t
n,P,1,2 ` e

ε,∆t
n,P,1,3 ` e

ε,∆t
n,P,1,4

` eε,∆tn,P,2,1 ` e
ε,∆t
n,P,2,2 ` e

ε,∆t
n,P,2,3 ` e

ε,∆t
n,P,2,4

where one sets

eε,∆tn,P,0 “
` 1

p1` ∆t
ε2 q

n
´ e´

tn
ε2
˘

P ε,∆t0 “ ε
` 1

p1` ∆t
ε2 q

n
´ e´

tn
ε2
˘

pε0,

14



then

eε,∆tn,P,1,1 “

n´1
ÿ

k“0

ż tk`1

tk

e´
tn´t

ε2
`

fpQεptkq ´ P
εptkqq ´ fpQ

εptq ´ P εptqq
˘

dt

eε,∆tn,P,1,2 “

n´1
ÿ

k“0

ż tk`1

tk

e´
tn´t

ε2
`

fpQε,∆tk ´ P ε,∆tk q ´ fpQεptkq ´ P
εptkqq

˘

dt

eε,∆tn,P,1,3 “

n´1
ÿ

k“0

ż tk`1

tk

`

e´
tn´tk
ε2 ´ e´

tn´t

ε2
˘

fpQε,∆tk ´ P ε,∆tk qdt

eε,∆tn,P,1,4 “ ∆t
n´1
ÿ

k“0

` 1

p1` ∆t
ε2 q

n´k
´ e´

tn´tk
ε2

˘

fpQε,∆tk ´ P ε,∆tk q

and finally

eε,∆tn,P,2,1 “

n´1
ÿ

k“0

ż tk`1

tk

e´
tn´t

ε2
`

σpQεptkq ´ P
εptkqq ´ σpQ

εptq ´ P εptqq
˘

dβptq

eε,∆tn,P,2,2 “

n´1
ÿ

k“0

ż tk`1

tk

e´
tn´t

ε2
`

σpQε,∆tk ´ P ε,∆tk q ´ σpQεptkq ´ P
εptkqq

˘

dβptq

eε,∆tn,P,2,3 “

n´1
ÿ

k“0

ż tk`1

tk

`

e´
tn´tk
ε2 ´ e´

tn´t

ε2
˘

σpQε,∆tk ´ P ε,∆tk qdβptq

eε,∆tn,P,2,4 “

n´1
ÿ

k“0

` 1

p1` ∆t
ε2 q

n´k
´ e´

tn´tk
ε2

˘

σpQε,∆tk ´ P ε,∆tk q∆βk.

Let us prove error estimates for each of the terms defined above. Let us start with the terms appearing
in the right-hand side of the expression of the error term Qε,∆tn ´Qεptnq above.

Using the Cauchy–Schwarz inequality, the Lipschitz continuity of f (Assumption 1) and the inequal-
ity (43) from Lemma 5.1, one obtains

Er|eε,∆tn,Q,1,1|
2s ď CT

n´1
ÿ

k“0

ż tk`1

tk

`

Er|Qεptkq ´Qεptq|2s ` Er|P εptkq ´ P εptq|2s
˘

dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using the Cauchy–Schwarz inequality and the Lipschitz continuity of f , one obtains

Er|eε,∆tn,Q,1,2|
2s ď CT∆t

n´1
ÿ

k“0

Eε,∆tk .

Using Itô’s isometry formula, the Lipschitz continuity of σ and Lemma (43), one obtains

Er|eε,∆tn,Q,2,1|
2s ď C

n´1
ÿ

k“0

ż tk`1

tk

`

Er|Qεptkq ´Qεptq|2s ` Er|P εptkq ´ P εptq|2s
˘

dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using Itô’s isometry formula and the Lipschitz continuity of σ, one obtains

Er|eε,∆tn,Q,2,2|
2s ď CT∆t

n´1
ÿ

k“0

Eε,∆tk .

Gathering the estimates, for all n P t1, . . . , Nu one obtains the upper bound

(44)

Er|Qε,∆tn ´Qεptnq|
2s ď 4

´

Er|eε,∆tn,Q,1,1|
2s ` Er|eε,∆tn,Q,1,2|

2s ` Er|eε,∆tn,Q,2,1|
2s ` Er|eε,∆tn,Q,2,2|

2s

¯

ď CT∆t
n´1
ÿ

k“0

Eε,∆tk ` CpT qp1` |qε0|
2 ` |pε0|

2q∆t.
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Let us now treat the terms appearing in the right-hand side of the expression of the error term P ε,∆tn ´

P εptnq above.
Using the inequality (42), one obtains

Er|eε,∆tn,P,0|
2s ď

Cε2

pn` 1q2
|pε0|

2.

Using the Cauchy–Schwarz inequality, the Lipschitz continuity of f and Lemma (43), one obtains

Er|eε,∆tn,P,1,1|
2s ď CT

n´1
ÿ

k“0

ż tk`1

tk

`

Er|Qεptkq ´Qεptq|2s ` Er|P εptkq ´ P εptq|2s
˘

dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using the Cauchy–Schwarz inequality and the Lipschitz continuity of f , one obtains

Er|eε,∆tn,P,1,2|
2s ď CT∆t

n´1
ÿ

k“0

Eε,∆tk .

Using the Cauchy–Schwarz inequality, the Lipschitz continuity of f and the inequality (41), one obtains

Er|eε,∆tn,P,1,3|
2s ď CpT qp1` |qε0|

2 ` |pε0|
2q

n´1
ÿ

k“0

ż tk`1

tk

`

e´
t´tk
ε2 ´ 1

˘2
e´2 tn´t

ε2 dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q
∆t

ε2

ż tn

0

e´2 tn´t
ε2 dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using the Cauchy–Schwarz inequality, the Lipschitz continuity of f and the inequality (42), one obtains

Er|eε,∆tn,P,1,4|
2s ď CpT qp1` |qε0|

2 ` |pε0|
2q

n´1
ÿ

k“0

∆t

pn´ kq2

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using Itô’s isometry formula, the Lipschitz continuity of σ and Lemma (43), one obtains

Er|eε,∆tn,P,2,1|
2s ď CT

n´1
ÿ

k“0

ż tk`1

tk

`

Er|Qεptkq ´Qεptq|2s ` Er|P εptkq ´ P εptq|2s
˘

dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using Itô’s isometry formula and the Lipschitz continuity of σ, one obtains

Er|eε,∆tn,P,2,2|
2s ď CT∆t

n´1
ÿ

k“0

Eε,∆tk .

Using Itô’s isometry formula, the Lipschitz continuity of σ and the inequality (41), one obtains

Er|eε,∆tn,P,2,3|
2s ď CpT qp1` |qε0|

2 ` |pε0|
2q

n´1
ÿ

k“0

ż tk`1

tk

`

e´
t´tk
ε2 ´ 1

˘2
e´2 tn´t

ε2 dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q
∆t

ε2

ż tn

0

e´2 tn´t
ε2 dt

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using Itô’s isometry formula, the Lipschitz continuity of σ and the inequality (42), one obtains

Er|eε,∆tn,P,2,4|
2s ď CpT qp1` |qε0|

2 ` |pε0|
2q

n´1
ÿ

k“0

∆t

pn´ kq2

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.
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Gathering the estimates, for all n P t1, . . . , Nu one obtains the upper bound

(45)

Er|P ε,∆tn ´ P εptnq|
2s ď 9Er|eε,∆tn,P,0|

2s

` 9
´

Er|eε,∆tn,P,1,1|
2s ` Er|eε,∆tn,P,1,2|

2s ` Er|eε,∆tn,P,1,3|
2s ` Er|eε,∆tn,P,1,4|

2s

¯

` 9
´

Er|eε,∆tn,P,2,1|
2s ` Er|eε,∆tn,P,2,2|

2s ` Er|eε,∆tn,P,2,3|
2s ` Er|eε,∆tn,P,2,4|

2s

¯

ď C∆t
n´1
ÿ

k“1

Eε,∆tk `
Cε2

pn` 1q2
|pε0|

2 ` CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Let us now conclude the proof of the strong error estimates. Owing to the upper bounds (44) and (45),
for all n P t0, . . . , Nu, one obtains the upper bound

Eε,∆tn “ Er|Qε,∆tn ´Qεptnq|
2s ` Er|P ε,∆tn ´ P εptnq|

2s

ď C∆t
n´1
ÿ

k“1

Eε,∆tk `
Cε2

pn` 1q2
|pε0|

2 ` CpT qp1` |qε0|
2 ` |pε0|

2q∆t,

with Eε,∆t0 “ 0.
For all n P t1, . . . , Nu, set

Êε,∆tn “ Eε,∆tn ´
Cε2

pn` 1q2
|pε0|

2,

then one obtains the inequality

Êε,∆tn ď CpT q∆t
n´1
ÿ

k“1

Êε,∆tk ` CpT qp1` |qε0|
2 ` |pε0|

2q∆t,

using the fact that
ř8

k“1 1{k2 ă 8. Applying discrete Gronwall’s lemma yields the inequality

sup
n“1,...,N

Êε,∆tn ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t,

therefore one obtains for all n P t1, . . . , Nu the upper bound

Eε,∆tn ď
Cε2

pn` 1q2
|pε0|

2 ` CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Using Assumption 2 then concludes the proof of Theorem 3.1. �

6. Proof of the weak error estimates

The objective of this section is to provide the proof of Theorem 3.3. The most important

6.1. Regularity estimates for solutions of Kolmogorov equations. Let ϕ : Rd Ñ R be a mapping
of class C3, with bounded derivatives of order 1, 2, 3. For all pq, pq P R2d and t ě 0, let

(46) uεpt, q, pq “ Eq,prϕpqεptqqs

where the subscript means that the process
`

qεptq, pεptq
˘

tě0
is solution of the SDE (8) with initial values

qεp0q “ q and pεp0q “ p.
As a consequence of the definition (46) of the function u, the weak error may be written as

(47) Erϕpqε,∆tn qs ´ Erϕpqεptnqqs “ Eruεp0, qε,∆tn , pε,∆tn qs ´ Eruεptn, qε,∆t0 , pε,∆t0 qs,

for all n P t0, . . . , Nu, where qε,∆tn and pε,∆tn are given by (15), see for instance [21, 22].
Since the mappings ϕ, f and σ are of class C3 with bounded derivatives, the mapping

pt, q, pq P r0,8q ˆ R2d ÞÑ uεpt, q, pq
17



is of class C1
t C3
q,p, moreover it is the solution of the Kolmogorov equation (see [5] for instance)

(48)

$

’

’

’

’

&

’

’

’

’

%

Btu
εpt, q, pq “

1

ε

´

∇qu
εpt, q, pq ¨ p`∇pu

εpt, q, pq ¨ fpqq
¯

`
1

ε2

´

´∇pu
εpt, q, pq ¨ p`∇2

pu
εpt, q, pq : apqq

¯

,

uεp0, q, pq “ ϕpqq,

where the mapping a is given by (9) and the following notation is used:

∇2
pu
εpt, q, pq : apqq “

d
ÿ

i,j“1

BiBju
εpt, q, pqaijpqq.

Let us state upper bounds on the first, second and third order spatial derivatives of uε, with a careful
analysis of the dependence with respect to the parameter ε.

Proposition 6.1. For all T P p0,8q, there exists CpT q P p0,8q such that for any function ϕ : Rd Ñ R
of class C3 with bounded derivatives of order 1, 2, 3 and for all h1, h2, h3 P Rd, one has

(49) sup
εPp0,ε0q

sup
pt,q,pqPr0,T sˆR2d

|∇pu
εpt, q, pq ¨ h1|

ε
ď CpT q~ϕ~1|h

1|.

(50) sup
εPp0,ε0q

sup
pt,q,pqPr0,T sˆR2d

´

|∇q∇pu
εpt, q, pq ¨ ph1, h2q|

ε
`
|∇2

pu
εpt, q, pq ¨ ph1, h2q|

ε2

¯

ď CpT q~ϕ~2|h
1||h2|.

(51)

sup
εPp0,ε0q

sup
pt,q,pqPr0,T sˆR2d

´ |∇q∇2
pu
εpt, q, pq ¨ ph1, h2, h3q|

ε2
`
|∇3

pu
εpt, q, pq ¨ ph1, h2, h3q|

ε3

¯

ď CpT q~ϕ~3|h
1||h2||h3|.

The proof of Proposition 6.1 is postponed to Section 6.3.

6.2. Proof of Theorem 3.3. This section is devoted to the proof of Theorem 3.3. Many of the
arguments are standard, the novelty is to deal carefully with the dependence with respect to ε using the
regularity estimates from Proposition 6.1 above.

Before proceeding with the proof of Theorem 3.3, let us state and prove an auxiliary result, which is a
variant of Lemma 5.1 for the auxiliary processes q̃ε,∆t and p̃ε,∆t.

Lemma 6.2. Let Assumption 1 be satisfied. For all T P p0,8q, there exists CpT q P p0,8q such that for
all ε P p0, ε0q, all ∆t P p0,∆t0q, all n P t0, . . . , N ´ 1u and all t P rtn, tn`1s, one has

(52) Er|q̃ε,∆tptq ´ q̃ε,∆tptnq|2s ` ε2Er|p̃ε,∆tptq ´ p̃ε,∆tptnq|2s ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Proof of Lemma 6.2. Introduce the auxiliary variables Q̃ε,∆tptq “ q̃ε,∆tptq ` εp̃ε,∆tptq and P̃ ε,∆tptq “
εp̃εptq. The inequality (52) is a straightforward consequence of the following claim: for all T P p0,8q,
there exists CpT q P p0,8q such that for all ε P p0, ε0q, all ∆t P p0,∆t0q and all n P t0, . . . , N ´ 1u and all
t P rtn, tn`1s, one has

(53) Er|Q̃ε,∆tptq ´ Q̃ε,∆tptnq|2s ` Er|P̃ ε,∆tptq ´ P̃ ε,∆tptnq|2s ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Let us establish the claim (53). Recall that q̃ε,∆tptnq “ qε,∆tn and p̃ε,∆tptnq “ pε,∆tn for all n P t0, . . . , N ´ 1u,
owing to Proposition 2.1.

On the one hand, for all t P rtn, tn`1s, one has

Q̃ε,∆tptq ´ Q̃ε,∆tptnq “

ż s2

s1

fpqε,∆tn qds`

ż s2

s1

σpqε,∆tn qdβpsq,

therefore using Itô’s isometry formula, the Lipschitz continuity property of the mappings f and σ (Assump-
tion 1) and the moment bounds (40) from Proposition 4.3, one obtains

Er|Q̃ε,∆tptq ´ Q̃ε,∆tptnq|2s ď CpT q

ż t

tn

`

1` Er|qε,∆tn |2s
˘

ds ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.
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On the other hand, for all t P rtn, tn`1s, one has

P̃ ε,∆tptq ´ P̃ ε,∆tptnq “
`

e´
t´tn
ε2 ´ 1

˘

P̃ ε,∆tptnq `

ż t

tn

e´
t´s

ε2 fpqε,∆tn qds`

ż t

tn

e´
t´s

ε2 σpqε,∆tn qdβpsq.

Using the inequality (41), the identity P̃ ε,∆tptnq “ εpε,∆tn , Itô’s isometry formula, the Lipschitz continuity
property of the mappings f and σ (Assumption 1) and the moment bounds (40) from Proposition 4.3, one
obtains

Er|P̃ ε,∆tptq ´ P̃ ε,∆tptnq|2s ď C∆tEr|pε,∆tn |2s ` CpT q

ż t

tn

`

1` Er|qε,∆tn |2s
˘

ds

ď CpT qp1` |qε0|
2 ` |pε0|

2q∆t.

Gathering the estimates yields the claim (53) and then concludes the proof of Lemma 5.1. �

Proof of Theorem 3.3. Owing to the expression (47) of the weak error using the function uε defined
by (46), the auxiliary process defined by (16) and a standard telescoping sum argument, one has the following
decomposition of the weak error: for all n P t0, . . . , Nu,

(54)

Erϕpqε,∆tn qs ´ Erϕpqεptnqqs “ Eruεp0, qε,∆tn , pε,∆tn qs ´ Eruεptn, qε,∆t0 , pε,∆t0 qs

“

n´1
ÿ

m“0

`

Eruεptn ´ tm`1, q
ε,∆t
m`1, p

ε,∆t
m`1qs ´ Eruεptn ´ tm, qε,∆tm , pε,∆tm qs

˘

“

n´1
ÿ

m“0

`

Eruεptn ´ tm`1, q̃
ε,∆tptm`1q, p̃

ε,∆tptm`1qqs ´ Eruεptn ´ tm, q̃ε,∆tptmq, p̃ε,∆tptmqqs
˘

.

Using Itô’s formula, the fact that uε is solution of the Kolmogorov equation (48) and the fact that the process
`

q̃ε,∆tptq, p̃ε,∆tptq
˘

tě0
is solution of the SDE (16), for all m P t0, . . . , n´ 1u, one obtains

Eruεptn ´ tm`1, q̃
ε,∆tptm`1q, p̃

ε,∆tptm`1qqs ´ Eruεptn ´ tm, q̃ε,∆tptmq, p̃ε,∆tptmqqs “ Eε,∆tm,n,1 ` Eε,∆tm,n,2

where the error terms in the right-hand side above are defined for all 0 ď m ď n´ 1 by

Eε,∆tm,n,1 “
1

ε

ż tm`1

tm

Er∇pu
εptn ´ t, q̃

ε,∆tptq, p̃ε,∆tptqq ¨
`

fpq̃ε,∆tptmqq ´ fpq̃
ε,∆tptqq

˘

sdt

Eε,∆tm,n,2 “
1

ε2

ż tm`1

tm

Er∇2
pu
εptn ´ t, q̃

ε,∆tptq, p̃ε,∆tptqq :
`

apq̃ε,∆tptmqq ´ apq̃
ε,∆tptqq

˘

sdt.

Observe that the error term Eε,∆tm,n,1, resp. E
ε,∆t
m,n,2, vanishes if the mapping f is constant, resp. if the mapping

σ is constant. This is due to the construction of the numerical scheme (15).
The error terms Eε,∆tm,n,1 and Eε,∆tm,n,2 are then decomposed as follows: set

Eε,∆tm,n,1,1 “
1

ε

ż tm`1

tm

Er∇pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq ¨

`

fpq̃ε,∆tptmqq ´ fpq̃
ε,∆tptqq

˘

sdt

Eε,∆tm,n,1,2 “ Eε,∆tm,n,1 ´ Eε,∆tm,n,1,1,

Eε,∆tm,n,2,1 “
1

ε2

ż tm`1

tm

Er∇2
pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq :

`

apq̃ε,∆tptmqq ´ apq̃
ε,∆tptqq

˘

sdt

Eε,∆tm,n,2,2 “ Eε,∆tm,n,2 ´ Eε,∆tm,n,2,1.

It remains to obtain upper bounds for the four error terms.
‚ Since the mapping f is of class C2 with bounded second-order derivative, a Taylor expansion argument

gives
Eε,∆tm,n,1,1 “ Eε,∆tm,n,1,1,1 ` Eε,∆tm,n,1,1,2,

where Eε,∆tm,n,1,1,1 is defined by

Eε,∆tm,n,1,1,1 “
1

ε

ż tm`1

tm

Er∇pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq ¨

´

Dfpq̃ε,∆tptmqq.
`

q̃ε,∆tptmq ´ q̃
ε,∆tptq

˘

¯

sdt
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and where Eε,∆tm,n,1,1,2 satisfies

|Eε,∆tm,n,1,1,2| ď CpT q~ϕ~1

ż tm`1

tm

Er|q̃ε,∆tptmq ´ q̃ε,∆tptq|2sdt

ď CpT q~ϕ~1p1` |q
0
0 |

2q∆t2

using first the inequality (49) from Proposition 6.1 and second the inequality (52) from Lemma 6.2 and
Assumption 2.

To deal with the error term Eε,∆tm,n,1,1,1, a conditional expectation argument is used. For all t P rtm, tm`1s,
solving the auxiliary stochastic differential equation (16), one has
(55)

$

’

’

’

&

’

’

’

%

q̃ε,∆tptq ´ q̃ε,∆tptmq “
1

ε

ż t

tm

p̃ε,∆tpsqds “ ε
`

p̃ε,∆tptmq ´ p̃
ε,∆tptq

˘

`

ż t

tm

fpqε,∆tm qds`

ż t

tm

σpqε,∆tm qdβpsq

p̃ε,∆tptq ´ p̃ε,∆tptmq “ pe
´
t´tm
ε2 ´ 1qp̃ε,∆tptmq `

1

ε

ż t

tm

e´
t´s

ε2 fpqε,∆tm qds`
1

ε

ż t

tm

e´
t´s

ε2 σpqε,∆tm qdβpsq.

Therefore, the error term Eε,∆tm,n,1,1,1 can be rewritten as

Eε,∆tm,n,1,1,1 “

ż tm`1

tm

Er∇pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq ¨

´

Dfpq̃ε,∆tptmqq.
`

p̃ε,∆tptq ´ p̃ε,∆tptmq
˘

¯

sdt

´
1

ε

ż tm`1

tm

Er∇pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq ¨

´

Dfpq̃ε,∆tptmqq.

ż t

tm

fpqε,∆tm qds
¯

sdt

“

ż tm`1

tm

Er∇pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq ¨

´

Dfpq̃ε,∆tptmqq.
`

pe´
t´tm
ε2 ´ 1qp̃ε,∆tptmq

˘

¯

sdt

`
1

ε

ż tm`1

tm

Er∇pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq ¨

´

Dfpq̃ε,∆tptmqq.

ż t

tm

`

e´
t´s

ε2 ´ 1
˘

fpqε,∆tm qds
¯

sdt,

since the terms with
şt

tm
σpqε,∆tm qdβpsq and

şt

tm
e´

t´s

ε2 σpqε,∆tm qdβpsq vanish in expectation.
Using the inequality (49) from Proposition 6.1, the boundedness of Df , the moment bounds (40) from

Proposition 4.3 and Assumption 2, one obtains

|Eε,∆tm,n,1,1,1| ď CpT q~ϕ~1

ż tm`1

tm

ε
`

1´ e´
t´tm
ε2

˘

dtEr|p̃ε,∆tptmq|s

` CpT q~ϕ~1∆t2
`

1` Er|q̃ε,∆tptmq|s
˘

ď CpT q~ϕ~1

´

ż ∆t

0

ε
`

1´ e´
t
ε2
˘

dt`∆t2
¯

`

1` |qε0|
2 ` |pε0|

2
˘

ď CpT q∆t~ϕ~1

´

Rpε,∆tq `∆t
¯

`

1` |q0
0 |

2
˘

,

where we recall that Rpε,∆tq is defined by (31).
‚ Owing to the inequality (50) from Proposition 6.1, for all m P t0, . . . , n ´ 1u and using the Lipschitz

continuity of f , one obtains

|Eε,∆tm,n,1,2| ď CpT q~ϕ~2

ż tm`1

tm

Er|q̃ε,∆tptq ´ q̃ε,∆tptmq|2sdt

` CpT qε~ϕ~2

ż tm`1

tm

Er|q̃ε,∆tptq ´ q̃ε,∆tptmq||p̃ε,∆tptq ´ p̃ε,∆tptmq|sdt.

Using the inequality (52) from Lemma 6.2 and Assumption 2, one then obtains the upper bound

|Eε,∆tm,n,1,2| ď CpT q~ϕ~2p1` |q
0
0 |

2q∆t2.

‚ Since the mapping a is of class C2 with bounded second-order derivative, a Taylor expansion argument
gives

Eε,∆tm,n,2,1 “ Eε,∆tm,n,2,1,1 ` Eε,∆tm,n,2,1,2,
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where Eε,∆tm,n,2,1,1 is defined by

Eε,∆tm,n,2,1,1 “
1

ε2

ż tm`1

tm

Er∇2
pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq :

´

Dapq̃ε,∆tptmqq.
`

q̃ε,∆tptmq ´ q̃
ε,∆tptq

˘

¯

sdt

and where Eε,∆tm,n,2,1,2 satisfies

|Eε,∆tm,n,2,1,2| ď CpT q~ϕ~2

ż tm`1

tm

Er|q̃ε,∆tptmq ´ q̃ε,∆tptq|2sdt

ď CpT q~ϕ~2p1` |q
0
0 |

2q∆t2

using first the inequality (50) from Proposition 6.1 and second the inequality (52) from Lemma 6.2 and
Assumption 2.

Like in the treatment of the error term Eε,∆tm,n,1,1,1 above, a conditional expectation argument is used to
deal with the error term Eε,∆tm,n,2,1,1. The expressions (55) of q̃ε,∆tptq ´ q̃ε,∆tptmq and p̃ε,∆tptq ´ p̃ε,∆tptmq give

Eε,∆tm,n,2,1,1 “
1

ε

ż tm`1

tm

Er∇2
pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq :

´

Dapq̃ε,∆tptmqq.
`

p̃ε,∆tptq ´ p̃ε,∆tptmq
˘

¯

sdt

´
1

ε2

ż tm`1

tm

Er∇2
pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq :

´

Dapq̃ε,∆tptmqq.

ż t

tm

fpqε,∆tm qds
¯

sdt

“
1

ε

ż tm`1

tm

Er∇2
pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq :

´

Dapq̃ε,∆tptmqq.
`

pe´
t´tm
ε2 ´ 1qp̃ε,∆tptmq

˘

¯

sdt

`
1

ε2

ż tm`1

tm

Er∇2
pu
εptn ´ t, q̃

ε,∆tptmq, p̃
ε,∆tptmqq :

´

Dapq̃ε,∆tptmqq.

ż t

tm

`

e´
t´s

ε2 ´ 1
˘

fpqε,∆tm qds
¯

sdt.

Using the inequality (50) from Proposition 6.1, the boundedness of Da, and the moment bounds (40) from
Proposition 4.3, one obtains

|Eε,∆tm,n,2,1,1| ď CpT q~ϕ~2

ż tm`1

tm

ε
`

1´ e´
t´tm
ε2

˘

dtEr|p̃ε,∆tptmq|s

` CpT q~ϕ~2∆t2
`

1` Er|q̃ε,∆tptmq|s
˘

ď CpT q~ϕ~2

´

ż ∆t

0

ε
`

1´ e´
t
ε2
˘

dt`∆t2
¯

`

1` |qε0|
2 ` |pε0|

2
˘

ď CpT q∆t~ϕ~2

´

Rpε,∆tq `∆t
¯

`

1` |q0
0 |

2
˘

.

‚ Owing to the inequality (51) from Proposition 6.1, for all m P t0, . . . , n ´ 1u and using the Lipschitz
continuity property (10) of a, one obtains

|Eε,∆tm,n,2,2| ď CpT q~ϕ~3

ż tm`1

tm

E
“

|q̃ε,∆tptq ´ q̃ε,∆tptmq|
2
‰

dt

` CpT qε~ϕ~3

ż tm`1

tm

E
“

|q̃ε,∆tptq ´ q̃ε,∆tptmq||p̃
ε,∆tptq ´ p̃ε,∆tptmq|

‰

dt.

Using the inequality (52) from Lemma 6.2 and Assumption 2, one then obtains the upper bound

|Eε,∆tm,n,2,2| ď CpT q~ϕ~3p1` |q
0
0 |

2q∆t2.

‚ Gathering the estimates, one finally obtains

ˇ

ˇErϕpqε,∆tn qs ´ Erϕpqεptnqqs
ˇ

ˇ ď

n´1
ÿ

m“0

`

|Eε,∆tm,n,1| ` |E
ε,∆t
m,n,2|

˘

ď CpT q~ϕ~3

´

Rpε,∆tq `∆t
¯

p1` |q0
0 |

2q

for all n P t0, . . . , N ´ 1u, where Rpε,∆tq is defined by (31). This concludes the proof of the weak error
estimate (30) and the proof of Theorem 3.3. �
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6.3. Proof of Proposition 6.1.

Proof of the inequality (49). For all h “ phq, hpq P R2d, one has

∇qu
εpt, q, pq.hq `∇pu

εpt, q, pq.hp “ ∇pq,pquεpt, q, pq.h “ Eq,pr∇qϕpq
εptqq.ηε,hq ptqs,

where t ÞÑ ηε,hptq “
`

ηε,hq ptq, ηε,hp ptq
˘

P R2d is solution of the stochastic differential equation
$

’

’

&

’

’

%

dηε,hq ptq “
ηε,hp ptq

ε
dt

dηε,hp ptq “ ´
ηε,hp ptq

ε2
dt`

1

ε
Dfpqεptqq.ηε,hq ptqdt`

1

ε
Dσpqεptqq.ηε,hq ptqdβptq,

with initial value ηε,hp0q “ h, equivalently ηε,hq p0q “ hq and ηε,hp p0q “ hp.
The inequality (49) is a straightforward consequence of the following claim: for all m P N, there exists

CmpT q P p0,8q such that

(56) sup
pt,q,pqPr0,T sˆR2d

Eq,pr|ηε,hq ptq|2ms ď CmpT q
`

|hq|
2m ` ε2m|hp|

2m
˘

.

Indeed, it suffices to choose m “ 1 and to set h “ p0, hq to obtain (49). It thus remains to prove the
claim (56). First, observe that, for all t ě 0, one has

ηε,hp ptq “ e´
t
ε2 hp `

1

ε

ż t

0

e´
t´s

ε2 Dfpqεpsqq.ηε,hq psqds`
1

ε

ż t

0

e´
t´s

ε2 Dσpqεpsqq.ηε,hq psqdβpsq.

In addition, for all t ě 0, one has

ηε,hq ptq “ hq `
1

ε

ż t

0

ηε,hp psqds

“ hq `

ż t

0

Dfpqεpsqq.ηε,hq psqds`

ż t

0

Dσpqε,hpsqq.ηε,hq psqdβpsq ` ε
`

ηε,hp p0q ´ ηε,hp ptq
˘

.

On the one hand, using the Hölder and Burkholder–Davis–Gundy inequalities, one obtains the following
upper bound for ηε,hp ptq: for all t P r0, T s one has

Er|ηε,hp ptq|2ms ď CmpT q
´

|hp|
2m `

1

ε2m

ż t

0

Er|ηε,hq psq|2msds
¯

.

On the other hand, using the Hölder and Burkholder–Davis–Gundy inequalities and the upper bound above
for ηε,hp ptq, one obtains the following upper bound for ηε,hq ptq: for all t P r0, T s one has

Er|ηε,hq ptq|2ms ď CmpT q
´

|hq|
2m `

ż t

0

Er|ηε,hq psq|2msds` ε2m|hp|
2m ` ε2mEr|ηε,hp ptq|2ms

¯

.

Combining the two upper bounds gives the inequality

Er|ηε,hq ptq|2ms ď CmpT q
´

|hq|
2m ` ε2m|hp|

2m `

ż t

0

Er|ηε,hq psq|2msds
¯

for all t P r0, T s. Applying Gronwall’s inequality then yields the claim (56). This concludes the proof of the
inequality (49). �

Proof of the inequality (50). For all h1 “ ph1
q, h

1
pq P R2d and h2 “ ph2

q, h
2
pq P R2d, one has

∇2
q,pu

εpt, q, pq.ph1,h2q “ ∇q∇qu
εpt, q, pq.ph1

q, h
2
qq `∇p∇pu

εpt, q, pq.ph1
p, h

2
pq

`∇q∇pu
εpt, q, pq.ph1

q, h
2
pq `∇p∇qu

εpt, q, pq.ph1
p, h

2
qq

“ Er∇qϕpq
εptqq.ζε,h

1,h2

q ptqs ` Er∇2
qϕpq

εptqq.pηε,h
1

q ptq, ηε,h
2

q ptqqs,
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where t ÞÑ ζε,h
1,h2

ptq “
`

ζε,h
1,h2

q ptq, ζε,h
1,h2

p ptq
˘

P R2d is solution of the stochastic differential equation
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dζε,h
1,h2

q ptq “
ζε,h

1,h2

p ptq

ε
dt

dζε,h
1,h2

p ptq “ ´
1

ε2
ζε,h

1,h2

p ptqdt`
1

ε
Dfpqεptqq.ζε,h

1,h2

q ptqdt`
1

ε
Dσpqεptqq.ζε,h

1,h2

q dβptq

`
1

ε
D2fpqεptqq.pηε,h

1

q ptq, ηε,h
2

q ptqqdt`
1

ε
D2σpqεptqq.pηε,h

1

q ptq, ηε,h
2

q ptqqdβptq,

with initial value ζε,h
1,h2

p0q “ 0, equivalently ζε,h
1,h2

q p0q “ ζε,h
1,h2

p p0q “ 0.
The inequality (50) is a straightforward consequence of the inequality (49) and of the following claim:

for all m P N, there exists CmpT q P p0,8q such that

(57) sup
pt,q,pqPr0,T sˆR2d

Eq,pr|ζε,h
1,h2

q ptq|2ms ď CmpT q
`

|h1
q|

2m ` ε2m|h1
p|

2m
˘`

|h2
q|

2m ` ε2m|h2
p|

2m
˘

.

Indeed, it suffices to apply the inequality (56) with m “ 1 combined with the Cauchy–Schwarz inequality,
and the inequality (57) with m “ 1, and to set either h1 “ ph1, 0q,h2 “ p0, h2q, or h1 “ p0, h1q,h2 “ p0, h2q,
to obtain (50). It thus remains to prove the claim (57). First, observe that, for all t ě 0, one has

ζε,h
1,h2

p ptq “
1

ε

ż t

0

e´
t´s

ε2 Dfpqεpsqq.ζε,h
1,h2

q psqds`
1

ε

ż t

0

e´
t´s

ε2 Dσpqεpsqq.ζε,h
1,h2

q psqdβpsq

`
1

ε

ż t

0

e´
t´s

ε2 D2fpqεpsqq.pηε,h
1

q psq, ηε,h
2

q psqqds`
1

ε

ż t

0

e´
t´s

ε2 D2σpqεpsqq.pηε,h
1

q psq, ηε,h
2

q psqqdβpsq.

In addition, for all t ě 0, one has

ζε,h
1,h2

q ptq “
1

ε

ż t

0

ζε,h
1,h2

p psqds “ ´εζε,h
1,h2

p ptq

`

ż t

0

Dfpqεpsqq.ζε,h
1,h2

q psqds`

ż t

0

Dσpqεpsqq.ζε,h
1,h2

q psqdβpsq

`

ż t

0

D2fpqεpsqq.pηε,h
1

q psq, ηε,h
2

q psqqds`

ż t

0

D2σpqεpsqq.pηε,h
1

q psq, ηε,h
2

q psqqdβpsq.

On the one hand, using the Hölder and Burkholder–Davis–Gundy inequalities, one obtains the following
upper bound for ζε,h

1,h2

p ptq: for all t P r0, T s one has

Er|ζε,h
1,h2

p ptq|2ms ď
CmpT q

ε2m

´

ż t

0

Er|ζε,h
1,h2

q psq|2msds`

ż t

0

Er|ηε,h
1

q psq|2m|ηε,h
2

q psq|2msds
¯

ď
CmpT q

ε2m

´

ż t

0

Er|ζε,h
1,h2

q psq|2msds`
`

|h1
q|

2m ` ε2m|h1
p|

2m
˘`

|h2
q|

2m ` ε2m|h2
p|

2m
˘

¯

,

where the inequality (56) is used in the second step above.
On the other hand, using the Hölder and Burkholder–Davis–Gundy inequalities, one obtains the following

upper bound for ζε,h
1,h2

q ptq: for all t P r0, T s one has

Er|ζε,h
1,h2

q ptq|2ms ď CmpT qε
2mEr|ζε,h

1,h2

p ptq|2ms

` CmpT q

ż t

0

Er|ζε,h
1,h2

q psq|2msds` CmpT q

ż t

0

Er|ηε,h
1

q psq|2m|ηε,h
2

q psq|2msds

ď CmpT qε
2mEr|ζε,h

1,h2

p ptq|2ms

` CmpT q
´

ż t

0

Er|ζε,h
1,h2

q psq|2msds`
`

|h1
q|

2m ` ε2m|h1
p|

2m
˘`

|h2
q|

2m ` ε2m|h2
p|

2m
˘

¯

,

where the inequality (56) is used in the second step above.
Combining the two upper bounds gives the inequality

Er|ζε,h
1,h2

q ptq|2ms ď CmpT q
´

ż t

0

Er|ζε,h
1,h2

q psq|2msds`
`

|h1
q|

2m ` ε2m|h1
p|

2m
˘`

|h2
q|

2m ` ε2m|h2
p|

2m
˘

¯
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for all t P r0, T s. Applying Gronwall’s inequality then yields the claim (57). This concludes the proof of the
inequality (50). �

Proof of the inequality (51). For all h1 “ ph1
q, h

1
pq P R2d, h2 “ ph2

q, h
2
pq P R2d and h3 “ ph3

q, h
3
pq P

R2d, one has

∇3
q,pu

εpt, q, pq.ph1,h2,h3q “ Er∇qϕpq
εptqq.ξε,h

1,h2,h3

q ptqs

` Er∇2
qϕpq

εptqq.pηε,h
1

q ptq, ζε,h
2,h3

q ptqqs

` Er∇2
qϕpq

εptqq.pηε,h
2

q ptq, ζε,h
3,h1

q ptqqs

` Er∇2
qϕpq

εptqq.pηε,h
3

q ptq, ζε,h
1,h2

q ptqqs

` Er∇3
qϕpq

εptqq.
`

ηε,h
1

q ptq, ηε,h
2

q ptq, ηε,h
3

q ptq
˘

s

where t ÞÑ ξε,h
1,h2,h3

ptq “
`

ξε,h
1,h2,h3

q ptq, ξε,h
1,h2,h3

p ptq
˘

P R2d is solution of the stochastic differential equation
$

’

’

’

’

’

’

’

’

’

’
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’
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’
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’

’

’

’

’

’

’

’

’

’

%

dξε,h
1,h2,h3

q ptq “
ξε,h

1,h2,h3

p ptq

ε
dt

dξε,h
1,h2,h3

p ptq “ ´
1

ε2
ξε,h

1,h2,h3

p ptqdt`
1

ε
Dfpqεptqq.ξε,h

1,h2,h3

q ptqdt`
1

ε
Dσpqεptqq.ξε,h

1,h2,h3

q dβptq

`
1

ε
D2fpqεptqq.pηε,h

1

q ptq, ζε,h
2,h3

q ptqqdt`
1

ε
D2σpqεptqq.pηε,h

1

q ptq, ζε,h
2,h3

q ptqqdβptq

`
1

ε
D2fpqεptqq.pηε,h

2

q ptq, ζε,h
3,h1

q ptqqdt`
1

ε
D2σpqεptqq.pηε,h

2

q ptq, ζε,h
2,h3

q ptqqdβptq

`
1

ε
D2fpqεptqq.pηε,h

3

q ptq, ηε,h
1,h2

q ptqqdt`
1

ε
D2σpqεptqq.pηε,h

3

q ptq, ζε,h
1,h2

q ptqqdβptq

`
1

ε
D3fpqεptqq.

`

ηε,h
1

q ptq, ηε,h
2

q ptq, ηε,h
3

q ptq
˘

dt`
1

ε
D3σpqεptqq.

`

ηε,h
1

q ptq, ηε,h
2

q ptq, ηε,h
3

q ptq
˘

dβptq

with initial value ξε,h
1,h2,h3

p0q “ 0, equivalently ζε,h
1,h2,h3

q p0q “ ζε,h
1,h2,h3

p p0q “ 0.
The inequality (51) is a straightforward consequence of the inequality (49) and of the following claim:

for all m P N, there exists CmpT q P p0,8q such that
(58)

sup
pt,q,pqPr0,T sˆR2d

Eq,pr|ξε,h
1,h2,h3

q ptq|2ms ď CmpT q
`

|h1
q|

2m`ε2m|h1
p|

2m
˘`

|h2
q|

2m`ε2m|h2
p|

2m
˘`

|h3
q|

2m`ε2m|h3
p|

2m
˘

.

Indeed, it suffices to apply the inequality (56) withm “ 2 combined with the Cauchy–Schwarz inequality, the
inequality (57) with m “ 1 and the inequality (58) with m “ 1, and to set either h1 “ ph1, 0q, h2 “ p0, h2q,
h3 “ p0, h3q or h1 “ p0, h1q, h2 “ p0, h2q, h3 “ p0, h3q. It thus remains to prove the claim (57).

First, observe that, for all t ě 0, one has

ξε,h
1,h2,h3

p ptq “
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ε

ż t

0

e´
t´s

ε2 Dfpqεpsqq.ξε,h
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e´
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3
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ε
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1

ε
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e´
t´s
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1

q psq, ηε,h
2

q psq, ηε,h
3

q psqqds

`
1

ε

ż t

0

e´
t´s

ε2 D3σpqεpsqq.pηε,h
1
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2
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3
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In addition, for all t ě 0, one has

ξε,h
1,h2,h3

q ptq “
1

ε

ż t

0

ξε,h
1,h2,h3

p psqds “ ´εξε,h
1,h2,h3

p ptq

`

ż t

0

Dfpqεpsqq.ξε,h
1,h2,h3

q psqds`

ż t

0

Dσpqεpsqq.ξε,h
1,h2,h3

q psqdβpsq

`

ż t

0

D2fpqεpsqq.pηε,h
1
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3
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On the one hand, using the Hölder and Burkholder–Davis–Gundy inequalities, one obtains the following
upper bound for ξε,h

1,h2,h3

p ptq: for all t P r0, T s one has

Er|ξε,h
1,h2,h3

p ptq|2ms ď
CmpT q

ε2m

ż t

0

Er|ξε,h
1,h2,h3

q psq|2msds

`
CmpT q

ε2m

ż t

0

`
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1

q psq|2m|ζε,h
2,h3
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2
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3
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˘

ds
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CmpT q

ε2m
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1

q psq|2m|ηε,h
2

q psq|2m|ηε,h
3

q psq|2msds
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CmpT q

ε2m

´

ż t

0

Er|ξε,h
1,h2,h3

q psq|2msds`
`

|h1
q|

2m ` ε2m|h1
p|

2m
˘`

|h2
q|

2m ` ε2m|h2
p|

2m
˘`

|h3
q|

2m ` ε2m|h3
p|

2m
˘

¯

,

where the inequalities (56) and (57) are used in the second step above.
On the other hand, using the Hölder and Burkholder–Davis–Gundy inequalities, one obtains the following

upper bound for ξε,h
1,h2,h3

q ptq: for all t P r0, T s one has

Er|ξε,h
1,h2,h3

q ptq|2ms ď CmpT qε
2mEr|ξε,h
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2,h3

q psq|2msds
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0
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3
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0
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1
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2
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ď CmpT qε
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1,h2,h3

p ptq|2ms

` CmpT q

ż t

0

Er|ξε,h
1,h2,h3

q psq|2msds

`
`

|h1
q|

2m ` ε2m|h1
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2m
˘`
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where the inequalities (56) and (57) are used in the second step above.
Combining the two upper bounds gives the inequality

Er|ξε,h
1,h2,h3

q ptq|2ms ď CmpT q

ż t

0

Er|ξε,h
1,h2,h3

q psq|2msds

` CmpT q
´

`

|h1
q|

2m ` ε2m|h1
p|

2m
˘`

|h2
q|

2m ` ε2m|h2
p|

2m
˘`

|h3
q|

2m ` ε2m|h3
p|

2m
˘

¯

for all t P r0, T s. Applying Gronwall’s inequality then yields the claim (58). This concludes the proof of the
inequality (51).
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