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Uniform strong and weak error estimates for numerical schemes applied to
multiscale SDEs in a Smoluchowski—-Kramers diffusion approximation regime

Charles-Edouard Bréhier

ABsTrRACT. We study a family of numerical schemes applied to a class of multiscale systems of stochastic
differential equations. When the time scale separation parameter vanishes, a well-known Smoluchowski—
Kramers diffusion approximation result states that the slow component of the considered system converges
to the solution of a standard It6 stochastic differential equation. We propose and analyse schemes for strong
and weak effective approximation of the slow component. Such schemes satisfy an asymptotic preserving
property and generalize the methods proposed in the recent article [4]. We fill a gap in the analysis of
these schemes and prove strong and weak error estimates, which are uniform with respect to the time scale
separation parameter.

1. Introduction

In this article, we consider multiscale systems of stochastic differential equations of the type

dgt(t) = peT(t)dt
W () = P Wy, 0, o)

dp(t),

where € € (0, ¢y) is a time-scale separation parameter. The unknowns ¢¢(¢) and p(¢) and the Wiener process
B take values in R¢, and the mapping f and o satisfy appropriate regularity conditions. The objective of
this article is to study numerical schemes for the approximation of the component @€, for arbitrary values
of the time-scale separation parameter €, in particular when it vanishes. This is not a trivial task since the
component p¢ evolves at the fast time scale t/e?, and a crude discretization would impose stringent conditions
on the time-step size At.

It is a well-known result in the analysis of multiscale stochastic systems that ¢(t) converges, at least
in distribution, when ¢ — 0, to ¢°(¢), for all + > 0, where X° is the solution of the stochastic differential
equation

(2) dq’(t) = f(¢"(t)dt + o (q°(1))dB(t)

where the noise is interpreted in the sense of Itd6. We refer for instance to [18 Chapter 11] for a description
of this thype of convergence result, and see Proposition [2.2] below for a precise statement, where convergence
is understood in a stronger sense than convergence in distribution. The convergence result ¢¢ — ¢° is often
called a Smoluchowski-Kramers diffusion approximation result in the literature. If ¢ is constant and equal
to the identity, and if f = —VV for some potential energy function V : R? — R, the SDE system
describes the Langevin dynamics, whereas the SDE describes the overdamped Langevin dynamics, see
for instance [14] Sections 2.2.3 and 2.2.4], and also the recent article [20] and references therein.

In order to define numerical schemes which perform better than crude methods when e varies and may
vanish, it is relevant to resort to the notion of asymptotic preserving schemes as studied in the recent
article [4]: if At = T/N denotes the time-step size with given T € (0,0) and IV € N, one has a commutative
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diagram property

JA N—
qON ! —OO) qO(T)a

&AL pe At is the scheme for given values of € and At, and one needs to check that

where (qn , D5 )ogngN
e the scheme is consistent for any value of € > 0 when At — 0,
e there exists a limiting scheme ( g’At)0<n<N when € — 0 for any value of At > 0,
e the limiting scheme is consistent with the limiting equation when At — 0.
As explained in [4], the last property may fail to hold for some crude methods. However in the situation
considered in this article there are no such subtleties for instance related to the interpretation of the noise.
In this article, we study numerical schemes and obtain strong and weak error estimates which are uniform
with respect to the time-scale separation parameter € € (0, ¢p), meaning that ¢¢(T") can be approximated by

qf\}At with a cost which is independent of . On the one hand, for the numerical scheme

A At ca
@ =gt + ?P:wf
3) A A
A At A Atf qe, t o(q® t
p;+f =pt - 2 Z+f (en ) + ( Z )Aﬂnv
one obtains uniform strong error estimates
A 3
(4) sup (E[lgy~" — ¢“(NA)*])* < C(T)AL,

ee(0,¢0)

see Theorem for a precise statement. On the other hand, for the numerical scheme

A _At _ At
gt =agt te(l—e @ )pst + (At — (1 —e” @) f(g5™)

(%) ol ) Bltnn) = Alta)) ~olaz™) [ e daly

n

At —At
Drpl = € e2p;’At +e(l—e

at € 1 € fnt1 _fing1-s
) + Lol [ e H dl),

n

and functions ¢ : R? — R of class C3, one obtains weak error estimates

(6) E[¢(q5™)] — Elp(¢°(T))]] < C(T, ) (At +¢),
(7) sup E[o(g5™")] — Elp(¢°(T))]| < C(T, ) At

See Theorem [3.3] for a precise statement, and Proposition 2] for explanations concerning the construction
of the numerical scheme ({5)).

The uniform weak error estimate may be suboptimal: indeed one only obtains order 1/2, and there-
fore is a straightforward corollary of the uniform strong error estimate (4]). The weak error estimate @
is not uniform with respect to € but may be more precise in regimes where € is negligible compared with At.
The weak error estimate @ is also similar to error bounds which may be obtained for different multiscale
numerical schemes, for instance based on the Heterogeneous Multiscale Method. Improving the uniform
weak error estimate to obtain order 1 is left for future works.

To the best of our knowledge, the strong error estimates and the weak error estimates @f@ have
not been obtained previously and our results thus fill a gap in the literature. These proofs require delicate
and non trivial arguments. On the one hand, proving is based on an appropriate change of unknowns
and analysis of multiple error terms. On the other hand, proving @7 is based on the standard approach
using solutions of Kolmogorov equations for weak error analysis. Proposition [6.1] gives the required bounds
on the derivatives of these solutions, with a careful analysis of the dependence with respect to e.

Note that the recent preprint [3] is also concerned with the proof of uniform (strong) error estimates
for a class of multiscale SDE systems in a diffusion approximation regime. However, the structure of the
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systems, the results and the techniques of proof are substantially different, which justifies to perform the
analysis in separate articles.

The analysis of numerical methods for multiscale stochastic differential equations is an active research
area. The recent articles [2] and [12] propose uniformly accurate methods for SDE systems which are differ-
ent from considered in this article. The recent article [4] has introduced a notion of asymptotic preserving
schemes which applies to 7 and some uniform error estimates were proved for SDE systems in an averaging
regime. We also refer to the PhD thesis [19] for supplementary results and numerical experiments. In this
article, as already mentioned, we fill a gap in [4] and prove some uniform error estimates in the diffusion
approximation regime, for the schemes and applied to . The articles [7] and [15] illustrate why
effective numerical approximation of solutions of SDEs may be more subtle than for deterministic problems.
Many other techniques have been introduced to design effective methods for the numerical approximation of
multiscale SDE systems, let us mention spectral methods [I]], heterogeneous multiscale methods [6], projec-
tive integration methods [8], equation-free methods [10], parareal methods [13], micro-macro acceleration
methods [23] for instance. We refer to the monographs [9, 11}, 16} I7] for general results on numerical
methods applied to stochastic differential equations.

This article is organized as follows. Section [2] describes the setting, in particular the considered multi-
scale SDE systems are presented in Section [2.I] and the numerical schemes studied in this work are given
in Section The main results of this article are stated and discussed in Section [3} uniform strong error
estimates are given in Theorem (Section and weak error estimates are given in Theorem (Sec-
tion . Moment bounds are stated and proved in Section |4 Theorem is proved in Section ereas
Theorem [3.3] is proved in Section [6] Auxiliary regularity results for solutions of Kolmogorov equations, with
a careful analysis of the dependence with respect to ¢, are stated in Section [6.1] and proved in Section [6.3

2. Setting

Let d € N be an integer. The norm and inner product in the standard Euclidian space R? are denoted
by |- | and {-,-) respectively. The set of d x d matrices with real-valued entries is denoted by M 4(R). The
same notation is used to denote the norm and inner product in the space R??. Let (ﬁ (t)) >0 be a R%valued
standard Wiener process, defined on a probability space (£2, F,P) which satisfies the usual conditions. The
expectation operator is denoted by E[-].

The time-scale separation parameter is denoted by e. Without loss of generality, it is assumed that
€ € (0,¢0), where ¢y is an arbitrary positive parameter. The time-step size of the numerical schemes is
denoted by At. It is assumed that At = T/N where T € (0,00) is an arbitrary positive real number, and
N € N is an integer. For all n € {0,..., N}, let ¢, = nAt. Without loss of generality, it is assumed that
At € (0,Aty), where Aty = T/Ny is an arbitrary positive real number. Equivalently, it is assumed that
N = Np. For all n € {0,...,N — 1}, set AB, = B(tni1) — B(tn).

If ¢ : R? - R is a mapping of class C3, its first, second and third order derivatives are denoted by Ve,
VZp and V3¢ respectively. Set

sup sup |Vip(a)-h'],

z€R? hleRd

lelllx

lelllz = llell + sup sup [V2p(x).(h*, h?)],

zeRI hl h2e
lells = llelle + sup sup  [V3p(2).(h1, h?, h?)|.
zeRI hl h2 h3eRd
If ¢ : (q,p) e RT x R? — R is of class C!, V¢ and V,¢ are the partial derivatives of ¢ with respect to the
variables ¢ and p respectively. Similar notation is used for higher order derivatives.

2.1. The multiscale SDE system. We consider the following class of multiscale SDE systems

dg“(t) =" HOPY

®) 3 E |

() = 2O L0 gy, 2 O)
3

dp(t),



where ¢¢(t) € R? and p°(t) € R? for all ¢ > 0. The mappings f : R — R? and ¢ : R? — M4(R) satisfy
Assumption [T] below.

ASSUMPTION 1. Let f : R — R? and o : R? — My4(R) be mappings of class C3, with bounded derivatives
of order 1,2,3. The mapping o is assumed to be bounded.

For all g e R? and 4,5 € {1,...,d}, set

d
(9) aij(q) = Z oik(q)ojk(q)-
k=1

Note that a is of class C3, and since o and its derivatives are bounded, a and its derivatives are bounded.
Therefore the mapping a is globally Lipschitz continuous: there exists C € (0, 00) such that for all g, g2 € R?
one has

d
(10) 7 laij(g2) — aij(q)] < Claz — a1 .

i,j=1

The initial values for the SDE system are given by ¢¢(0) = ¢§ and p(0) = p§, such that Assumption
below is satisfied.

ASSUMPTION 2. There ezists ¢§ € R? such that
€ 0
90 =, do-
Moreover, one has the following uniform upper bound:

sup |pg| < oo.
e€(0,¢0)

It is assumed that the initial values ¢§ € R? and ¢ € R are deterministic. The case of random initial
values, independent of the Wiener process (B (t)) >0 Can be treated by a standard conditioning argument,
provided that suitable moment bounds are satisfied. This treatment is omitted in the sequel.

All the estimates below depend on the value of sup |p§|, but this is not indicated explicitly.

e€(0,€0)
Under Assumptions |lfand |2} the SDE system admits a unique solution (qe(t), pe(t)) 40> Since f and
o are globally Lipschitz continuous. The solution can be expressed as follows: for all ¢ > 0, one has

t

1
() = a5+ - | (s
0

: 1
p(t) =e <Zpg+ *J e~
€ Jo
The following change of unknowns is employed below: for all ¢ > 0, set

Q(t) = ¢°(t) + ep"(t)
Pe(t) = epS(t).

The R??-valued process (Q°(t), Pe(t))po is then solution of the SDE system
fQ

(11)

t
—s

t:;f(qe(s))ds + %J e dp(s).

0

(12)

dQ“(t) = f(Q“(t) — P(t))dt + o (Q“(t) — P(t))dB(1),
PO g 1 p(Qe(t) — PE))dt + 0 (Q°(t) — P¥(1))dB(t).
To retrieve properties of ¢¢(t), note that for all ¢ > 0 one has
q°(t) = Q°(t) — P*(1).
The change of unknowns is instrumental in the proofs of moment bounds and strong error estimates for Q¢

and P¢, however weak error analysis is performed using only the unknowns ¢¢ and p°.
4
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2.2. The numerical schemes. We introduce two numerical schemes: the first one is used to obtain
strong approximation of ¢¢(t), whereas the second one is used to obtain weak approximation of ¢°(t). The
same notation is used for the two schemes, since it will always be clear in the statements of the results and

in the analysis below which scheme is considered.
The first numerical scheme is defined as follows:

At
At A At
) q;+1 —-QZ K +""p;+1
(14
e, At e, At At e, At
pn+1 - pn 672 n+1
with the initial values ¢5" = ¢§ and p§™

ABn

Atf(gp™) | olap™)

€

= p§ (given by Assumption . In the scheme , the ¢-

component is discretized explicitly, whereas the p-component is treated implicitly. This choice is made to
ensure stability properties (in particular to be able to choose the time-step size At independently of the time

scale separation parameter €) in the second equation, and to ensure good behavior of ¢&

&A% when € vanishes, in

the first equation, as will be explained below. In addition, discretizing the g-component explicitly is needed
to have consistent approximation in the sense of Itd of the contribution of the noise. Note that, in fact,
the scheme can be implemented explicitly in practice owing to the following equivalent formulation,

computing first p;ff and then qf;ff :

€,At At

e,At €,At
qn+1 - qn + ?pn-&-l
oAt 1 oAt
Pt = (ri2 +
n+1 1+ % n

The second numerical scheme is defined as follows:

Atf(g5™?)

o(ge™)

e Aﬁn).

€

€ € — Aty ¢ — AL €
qnflt = QnAt + 6(1 —e & )pﬁAt + (At - 62(1 —e & ))f(ant)
tn+1 . n+1 s
5) a2 Bltnsn) - B)) ol [ e an)
At _ AL A —Ap Aty L e e
Povi =€ @pp= +e(l—em @) f(gn™) + —o(q™) e df(s)

n

The numerical scheme is appropriate to obtain approximation in distribution of ¢°(¢,) and p(t,):
indeed, it suffices to sample at each iteration a R??-valued centered Gaussian random variable

trn+1

(8ttas) = B2, |

tn41—s

edeﬁ(s)),

or equivalently of a family of d independent R2?-valued centered Gaussian random variables

with 7 =1,...,
E[(B;(tns1)

n

tn+1 n+1 s tnt1 n+1 s 2A¢t
Bl([ e ae)) - [T e - Gan o,

n

tn41

(B5ttasr) =Byt | e

n+1 s

a8;(s)).

d, which have the same covariance matrix with entries given by
= B;(tn))*] = At
tn 1 n+1 s tn+1
E(8,(tns1) — By (t2) j e = [e
t t

n+1 s _ At
2

ds=¢é*(1—e

2

n

It suffices to compute the square root or the Cholesky decomposition of the covariance matrix to sample the
required Gaussian random variables. The construction of the second numerical scheme is motivated by

the following result.



PROPOSITION 2.1. Let € € (0,¢y) and At € (0, Ato) Introduce the continuous-time auziliary process

(G24(1), p°2H(1)) 5 defined such that for all n € {0, .. — 1} and t € [tn,tns1], one has
~e, At
dgAt(t) = ) gy
1o ) ), @)
dpsBt(t) = — dt + 2 dt + M2dB(t),
€ € €

with indtial values G©*(0) = q§ cmdp6 A40) = p§, and such thatt € [0,T] — G2 (t) and t € [0,T] — 2 (2)
are continuous. Then for allm € {1,..., N} one has

(q;“,p;“) = (@ (), 77 (t))-

PROOF OF PROPOSITION 211 Let n € {0,..., N — 1}, then for all ¢ € [t,,t,41], one has
1

POAY(t) = e‘%[f’m(tn) +e(l— e_%)f((f’m(tn)) + %o’(cf’m(tn))f e_t:Tsdﬁ(S)-
tn

This then gives the equality
e, At e, At L
G (tns1) = 477" (tn) + Ef Pt (t)dt
t
~€ 7& ~€ -7 ~€E
= (tn) +e(L—e" 7 )p ’At(tn) (At —€*(1—e™@)) F(@(tn))

+ Lo ff it
6

where using the stochastic Fubini theorem one obtains

tnt1 ot n+l n41 s
f f ~Z dB(s)dt = J f ~Z dtdf(s)
tn tn

f e e dp(s)
tn

1

n

tn41 + _
= (Bt~ At - & [ s ),
Since §&2(0) = g A and poAL(0) = 2 A it is then straightforward to check that g&2!(t,) = ¢5! and
PR (t,) = piAt for all n e {1,..., N}. The proof of Proposition [2.1]is thus completed. O

As a consequence of Proposition observe that if f and o are constant, then the scheme is exact:
™t = ¢°(t,) and pSAt = p(t,). Using the implementation of the scheme explained above, this means
that one obtains a scheme which is exact in distribution. The numerical scheme is thus constructed by
freezing the values of the g-component on each interval [t,, t,,+1] when applying the mappings f and o, and
by computing the exact solution of the SDE depending on f(g54*) and o(g5?) on each interval.

Note that the continuous auxiliary processes ((jevm(t),ﬁe’m(t))t;o play a role below in the proof of the
uniform weak error estimates for the numerical scheme .

Like in the continuous-time setting (see ), it is convenient to introduce auxiliary unknowns

. Q;’At _ q;,At + 6p;At
( ) Pe,At _ €pe,At.

After proving some properties for the unknowns Q5% and P52, the identity ¢4t = QA — PSAt is then

used to retrieve properties of the unknown qsAt.
If the first numerical scheme is used, the system after the change of variables reads
QL = Qi + Atf(Qf;At — Pt 40 (QuA = Pt Ap,
(Pt + ALF(QEA = Py + 0(Q = P21 AB, ).

(18)

At
pPort =
n+1 At
1+
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If the second numerical scheme is used, the system after the change of variables reads

7A € € € € €

Qni1 = QS+ ALF(QB = P2 +0(Q2 — Py AB,

(19) €At _ Bt e AL 2 4 At e, At At eany [ e
Pry =e P+ e(l—em ) f(QR™ — PU™) +0(Qu™ — Pp) e = dp(s).
tn

It is straightforward to check that the numerical schemes and give consistent strong and weak
approximation respectively of the solution of the system when At — 0, for any fixed value of the time-
scale separation parameter € € (0, ¢). Since the objective of this article is to prove that these schemes can

be run with a cost independent of ¢, it is relevant to study the behavior when € — 0 of ¢¢(t) and of ¢5*¢

sl
2.3. Asymptotic behavior when the time scale separation parameter vanishes. Consider the
stochastic differential equation

(20) dg’(t) = f(q°(t))dt + o (¢"(t))dB(1),
where ¢°(¢) € R?, with initial value ¢°(0) = ¢ = lin% q§ (see Assumption . Owing to Assumption f
and ¢ are globally Lipschitz continuous, therefore the SDE admits a unique solution (qo (t)) This

=0
solution satisfies the identity
t

t
(21) ) =+ | S )ds+ | ola(s)ds0s)
0 0
for all ¢t = 0.
Consider also the standard Euler—Maruyama scheme applied to the SDE , with time-step size At:

set qg’At = ¢ and for all n € {0,..., N — 1}, set

(22) o2 = g08 1 Atf(q2) + o (SR AB,,

where we recall that AS,, = B(tn+1) — B(tn)-
One has the following convergence result when ¢ — 0.

PROPOSITION 2.2. Let Assumptions[1] and[g be satisfied. For all T € (0,0), there exists C(T) € (0, 0)
such that for all € € (0,¢€p), one has

(23) sup_ Eflg"(t) — (0] < O(T)(lg5 — a3 + (1 + g5 + 166 P) ) = 0.
o<t<T e—0

In addition, for all At € (0, Aty), one has

(24) sup Bllg = g2 < ) (a5 — b+ 1+ g5+ I6l)) =, 0.

where (Qf{m,pf{m)nzo  Us given either by or by .

The proof of Proposition is postponed to Section since it requires moment bounds (uniform with
respect to €) which are stated and proved in Section

3. Main results

We are now in position to state the main results of this article. First, in Section[3.I] we study strong error
estimates when the numerical scheme is used. Second, in Section we study strong error estimates
when the numerical scheme ([15]) is used.

3.1. Uniform strong error estimates. In this subsection, let us consider the numerical scheme ([14)).

One has the following result concerning the strong error E[|g54 — ¢¢(nAt)|?] for the g-component, when
At — 0.
THEOREM 3.1. Let Assumptions and be satisfied, and let (qu’At)n>O be given by the numerical

scheme (14). For all T € (0,00), there exists C(T) € (0,00) such that for all At = T/N € (0,Aty) and
ne{l,...,N}, one has

Cc(T)
25 sup Eq;’At—qEnAtngT 14|01 At + ——~-.
(25) Sup [l (nAD)[T] < C(T)(1 + [g0l”) 1)
7



The remarkable property of is that the error estimate is uniform with respect to the time-scale
separation parameter €. In fact, the proof provides a more precise error estimate, which is combined with
Assumption [2] to obtain (25)): one has

C(T)e* | .
g_)1)2|p0|2~

(26) Ellgn ™ — ¢“(nAD)*] < C(T)(1 + g5 + [p5|*) At + m

As a consequence, one obtains the following uniform strong error estimates. First, choosing N = n,
and using the fact that 1/N? = At?/T?, one obtains the uniform strong error estimate at the final time
T = NAt:

(27) sup Eflgy™" — ¢"(NAD] < C(T)(1 + |gg|*) At.
ee(0,¢p

Second, if p§ = 0, one also obtains

sup  sup  E[lgp®" — ¢"(nAt)P] < C(T)(1 + [g5]*) At,
ee(0,e9) n=0,...,N
where the error estimate is uniform with respect to both € € (0,¢y) and n € {0,..., N}.

Observe that by letting e — 0 in the strong error estimate (26| and using Proposition one retrieves
the standard strong error estimate for the Euler—-Maruyama scheme applied to the SDE : one has
(28) sup  Ef|gy " —¢°(nA)*] < O(T)(1 + |gg|*) At.

n=0,...,\N

In general, when ¢ is not constant, the error estimate above is optimal: the Euler—-Maruyama scheme
has strong order of convergence equal to 1/2, thus the order of convergence in Theorem is also optimal
in general. If the diffusion coefficient ¢ is constant, the strong order of convergence of the Euler—-Maruyama
scheme applied to the SDE (20)) driven by additive noise is in fact equal to 1: one can replace At by At?
in the right-hand side of However, it does not seem possible to improve the order of convergence in
Theorem [3.I] when ¢ is assumed to be constant using the arguments of the proof: in that case Theorem [3.1]
may not be optimal.

Let us also provide a strong error estimate for the second numerical scheme .

PROPOSITION 3.2. Let Assumptions and |2 be satisfied, and let (q;’m)n>0 be given by the numerical
scheme (15). For all T € (0,0), there exists C(T) € (0,0) such that for all At = T/N € (0, Aty), one has

(29) sup  sup  Eflg % —q"(nAt)]?] < C(T)(1 + |qp|*) At.
e€(0,e9) n=0,...,N

The proof of Proposition [3.2] would follow the same strategy as the proof of Theorem In fact,
compared with the proof of Theorem several of the error terms vanish, which is due to replacing H%
ez

by e” in the expressions. This explains why the extra term in does not appear in . The details
are omitted.

3.2. Uniform weak error estimates. In this subsection, let us consider the numerical scheme (|15]).
One has the following result concerning the weak error |E[¢(¢52t)] — E[¢(g¢(nAt))]| for the g-component,
when At — 0.

THEOREM 3.3. Let Assumptions and be satisfied, and let (q;’m)n>0 be given by the numerical
scheme (15)). For all T € (0,0), there exists C(T) € (0,00) such that for all At = T/N € (0,Aty), any

function ¢ : R* — R of class C> with bounded derivatives of order 1,2,3, and all € € (0,¢), one has

(30) sup [Elo(g72)] = Elw(a° (nA))]] < C(T)lllls (1 + lag ) (AL + R(e, At)),

n=0,...,

where the residual error term R(e, At) is defined by

At

(31) Rie, At) :J ez 0
0



and satisfies the following inequality: there exists C € (0,00) such that for all At € (0, Aty) and € € (0,¢€)
one has

(32) R(e, At) < C'min(e, Atz g)
€

The proof of the inequality is straightforward: indeed, one has the inequalities 0 < 1 —e™° < 2 and
0<1—e* <s,and therefore 0 < 1 —e™* < (25)2, for all s > 0. Observe that one obtains the uniform
upper bound

sup R(e, At) < CAt:
ee(0,e0)

which is optimal: indeed, choosing ¢ = v/ At, one has

1

t3

1 At . 1
R(VAL AL) = f (1— e 30)dt — f (1= e *)ds = ¢!
for all At e (0, Aty).
Let us state two immediate consequences of Theorem ({3.3). On the one hand, one obtains the following
uniform weak error estimate

(33) sup | Sup [Elp(a72)] = Elp(g“(nAD)]| < C(T) |l plls(1 + a6 *) At
ee(,eg9) N=0,...,

where the order of convergence is equal to 1/2 (and this cannot be improved when using owing to the
observation above). On the other hand, letting ¢ — 0, one retrieves the standard weak error estimate with
order 1 for the Euler-Maruyama scheme applied to the SDE : one has

(34) swp [E[o(g0 )] = Elp(a’ (nAn)]| < CD)llells(1 + lag*)At.

For a fixed value of ¢, the weak error estimate also gives order of convergence 1 with respect At, but
the corresponding error estimate is not uniform with respect to e.

Note that it would suffice to apply from Proposition above to obtain the uniform weak error
estimate , but to retrieve (34)) one needs the refined error analysis which gives . Even if the order of
convergence in the uniform weak error estimate is 1/2, one has the following error estimate

(35) sup  [Elp(qs™)] - Elp(q* (nAt)]] < CD)llglls(L + lag) (At + ),

n=0,...,

owing to and 7 which is relevant in situations where € is negligible compared with At.

4. Moment bounds

This section is devoted to state and prove moment bounds, which are uniform with respect to € € (0, o)
and At € (0,Atp), for the solutions of , of and of . The proofs are based on the changes of
unknowns introduced in Sections and . Even if the arguments are mostly elementary, it is worth
giving full details for completeness. The proofs of Propositions and are variants of the proof of
Proposition in discrete-time situations. After proving the moment bounds, the proof of Proposition
is provided.

4.1. Moment bounds for the SDE system.

PROPOSITION 4.1. Let Assumption 1| be satisfied. For all T € (0,00), there exists C(T) € (0,00) such
that for all e € (0,¢€p), one has

(36) sup_ (Ella (O[] + ELp ()*]) < C(T) (1 + lag ? + p6 ).

o<t<T
9



PROOF OF PROPOSITION [Tl Let (Q°(t), P<(t))
t € [0,7T], one has

be the solution of the SDE system . For all

t=0

Q°(t) = Q°(0) + j F(Q(s) — P<(s))ds + f o (Q(s) — P<(s))dA(s)
(37) 0 0

t t

e—t—;f(Qe(s) . Pe(s))ds +J e_te_TSO—(QE(S) _ Pﬁ(s))dﬂ(s).

P(t) = e PS(0) +f )

0

Using Itd’s isometry formula, and the Lipschitz continuity property of the mappings f and o (Assumption
one obtains the inequality

BIQ ()F] + B[P (0] < O(7) 1+ EIQ O)F] + EIPO)F + | (BIQ ()] + ELP*(s)])ds).

for all ¢t € [0,T]. Since Q°(0) = ¢§ + ep§ and P¢(0) = ep§, applying Gronwall’s lemma yields the moment
bound
sup (E[Q“(DI*] +E[IP*()*]) < C(T) (1 + lasl?* + Ipi ?)-

0<t<T
Using the identity ¢°(t) = Q¢(t) — P<(¢) then gives

sup E[lg(t)[2] < C(7) (1 + las * + Ipl?).

o<t<T

Using the second identity from and writing Q°(¢) — P¢(t) = ¢(t), applying Itd’s isometry formula, and
using the Lipschitz continuity properties of f and ¢ and the moment bounds for ¢¢(¢) obtained above, one
then obtains, for all t € [0, T,

2(t

€ 2 €2 cr ' —2(t=s) € 2
Ellp* "] < Clpb|” + — 7 (1 +E[|g°(s)*])ds

< C(T)(l +lg§1* + |p6|2> (1 + ;Lte_wés)ds)
<o) (1+ a5l + p5l2),
which gives the required moment bounds for p¢(t), using the identity
1 (* _2r 1
€ Jo 2
This concludes the proof of Proposition O

4.2. Moment bounds for the first numerical scheme.

PROPOSITION 4.2. Let (qu’At7P§£At)n:O v be giwen by the numerical scheme . Let Assumptz’on

be satisfied. For all T € (0,00), there exists C(T) € (0,00) such that for all € € (0,€y) and At € (0, Aty), one
has

(39) sup (Bllas 2] + Ellp > 2]) < C(T) (1+ 15 + 95 ),

n=0,...,

PROOF OF PROPOSITION Let (Q52%, P92Y), _,
(39)

n—1 n—1
Q;’At _ QB,At + At Z f( z,At _ P]?At) + Z 0_( Z,At N P]?At)ABk
k=0 k=0

 be given by . One has the identities

1 n—1 1 n—1 1
e, At __ e, At €, At e, At €, At €, At
Py —7<1+A7;)npo +Atl€207(1+%t)n_kf( WP )+;07(1+A7;>n_k0( cAt _ peAhAg,
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for all n € {0,..., N}. Using It6’s isometry formula and the Lipschitz continuity property of the mappings
f and o (Assumption , one obtains the inequality

n—1
E[IQy 2] + ELPyA ] < C(T) (1 + BIQE™ 2] + ENPS™ ] + At Y, (BIIQE™ ] + E[IP*]))
k=0

for all n € {0,...,N}. Since Qg At = ¢ + epfy and Py A ep§, applying discrete Gronwall’s lemma yields
the moment bound

s (B[Qu2] + E[IPFA2]) < C(T) (1 + la P + Ingl?).

n=0,...,

Using the identity ¢52t = Q52 — PS4t then gives
sup  BlJgi ) < O+ ail + gl).

n=0,.
Using the identity p&2t = PS4 /e, one has
1 At"S 1 1S 1
e, At e, At
PRt = Aot o N + = Y o (67 ) AB.
(1+&)m 6,;0(1+%)"" ;0<1+ Sk

Applying It6’s isometry formula, and using the Lipschitz continuity properties of f and ¢ and the moment

bounds for g5 obtained above, one has, for all n € {0,..., N}
CTAL"S 1
e, At |2 < €2 e,At|2
Elp ) < Olpil + < Z sy (U B
2 LAY
< C(T)(1 + lgg|* + Ip51*) Ttz Z Aﬁ )2(n— k))

2
<C(D)(1+g5* + p§1?),

which gives the required moment bounds for pf,, using the inequality

1 1
T Z 20~ S35
= (1+7) 2471 2
with 7 = At/e? > 0. This concludes the proof of Proposition O

4.3. Moment bounds for the second numerical scheme.

PROPOSITION 4.3. Let ( & At,p;m) _o__n be gwen by the numerical scheme . Let Assumption
be satisfied. For all T € (0,00), there exists C(T) € (0,00) such that for all € € (0,€y) and At € (0, Aty), one

has

(40) sup (Bl P+ Bl ) < OT) (1 ol + Ingl?)-

PROOF OF PROPOSITION Let (Q4A1, PSAY)  be given by (19). One has the identities

n=0,.

Q;’At _ E,At + At Z f e,At P]:,At Z E At P]?At)ABk

n—1 n—1
(n—k)At

(n—k)A
Pedt = e E PP LAY e T RPN - PPt + Y e T a(QN - PN AR
k=0 k=0

for all n € {0,..., N}. Using It6’s isometry formula and the Lipschitz continuity property of the mappings
f and o (Assumption , one obtains the inequality
n—1
€ € €,A €,A €,A €,A
E[QuA" ] + E[IPe22] < C(T) (1 + E[IQE?] + EIRS™ 2] + At Y (EIQE™ ] + E[lPE )

k=0
11



for all n € {0,...,N}. Since Qg At = q§ + ep§ and Py At ep§, applying discrete Gronwall’s lemma yields
the moment bound

sup (B{IQEA P+ EIPFAP]) < O (1 + a5l +1p5P).

Using the identity ¢52t = Q52 — PS4t then gives

sup  Ef|gy "] < O(T) (1 + lgg* + [p§ ).

n=0,...,

Using the identity p52t = PS4t /e, one has

AL _nar . At bl kA At 1% mar AL
PR =e < pgt o Z e = flgy™) + . Z e 2 o(gyT)AB.
k=0 k=0

Applying It6’s isometry formula, and using the Lipschitz continuity properties of f and ¢ and the moment
bounds for ¢&4* obtained above, one has, for all n € {0,..., N}

CTAt ”21 _2n—par
e

E[lpi > P < Clpj|* + (1 +E[lq; )

)
At"S _am-mar
<SOM)(L+1asP +1h°) (1 + = e =)
k=0

<C(T)(1+ lgs)* + Ipl?),

which gives the required moment bounds for pf,, using the inequality

o0
—27¢ __ T
TZe —762771<C<oo

with 7 = At/e? > 0. This concludes the proof of Proposition O

4.4. Proof of Proposition As a consequence of Proposition [£.1} we are now in position to provide
the proof of the inequalities and from Proposition

PROOF OF THE INEQUALITY . For all t € [0, T, the error is decomposed as
¢ (1) — () = Q°(t) — °(t) — P<(t)
:%—£+JUW@%#@%M%+JwW®%W((mwm—w()

0 0

Applying It6’s isometry formula, using the Lipschitz continuity property of f and o and the moment
bound , one obtains, for all ¢ € [0,T],

t
Bl () = "(0%] < O) (165 — b + | Blla'(9) = a"(6)Plas + (1 + g + 55 ).
Applying Gronwall’s lemma and using Assumption [2, the proof of the inequality is completed. O

The proof of the inequality is identical for the two choices of numerical schemes and , and
is a variant of the proof of the inequality in a discrete time situation.

PROOF OF THE INEQUALITY . For all n € {0,..., N — 1}, the error is decomposed as

q; At 0 At Qe AL O At P;,At
n—1 n—1
A 0,A A 0,A
= g6 — a0+ At Y (g™ = flae®) + D (a(gp™) — a(gp ™)) — ep™.
P 70

12



Applying It0’s isometry formula, using the Lipschitz continuity property of f and ¢ and the moment
bound , one obtains, for all n € {0,..., N — 1},

n—1
€ € e, A JA € €
Eflg5 — o [?) < O (Iab — abl> + At Y5 Bl ™ — a0 ™P] + (1 + lagl + [p5]%)).
k=0
Applying Gronwall’s lemma and using Assumption |2, the proof of the inequality (24) is completed. ]

5. Proof of the strong error estimates

Before proceeding with the proof of Theorem [3.] let us state two useful inequalities:

1 _ —T
(41) sup ¥ < o,
T€[0,00) T2
and
1
42 sup sup (n+1)(————¢e"") < .
( ) neN 7e(0,00) ( )((1 + T)n )

The proof of the inequality is straightforward: the mapping 7 € [0,00) — e~ 7 is bounded and Lipschitz
continuous. To prove the inequality , it suffices to check that the maximum of the function

1
T €[0,00) — T —e " €[0,0)
is attained for a real number 7 = 7, satisfying e™"™ = W: as a consequence
sup (71 —e ) = e n <™ b
re(0,00) (L+7)" (14 70)" Q+7)"t " (n+ D7 n+l

Before proceeding with the proof, let us also state and prove the following auxiliary result, concerning
temporal regularity of the processes Q¢ and P¢, uniformly with respect to e.

LEMMA 5.1. Let Assumption [1] be satisfied. For all T € (0,00), there exists C(T) € (0,90) such that for
all e € (0,€e0) and all 1,52 € [0,T], one has

(43) E[|Q(s2) — Q“(s1)|*] + E[|P*(s2) — P*(s1)|*] < C(T)(1 + |g5]* + [p§|*)]52 — 1.

ProoF oF LEMMA [5.3] On the one hand, for all s1,s5 € [0,T], with s; < s3, one has

@) - @) = | e ()ds + | " (g ())dB(s),

s1
therefore using Itd’s isometry formula, the Lipschitz continuity property of the mappings f and o (Assump-
tion [1)) and the moment bounds from Proposition one obtains

52

E[|Q(s2) — Q“(s1)]*] < C(T)J (1 +Eflg*(s)[])ds < C(T)(1 + [g5]* + [p5]*)]s2 — s1-
s1
On the one hand, for all sq,s5 € [0,T], with s; < s, one has

S2 S2 sg—s

eisigsf(qe(s))ds +f e~ o(q°(s))dB(s).

S1

P(s3) — P(s1) = <6752:251 — 1)PE(51) + J

S1

Using the inequality , the identity P¢(s1) = ep®(s1), It0’s isometry formula, the Lipschitz continuity
property of the mappings f and o (Assumption [I)) and the moment bounds from Proposition one

obtains
S2

E[|P*(s2) — P*(51)] < Cls2 — s1[E[[p*(s1)|*] + C(T) J (1+E[lg"(s)[*])ds

S1
< C(T)(1 + lggl* + 1951 Is2 — 5.

Gathering the estimates then concludes the proof of Lemma [5.1 O

We are now in position to provide the proof of Theorem
13



ProoOF oF THEOREM [3.1l Let us first describe the decomposition of the error. Using the identities

q“(tn) = Q“(tn) —

e At e, At
) - Py

Pe (tn Qe JAL

the mean-square error is bounded as follows:

[|qe At

Let E;ST = E[|Qg2 —
and the expressions for ¢f, and p5,.
On the one hand, one has

qe(tn)‘Q] <2E

Q“(tn)[?] + E[| P52 —

QR = Q°(ta)[P] + 2E[| P2 — P<(ta) ).

P<(t,)|?]. Recall the expressions for

Q%h@%mzzm—@@
+AthQ;At PoRh ff — P(t))dt
k=0
ol ““Aﬁmmm—ﬁfdwm—ﬁwmmw
k=0

where one sets

€

E

tk+1
At
con = Zj — P(0) — 0(Q1 (1) — PX(1)))dB ()
n—1
A A A
e an = 2, (@(QE% = Po®) — o(Q(tk) — PX(tr))) ABr.-
k=0
On the other hand, one has
Pe,At Pe( ) 1 e,At ei%Pe

= 1 e, At e, At b 7t"2_t €
*Nzﬁiﬁwyr — PR — e pQe ) -

k=0 €2 0

S 1 €, At e, At b —in_t €
+Zm0’(@k —P)AB — | e o(Q(t) -
iso L+ ) 0
e, At

= €n,Po

At At At At
teypiite piat e pis T e i

At At At At
+epar T e past e past e pay

where one sets
1 tn ]_ t

€,At —in €, At
e = —e 2 )Pyt =¢ —e %
n,P,0 ((1 n %)n ) 0 ((1 n %)n )'va

né}tll Z J

eA €, At €,At e, At
=it iz T Q21 T Q22

tk+1

— P(tx)) — f(Q°(t) — P<(t)))dt

n—1

3m—miﬂﬂe“ PR — F(Q5(t) — PE(11))

14

Q°(t,) and P(

Pe(t))dt

Pe())dp(t)

tn);



then
= 3 [ e Q) — P(0) — FQ ) — P

k=0 "Y1k
n—1

e = ZJ T (FQUA — PEAY) — F(Q(t) — PC(t))dt

tk+1 _tnt ot
A tnti _tnzt A A
€p1s = f —e ) FQYY - Pt
tr
€,At _AtZ( 1 N 7@)%13( €,At PeAt)
en,P,1,4 - (1 + %)7L—k ¢ ‘
k=0 €

and finally

e, | = Z f (o(Q(tr) — P¥(ts)) — o(Q°(1) — P<(1)))dB(1)

P22 = Z J (o(Q™ = PE™) = o(Q (1) = P*(14)))dB(1)

tk+1 bt

= 2 f o - Pds

At 1 _inzty 6, At e, At
€n P24 = Z ((1 T g)n_k —e )U(Qk - b, )AB.
k=0 €2
Let us prove error estimates for each of the terms defined above. Let us start with the terms appearing
in the right-hand side of the expression of the error term Q%“* — Q¢(t,) above.

Using the Cauchy—Schwarz inequality, the Lipschitz continuity of f (Assumption [1)) and the inequal-
ity from Lemma one obtains

Bfles2, 1 1] OTZ f E[Q(t) — Q“()[2] + B[P (t4) — P<(H)|?])dt

< C(T)(l +la5|* + [p5]*) At.
Using the Cauchy—Schwarz inequality and the Lipschitz continuity of f, one obtains

n—1

€,A €, A
E[|eS Q*12| ] < CTAt Z EgRt
k=0

Using It6’s isometry formula, the Lipschitz continuity of o and Lemma , one obtains

tk+1

E[fec At <C ZJ' E[|Q(tx) — Q°(t)[*] + E[|P*(tx) — P<(t)|*])dt

< C(T)(1 + lggl* + [p§1*)At.

Using It6’s isometry formula and the Lipschitz continuity of o, one obtains

n—1
€, A €,A
Elle;; 0201 < CTAL ) EL°.
k=0

Gathering the estimates, for all n € {1,..., N} one obtains the upper bound
€ € €,A €,A e,A €,A
EQ5™ — Q(ta) ] < 4(Elles &1 1] + Ellef o o] + Ellef o1 *] + Elleg 11

(44) n—1
< OTAL Y, By™ + C(T)(1 + g5 + [ph|?) At
k=0
15



Let us now treat the terms appearing in the right-hand side of the expression of the error term P
P<(t,,) above.
Using the inequality (42), one obtains

Ce 2
F e,At |2 <
[|en,P,0 ] (TL-l— 1)

Using the Cauchy—Schwarz inequality, the Lipschitz continuity of f and Lemma , one obtains

|po |2

Bl < 0T 3 f B[JQ* () ~ @ (0] + E[IP(t) ~ P

< C(T)(l + a5 + |ph|*) At.
Using the Cauchy—Schwarz inequality and the Lipschitz continuity of f, one obtains

n—1
Efles o] < CTAL Y B2
k=0
Using the Cauchy—Schwarz inequality, the Lipschitz continuity of f and the inequality , one obtains

2 _gin—t

- tk+1
Efles 3, 71 < CD) + a5 + 1p6 ) Ej )% gy

t

€2 €2 At tn —Qt"i;
<O+ labf + pf) g | e

< C(T)(A + lg5|* + [phI*) At.
Using the Cauchy—Schwarz inequality, the Lipschitz continuity of f and the inequality , one obtains

n—1
At
e,A € €
Eﬂen,PflA T<om+ g + 1p6l?) Z n—k)?
k=0

< O(T)(A + g5l + [p§1*)At.
Using 1t6’s isometry formula, the Lipschitz continuity of o and Lemma , one obtains
tk+1
Elle; b’ < OT Z J E[|Q(tx) — Q“(t)[*] + E[| P<(tx) — P<(t)|*])dt
< C(T)(l + lgl” + [p51*) At.
Using It6’s isometry formula and the Lipschitz continuity of o, one obtains

n—1
EfleS s 5*] < CTAL > ESA

Using It6’s isometry formula, the Lipschitz continuity of o and the inequality , one obtains

t—tp

n—1 r~tpiq
e, A € € -
B3] < O+ 6 + 55F) 3 f (e

— 1)2672 ot dt

tn—t

At _
<O+l + 16 5 j 2%

< O(T)( + g5 + w5 )Ato
Using It6’s isometry formula, the Lipschitz continuity of o and the inequality , one obtains

dt

6 ) . At
Elleq s 412 < C(T)(1 + lgg|* + [p5]*) D] (e

< O(T)(1 + g5l + Ip|*) At

16
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Gathering the estimates, for all n € {1,..., N} one obtains the upper bound
E[| Py — P(ta)[*] < 9E[le}, Pl |°]

VAL JAt JAt VAt
+ 9<E[|6;,P,1,1 1+ E[\‘i;,P,l,z 1+ IE[|‘35L,P,1,3 1+ E[|6:L,P,1,4 2])

e, At e, At e, At e, At
(45) + 9<E[|en,P,2,1 °1 + Elley ool + Elle po 5] + Elley Pas 2])
n—1 062
€,A € € €
< CAt Z EpSt + ——Iph” + C(T)(1 + g5 > + |p§|*) At.
= (n+1)

Let us now conclude the proof of the strong error estimates. Owing to the upper bounds and ,
for all n € {0, ..., N}, one obtains the upper bound

EyAt = B[IQA = Q“(t) ] + B[ PgA — P<(t,)]

n—1
Ce?
€,A € € €
<OM Y, BY™ 4 pomyalobl + G+ 15 + Ip6l) A,
k=1

with By = 0.
For all n e {1,..., N}, set

Ce? .
2|p0|27

Ee,At _ Ee,At o
" " (n+1)

then one obtains the inequality

n—1
EAt < o)At Y Byt 4+ C(T)(1 + g5 + g ) A,
k=1

using the fact that ZZO:l 1/k? < . Applying discrete Gronwall’s lemma yields the inequality
sup. B2 < O(T)(1+ g5 + Ippl*) At
therefore one obtains for all n € {1,..., N} the upper bound
Ce? 9
————p§|? + C(T)(1 + |g51* + p§|*) At.
ool + T+ il + )
Using Assumption [2] then concludes the proof of Theorem [3.1] O

E;:L,At <

6. Proof of the weak error estimates
The objective of this section is to provide the proof of Theorem [3:3] The most important

6.1. Regularity estimates for solutions of Kolmogorov equations. Let ¢ : R? — R be a mapping
of class C?, with bounded derivatives of order 1,2,3. For all (¢,p) € R2? and t > 0, let

(46) ue(ta Q7p) = E%P[(p(qe(t))]
where the subscript means that the process (¢(t),p(t)),., is solution of the SDE with initial values
q°(0) = g and p*(0) = p.

As a consequence of the definition of the function u, the weak error may be written as
(47) Elp(g7*")] — Elp(q*(t)] = E[u(0, 42", p )] = E[u (t, 45>, 95 )],

for all n € {0,..., N}, where ¢52! and p$;2! are given by (I5), see for instance [21, 22].
Since the mappings ¢, f and o are of class C3 with bounded derivatives, the mapping

t=0

(t,q.p) € [0,00) x R* > u(t,q, p)
17



is of class C}C3

..p» moreover it is the solution of the Kolmogorov equation (see [5] for instance)

dyu(t,q,p) = %(uns(t, ¢,p) v+ Vpu(t,q,p) - f(q))

A 1 . ]
(48) +5 (=Vpu(t.a.p) - p+ Viu(t,a.p) s alg)),

u®(0,q,p) = ¢(q),

where the mapping a is given by @ and the following notation is used:

d
v2u6(t7 Qap) : a(Q) = aiajue(tvqap)aij (Q)
P
i,j=1
Let us state upper bounds on the first, second and third order spatial derivatives of u¢, with a careful
analysis of the dependence with respect to the parameter e.

PROPOSITION 6.1. For all T € (0,0), there exists C(T) € (0,00) such that for any function ¢ : R* — R
of class C3 with bounded derivatives of order 1,2,3 and for all h*, h? h3 € R%, one has
|vpuE (tv qvp) i h1|

(49) sup sup < C(D)|lgll:|n].
e€(0,¢0) (t,q,p)€[0,T]xR24 €

(50)  sup sup
e€(0,e0) (t,q,p)€[0,T]xR24

Vo Vpus(tg,p) - (W', 0?)] | [Vaus(t.q.p) - (h',h?)]
(Me¥eean) 8.1, Dy b0 R ) < @) lpllafp 112

(51)

(‘qugue(taq,]?) : (h17h27h3)| + ‘vgue(tafbp) : (h17h27h3)|) <

> C(D)llllslh1A?]1?)].

sup sup
e€(0,e0) (t,q,p)€[0,T]xR24

The proof of Proposition [6.1] is postponed to Section [6.3}

€ €3

6.2. Proof of Theorem This section is devoted to the proof of Theorem Many of the
arguments are standard, the novelty is to deal carefully with the dependence with respect to e using the
regularity estimates from Proposition [6.1] above.

Before proceeding with the proof of Theorem [3:3] let us state and prove an auxiliary result, which is a
variant of Lemma E 5.1| for the auxiliary processes & and p&2t.

LEMMA 6.2. Let Assumption [1] be satisfied. For all T € (0,00), there exists C(T) € (0,%0) such that for
all e € (0,€e0), all At e (0,Aty), allne{0,...,N —1} and all t € [t,,tns1], one has

(52) E[g=2(t) — g2 (ta)*] + €EF2 (1) — 592 (8) ] < C(T)(1 + |5 + Ip6|*) At

PROOF OF LEMMA Introduce the auxiliary variables Q2t(t) = GoAH(t) + ep=2t(t) and PSAY(t) =
ep(t). The inequality is a straightforward consequence of the following claim: for all T € (0, 00),
there exists C(T) € (0,0) such that for all € € (0,¢), all At € (0,Atp) and all n € {0,..., N — 1} and all
t € [tn,tns1], one has

(53) E[|Q“A(t) — Q%! (tn) ] + E[[ P92 (1) — P2 (¢,)*] < C(T)(1 + |g5|* + [p5|*) At.
Let us establish the claim (53)). Recall that §=2(t,,) = ¢5! and p&2i(t,) = pG! for all n € {0,..., N — 1},

owing to Proposition [21]
On the one hand, for all ¢ € [t,, t;41], one has

Qe,At( ) Qe At J f e, At dS + J : U(q;’At)dﬁ(s)v

therefore using It0’s isometry formula, the Lipschitz continuity property of the mappings f and o (Assump-
tion [1)) and the moment bounds from Proposition one obtains
t

E[|Q°%(t) — Q% (ta) "] < C(T)Jt (1+Eflgz ") ds < O(T)(1 + g5 + [p5|*) At
18



On the other hand, for all ¢ € [t,,, t,41], one has

t t

T Flgi A ds + j ¢ o (g5 dB(s).

tn

PEAL () — PoRM(t,) = (e o 1) P2 (t,,) +J

tn

Using the inequality , the identity ]Se’m(tn) = epSAt, Ttd’s isometry formula, the Lipschitz continuity
property of the mappings f and o (Assumption [1)) ' and the moment bounds from Proposition one
obtains

E[| P24 (1) — P92 (ta)|*] < CAE[|py > P + O(T) f (1 + Eflg>'])ds

tn
< O(D)(1 + g5l + [P *)At.
Gathering the estimates yields the claim and then concludes the proof of Lemma O

PRrROOF OF THEOREM [3.3l Owing to the expression of the weak error using the function u¢ defined
by , the auxiliary process defined by and a standard telescoping sum argument, one has the following
decomposition of the weak error: for all n € {0,..., N},

Elp(g7*")] — Elp(a*(t)] = E[u(0, 452", p )] = E[u (b, 05>, p5™")]

n—1

= (E[ue(tn —tm+1, qm-‘rl’p:n%-tl)] E[ue (tn — tm, qinAt’pinAt)])
(54) =
n—1
= Y (E[u(tn — tins 1, @2 (Emr1), 592 (tns1))] — E[u (b — tins @2 (E), 572 (E))]) -
m=0

Using It6’s formula, the fact that u€ is solution of the Kolmogorov equation and the fact that the process
((jE’At(t),ﬁ“At(t))po is solution of the SDE (16), for all m € {0,...,n — 1}, one obtains

Efu (tn — tmrr, 3% (be1), 5% (fin)] = Bt — b, G5 (6m), 573 (8))] = ER501 + Eni5s
where the error terms in the right-hand side above are defined for all 0 < m <n —1 by

gt = ¢ | BT 63 0,57 0) - (1 )~ £ (0)

€

m

Eidla = | BVt — S0 0) £ () — ol (0)

m

Observe that the error term Em .15 T€SP. Sm 1.2 vanishes if the mapping f is constant, resp. if the mapping
o is constant. This is due to the construction of the numerical scheme (15).

The error terms & Atl and &, At2 are then decomposed as follows: set

tm1
et = ¢ | BTt — 63 ). 5 ) - (£ () — @ (0) Nl

m

e, At e, At €, At
6m,n,1,2 = m,n,1 5m,n,1,1’
tm 41
A 1 N _ 8 _
Ertton = | EITRt — 020 5 ) (07 ) — a2 (0)
tm
At At At
5:n n,2,2 T 551 n,2 5;1 n,2,1°

It remains to obtain upper bounds for the four error terms.
e Since the mapping f is of class C? with bounded second-order derivative, a Taylor expansion argument

gives
e, At €,A
Emnan = 5mn1 11 +5m n,1,1,2)

where Sm nid,

€ 1 t’,”+1 € ~€ ~€ ~€ ~€ ~€
Edian 1| BTl = 8 ) 5 () (DI )0 () = 37 0)

m

1 is defined by
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and where & Atl 1,2 satisfies

tm+1
i1zl < C(T )\H@th E[q°% (tm) — g2 (1) *)dt

tm

CD)lell1 (1 + lgo*) At
using first the inequality from Proposition and second the inequality from Lemma and

Assumption
To deal with the error term E;Antl 1,1, 8 condltlonal expectatlon argument is used. For all ¢ € [ty tm+1],
solving the auxiliary stochastic differential equation , one has
(55)
~ ~ L[ _
qe,At(t) _ qs,At (tm) _ z J pE’At(S)dS _ €(p€’At(tm) e At f f e, At dS + f a(q;;At)d,B(s)
tm tm

~€ ~¢ —i=tm ~€ 1 ¢ —izs €, 1 €
PO =5 t) = (05 )+ £ [ s [ F ol aste
t tm

m

Therefore, the error term 5m PERE

E:T,L,%lt’Ll,l _ Jt m+1 E[Vpue(tn —t, qe’At(tm),ﬁe’At( )) <Df( ~€, At( m)).(ﬁE’At(t) —ﬁe’At(tm))>]dt

m

1 can be rewritten as

— 1£tm+1 B[V (ty — t, G52 (tm), 572 () - (Df (G2t f F(gsA) ]

€

m

_ J m1 E[V,u(t, —t, (f’At(tm),ﬁE7At( m)) - (Df( 6 At( m))~((6 i 1)p© At(tm)))]dt

m

1 (tm+1 ~ B t _t—s .
e [ BT 2 ), 524 - (DI ). [ (5 1) )t
since the terms with St ¢S dB(s) and St 2 0(¢5A)dB(s) vanish in expectation.

Using the 1nequahty . from Prop051t10n E the boundedness of D f, the moment bounds ) from
Proposition and Assumption [2] one obtains
At fmott A
€52l < OOl [ (1= e 5 ) armllpe (6|

n,1,1,
tm

C(D) el At (1 +E[1§ (tm)]])
At
< C(T)\HgaH\l(L (1 —e - )dt + At2> (1 + g + |p5|2)

C(T) Aol (R(e, At) + At) (1 + [g3[?).

where we recall that R(e, At) is defined by (31)).
e Owing to the inequality from Proposition for all m € {0,...,n — 1} and using the Lipschitz
continuity of f, one obtains

tm+1
€,A ~€, €
€528 1 < C(T) Il j E[G=24(t) — 52 (t0)|?]dt

tm

tm 41

+C(T)€VH<PH|2£ E[go2 (1) = 32 (1) 1592 (8) — 572 (tn) 1t

m

Using the inequality from Lemma E and Assumption |2} one then obtains the upper bound
At
[zl < CD)lell2(1 + |gg|*) At

e Since the mapping a is of class C? with bounded second-order derivative, a Taylor expansion argument

gives
e, At e, At e, At
Emmnzt =E€mno11tEmnai
20



where Sm .21, is defined by

€ ]' tm+1 € ~€ ~€ ~E€E, ~€ ~€
Ertann = | EITRCtn = 03 (). 5 () 5 (Dl (). (7% () = 74(0) )t

m

and where Sm n.2.1,2 Satisfies

tm+1
e, A €, 5€
€558, <0<T>msom2f E[§- 2 (t,0) — 452 (1) [2]dt
t

m

012y A 42
CMllell2(1 + lgo*) AL
using first the inequality from Proposition and second the inequality from Lemma and
Assumption 2]
Like in the treatment of the error term Em n.1,1,1 above, a conditional expectation argument is used to

deal with the error term Em n2.1.1- The expressions of G52t (t) — G52t (t,,) and pAH(t) — poAt(t,,) give

€ 1 t"”+1 € ~€ ~€ ~€, ~€ ~€
Etann =2 | BVt — 02 0.5 (0n) ¢ (Dalq S ) (570 — 5 (1))l

m

_ l tmt1 E[V‘,’QJUE( —t,G° At(tm)7ﬁe’At(tm)) . ( eAt J f eAt ]

€2

tm,
1 ftd ~c ~c ~€, L ~c,
- - f BV (b — 32 (bn) 5 () ¢ (Dal@ 2 (). (72 = 152 () ) Jat
tm
1 tm+1 5 i e t _t—s e
b | B 7S ) Y ) s (Dald S ). [ (e F 1) st
tm tm

Using the inequality from Proposition the boundedness of Da, and the moment bounds from
Proposition [I.3] one obtains

|66“2,1,1| B e U [

tm

O gl A (1 -+ B3 (1))
At .
C(T)\HSDH\Z)( || ci=emdyar a2 @+ 16 + o)

C(T)AUgllz (Rle, At) + AL) (1 + |af ),

e Owing to the inequality from Proposition for all m € {0,...,n — 1} and using the Lipschitz
continuity property of a, one obtains

tmi1
[zl < C(T )\H@\Hsf E[|g=24(t) — G2 (tm)|?]dt
t

m

+ C()ellols j TTR[GEAE) — G ) [ (E) — 52 () .

tm

Using the inequality (52 from Lemma and Assumption |2} one then obtains the upper bound
A
Emmz,zl < CD)lella (1 + |gg|*) A

e Gathering the estimates, one finally obtains

IE[p(g52")] — Elp( Z (€5 + 18558

C(T)Hlsall\s(R(e, At + AL) (1 + [g)]?)

for all n € {0,..., N — 1}, where R(e, At) is defined by . This concludes the proof of the weak error
estimate and the proof of Theorem O
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6.3. Proof of Proposition
PROOF OF THE INEQUALITY ([49)). For all h = (hy, h,) € R??, one has

Vaus(t,q,p)-hy + Vypus(t,4,p).hy = Vg pyu(t,q,p)-h = Eqp[ Vo (g (1)) 05" (1)],

where t — n°P(t) = (no™(t),n5" (t)) € R*¢ is solution of the stochastic differential equation

dn™(t) = Mdt
e,h np (t> e,h 1 € e,h
iy (t) = dt + Df( “(t)m " (A)dt + —Do(g*(2)).1g" (1)dB (),

with initial value n“®(0) = h, equivalently ng h(0) = h, and ny h(0) = hy,.
The inequality (49| . is a straightforward consequence of the following claim: for all m € N, there exists
Cn(T') € (0,00) such that

(56) sup Eq,p[|"7;’h(t>‘2m] < Cm(T)(|hq|2m + 62m|hp|2m).
(t,q,p)€[0,T] xR2d

Indeed, it suffices to choose m = 1 and to set h = (0,h) to obtain . It thus remains to prove the
claim . First, observe that, for all ¢ > 0, one has

t

e,h -+ 1 ' —i=s € e,h 1 —is € e,h
B0 =y L | T DA ) )+ 1 [T Doty () ().

0

In addition, for all ¢ > 0, one has

1 t
W) = byt [t (s)ds
0

=m+£ngwnﬁwﬁw+ﬁDdf%@M?@Mﬂ@+4@Wm—@wm.

On the one hand, using the Holder and Burkholder-Davis—Gundy inequalities, one obtains the following
upper bound for n5®(t): for all t € [0,T] one has

1 t
Bl (0] < Con(T) (g P+ 5 | B (5) P s )

On the other hand, using the Hélder and Burkholder—Davis—Gundy inequalities and the upper bound above
for 75" (t), one obtains the following upper bound for n$"(¢): for all ¢ € [0, T] one has

t
EM?@Wﬂ<C%@Kwﬁm+ﬁEM?@WW®+3W%W”H%@M?@WW)

Combining the two upper bounds gives the inequality

t
Bl (") < Con(T) ([ 27 + 71027 + | Ellr () 21as)

for all t € [0,7T]. Applying Gronwall’s inequality then yields the claim . This concludes the proof of the

inequality . (]
PROOF OF THE INEQUALITY . For all h! = (h}, h}) € R*® and h? = (hZ, h2) € R*®, one has

q’°7q PP

+ V, Vous(t,q,p).(hl, h2) + Y,V u(t, q,p).(hb, h2)

q’'p p’q

= E[V, (g (t)).Co" 0 ()] + E[VZ(q (t)).(n5™ (), ns™ (1)),
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where ¢ — ¢¢h' b (1) = (C;hlth (1), C;’hl’hz (t)) € R?? is solution of the stochastic differential equation

e,h' h?
d<6 h! h2( ) CP (t) dt

€

A (1) = — 5™ M ()t + D (g (0)- G ()t + - Dol (). dB(r)

+ %sz(qe(t))(n;’hl (), g™ (£))dt + %D%@f(t».(n;’hl (£), 5™ (£))dB (),

with initial value ¢“®"(0) = 0, equivalently ¢ 2" (0) = ¢52'**(0) = 0.
The inequality is a straightforward consequence of the inequality and of the following claim:
for all m € N, there exists Cp,,(T') € (0, 00) such that

1 2
(57) sup Eqp[ICe™ ™ (O™ < Con D) (Jhg ™ + €™ [y [P™) (IRG12™ + €™ [ hg ™).
(t,q,p)€[0,T]xR24
Indeed, it suffices to apply the inequality with m = 1 combined with the Cauchy—Schwarz inequality,
and the inequality with m = 1, and to set either h! = (h',0),h? = (0, h?), or h! = (0, k'), h? = (0, h?),
to obtain . It thus remains to prove the claim . First, observe that, for all ¢ > 0, one has
t

hl h2 1 t t—s hl h2 1 t—s hl h2
GMW0 = ¢ | e F DA )G w)ds + % | e F Do (6).¢ Y (9500
0 €

0

e j e F D2 (g (5)- 0™ (5),mg™ (5))ds + + f ¢ Do(¢" ()™ (). 1™ ()dB(5).
0 0

€
In addition, for all ¢ > 0, one has

t
G = ¢ | G s = =G )
fo com ds+f Do(q(s)) Lo ()dB(s)

f D2f( B (5), s (s))ds + f D2o(q"(3))-(n5™ (), ™ (5))dB(s).

On the one hand, using the Holder and Burkholder-Davis-Gundy inequalities, one obtains the following
upper bound for C;’hl’hz (t): for all t € [0, T] one has

11,2 Cm T t 142 t 1 2
EllG 0P < 5 ([ B Pds + [ Bl (" g ()P ds)
Cn (T 1
< EQE,L ) (J [|Ceh ( )|2m]d5 + (|h1|2m 2m|h11)|2m)(‘h2|2m + €2m|h?)‘2m))7

where the inequality is used in the second step above.
On the other hand, using the Hélder and Burkholder—-Davis—Gundy inequalities, one obtains the following
upper bound for Cg’hl’hz (t): for all t € [0,T] one has

E[ICoh" 0 ()[27] < Con(T)E B[ M (5)27]
t

t
+C(T) f E[ICS 1 () P™]ds + Cpn(T) f Efrct (s) 2™ e (s) ™ ds
< Con(T)E™E[CS™ 1 (1) 2]
t
+ G f B[C™ M ()2 s + (32 + ™) (1122 + 2[22)),
0

where the inequality is used in the second step above.
Combining the two upper bounds gives the inequality

t
E[IG (1) 2] < Cn(T) ( f ELIG™ ()2 Jds + (Ing[2™ + e Ry ) (IR22 + 27 2™ )
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for all t € [0,T]. Applying Gronwall’s inequality then yields the claim . This concludes the proof of the
inequality . O

y PROOF OF THE INEQUALITY (5I)). For all h! = (h},hl) € R*, h? = (h2,h2) € R* and h® = (h}, h3) €
R*?*  one has

Vi put(t,a,p).(h', 0% h?) = B[Vp(q"(£)-£™ P (1)]
+ E[Ve(q )™ 0, " (1))
+E[V2e(q (1) (ng™ (1), ¢ ()]
3 1 2
+E[V3p(g (1) (ng™ (1), (g™ ™ (1)]
+E[Vie(q (). (ng™ (), n5™ (8),ng™ (1))]
where ¢ > ¢&B BB (1) (5;7h17h27h3 (1), ;’hl’hz’hg (t)) € R*? is solution of the stochastic differential equation
( e;h’ h? h?
11,213 N (
dE;,h ;h*h (t) = udt

€

g™ I (1) = — €I ()t D (g ()€ (0t + 1 Darlge (1) €5 dg(0)
DR )0 (00, )t + Dol ()L™ (1), 6™ (0)d5(0)
2 DPFE )5 (0, G ) + D2l (0)-05™ (1), G (0)d5(0)
2 DPFE0)- 5™ (0,55 ()t + D20 la"(0)-05™ (), G (0)d5(0)

DO F((0): (™ (65 (0, ™ (1) e + - Dol (). (™ (1), (), (6) B (1)

with initial value £ 2*0°(0) = 0, equivalently Cg’hl’h2’h3 (0) = (;’hl’hQ’hS (0) = 0.
The inequality is a straightforward consequence of the inequality and of the following claim:
for all m € N, there exists Cy,,(T) € (0, 00) such that
(58)
€ 1 2 3 m m m m m m m m m m
sup Eqpll€e™ M (0] < Con(T) (|hg P+ [y [P7) (1hg |27 4™ [hp|2™) ([ €™ [R5 ™).
(t,q,p)€[0,T] xR2
Indeed, it suffices to apply the inequality with m = 2 combined with the Cauchy—Schwarz inequality, the
inequality with m = 1 and the inequality with m = 1, and to set either h! = (h!,0), h? = (0, h?),
h3 = (0,7%) or h! = (0,h'), h? = (0, h?), h3 = (0, h*). It thus remains to prove the claim (57).
First, observe that, for all ¢ > 0, one has
11.2 1.3 1t7t75 . eh! h2hd 1t7t77§ e ehl h2hd
M) = < [ F DA g N (s + T [ e F Dalgr(9) ™ (s)as)
0 0

. f ¢ D2 F((5)). (0™ (5), Co R (5))ds + j e D20 (g5 (). (0™ (5), Co W (5))dB(s)

€ Jo € Jo
} ’ —t5r 2 € e,h? e,h® h' 1 ’ —i52 2 € e,h? e,h® h!
o] e T DU ()00 (s),mg (s))ds + — | e D7o(q"(s)).(ny™ (), G (s))dB(s)
0 0

+ 1 f ¢~ F D2 (g (9)).(ng™ (), g™ M (5))ds + 1 f 5 DR (g (s)). 5 (5), 16 ())d(s)

t —s 1 2 3
" f ¢ D3 f(g(5))-(ns™ (), ™ (), nS° (5)) ds

j = D2o(q5(5)).(n5™ (), m5™ (), m5™ (5))d(s)-
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In addition, for all ¢ > 0, one has
e - 1 | tg;vhlvhzvh?’(s)ds = e (D)
J Df(qf(s)).£h"n* 0 ds+f Do (qf(s))-£0 20 (5)dB(s)
j D2 B (5), G (5) ds+f D20 (g(s)).(n™ (), 5™ ())dB(s)
+ f D2 f(g(s))-(ng™ (5),mg™ ™" (s))ds + f D?o(q*(s))-(ng™ (5), ™ ™ (5))dB(s)
[ D2 a0 o 0 s+ [ D2ola 60 0 ™ )5 6)
[ D2 )0 0 0 )

’ f D3a(q%(5))-(ng™ (s), 5™ (), g™ (5))d3(s).

On the one hand, using the Holder and Burkholder-Davis—Gundy inequalities, one obtains the following
upper bound for fg’hl’hz’hg (t): for all ¢t € [0,7] one has

ch! h2 hd m Cm(T) t ch! h2.h3 m
Bl 0] < S | Bl (o)

62m

4 GulT) j (E[Ing™ ()12 (¢ () 2] + E[|nS™ ()20 (5) 2] + E[|ns ™ (s)] 2™ [¢o 2 () |2™]) ds

Cm(T> ¢ € 1 m € 2 € 3
i | R R o (5) s

- Cn(T)

€ 2m

t «
(L EHE;,h ’h2’h3(8)|2m]d8 + (|hé|2m JrE2m|hzl)|2m) (|h(21|2m + €2m|h§|2m)(|h2|2m +€2m|h2|2m))7
where the inequalities and are used in the second step above.

On the other hand, using the Hélder and Burkholder—-Davis—Gundy inequalities, one obtains the following
upper bound for fé’hl’hz’hs (t): for all ¢t € [0,7] one has

Efl¢g™ ™ (1)) < C(D)EMELIG™ ™ ()1

t

+ (D) [ B[N ()P
0
t

n cm<T>jO E[[s™ (s)P[con™ b ()2 ds
t

" cmmfo E[rch” (s) 27 Con" () ds
t

n cmmfo E[lnoh" (5)/27 o (5)] 27 | ds

t
1 2 3
+ Cm(T)JO E[[ng™ ()P |ng™ (s)[*™ g™ (s)[P™1ds
< O (T) M E[|eg™ 00 (1)2m]
" cmmf B[Jech’ B*8° (5) [2m] g
+ (|h;|2m + 62m|h11)|2m)(|h2|2m +€2m|h12)|2m)<‘h2‘2m _|_62m|h13)‘2m)),
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where the inequalities and are used in the second step above.

Combining the two upper bounds gives the inequality
q t 1 2 q
BlIEG™ 2 (7] < CulT) [ Ellgg™ 2 (s)m s
0

+Cm(T)<(|hé|2m + €2m‘h;|2m)(|h§|2m +€2m|h12)|2m)(‘h3‘2m + 62m|h‘13)|2m>>

for all ¢t € [0, T]. Applying Gronwall’s inequality then yields the claim . This concludes the proof of the
inequality .
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