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Uniform error bounds for numerical schemes applied to multiscale SDEs in a
Wong–Zakai diffusion approximation regime

Charles-Edouard Bréhier

Abstract. We study a family of numerical schemes applied to a class of multiscale systems of stochastic
differential equations. When the time scale separation parameter vanishes, a well-known homogenization
or Wong–Zakai diffusion approximation result states that the slow component of the considered system
converges to the solution of a stochastic differential equation driven by a real-valued Wiener process, with
Stratonovich interpretation of the noise. We propose and analyse schemes for effective approximation of
the slow component. Such schemes satisfy an asymptotic preserving property and generalize the methods
proposed in the recent article [4]. We fill a gap in the analysis of these schemes and prove strong error
estimates, which are uniform with respect to the time scale separation parameter.

1. Introduction

In this article, we consider multiscale systems of stochastic differential equations of the type

(1)

$

’

&

’

%

dXεptq “
σpXεptqqmεptq

ε
dt

dmεptq “ ´
mεptq

ε2
dt`

1

ε
dβptq,

where ε P p0, ε0q is a time-scale separation parameter. On the one hand, Xεptq takes values in the d-
dimensional torus Td “ Rd{p2πZqd in arbitrary dimension d P N, and σ : Td Ñ Rd is a mapping which
is at least of class C3. On the other hand, the Wiener process β and the Ornstein–Uhlenbeck process mε

are real-valued. The objective of this article is to study numerical schemes for the approximation of the
component Xε, for arbitrary values of the time-scale separation parameter ε, in particular when it vanishes.
This is not a trivial task since the componentmε evolves at the fast time scale t{ε2, and a crude discretization
would impose stringent conditions on the time-step size ∆t.

It is a well-known result in the analysis of multiscale stochastic systems that Xεptq converges, at least
in distribution, when ε Ñ 0, to X0ptq, for all t ě 0, where X0 is the solution of the stochastic differential
equation

(2) dX0ptq “ σpX0ptqq ˝ dβptq

where the noise is interpreted in the sense of Stratonovich. We refer for instance to [16, Section 11.7.3]
for a description of this convergence result, and see Proposition 3.1 below for a precise statement, where
convergence is understood in a stronger sense than convergence in distribution. The convergence result
Xε Ñ X0 belongs to the class of Wong–Zakai approximation results (the Stratonovich noise ˝dβptq is
approximated by a smoother version dζεptq), it is also sometimes called a diffusion approximation result.

In order to define numerical schemes which perform better than crude methods when ε varies and may
vanish, it is relevant to resort to the notion of asymptotic preserving schemes as studied in the recent
article [4]: if ∆t “ T {N denotes the time-step size with given T P p0,8q and N P N, one has a commutative

1



diagram property

Xε,∆t
N

NÑ8
ÝÝÝÝÑ XεpT q

§

§

đ
εÑ0

§

§

đ
εÑ0

X0,∆t
N

NÑ8
ÝÝÝÝÑ X0pT q,

where
`

Xε,∆t
n ,mε,∆t

n

˘

0ďnďN
is the scheme for given values of ε and ∆t, and one needs to check that

‚ the scheme is consistent for any value of ε ą 0 when ∆tÑ 0,
‚ there exists a limiting scheme

`

X0,∆t
n

˘

0ďnďN
when εÑ 0 for any value of ∆t ą 0,

‚ the limiting scheme is consistent with the limiting equation when ∆tÑ 0.
As explained in [4], the last property may fail to hold for some crude methods, for instance using a standard
explicit Euler scheme for the discretization of the component Xε does not capture the Itô–Stratonovich
correction term.

In this article, we study numerical schemes which can be written as

(3)

$

’

’

&

’

’

%

Xε,∆t
n`1 “ Φp

∆tmε,∆t
n`1

ε
,Xε,∆t

n q

mε,∆t
n`1 “ mε,∆t

n ´
∆t

ε2
mε,∆t
n`1 `

∆βn
ε
,

where ∆βn “ βptn`1q ´ βptnq, tn “ n∆t. The mapping Φ is an integrator associated with the ordinary
differential equation

dxptq

dt
“ σpxptqq,

which is assumed to be at least of order 2, see Assumption 3 below for a precise statement.
Let us state the main result of this article, see Theorem 3.3 for a precise statement: one has strong error

estimates

(4) sup
εPp0,ε0q

`

ErdpXε,∆t
N , XεpT qqs

˘
1
p ď CppT q∆t

1
2

which are uniform with respect to the time-scale separation parameter, for all p P r1,8q and T P p0,8q. This
means that XεpT q can be approximated by Xε,∆t

N with a cost which is independent of ε. One also checks
(see Proposition 3.6) that the asymptotic preserving property is satisfied, where the convergence results in
the diagram above are all understood in the sense of convergence in LppΩq.

Note that the construction of the scheme (3) is inspired by the expression

Xεptq “ ϕpζεptq, Xεp0qq

for the solution of (1), where ζεptq “ ε´1
şt

0
mεpsqds, and ϕ is the flow map associated with the ordinary

differential equation above. One also has

X0ptq “ ϕpβptq, Xp0qq,

and the limiting scheme is given by
X0,∆t
n`1 “ Φp∆βn, X

0,∆t
n q.

All the expressions above require to consider real-valued Ornstein–Uhlenbeck process mε and Wiener process
β, and also that the evolution of mεptq is independent of the slow component Xεptq. Even if this situation
is restrictive, the analysis requires some non trivial techniques. The analysis of more general situations may
be investigated in future works.

Let us give the most crucial arguments of the proof of (4), omitting technicalities. In particular the
objective of this discussion is to illustrate why assuming that Φ is an integrator of order at least 2 for the
associated differential equation above is fundamental. That assumption can be written

(5) Φpt, xq ´ ϕpt, xq “ Op|t|3q
2



when |t| Ñ 0, see (13) from Assumption 3 for a more precise statement. For an order 1 method, one would
only have Op|t|2q in the right-hand side of (5). Using inequalities

∆βn “ Op∆t
1
2 q,

∆tmε
n`1

ε
“ Op∆t

1
2 q

one may already understand why (5) may be useful to obtain the strong error estimates (4) after summation
of local error terms of size Op∆t

3
2 q to obtain a global error term of size Op∆t

1
2 q. An additional ingredient of

the proof is Lemma 4.2, which gives upper bounds
ˇ

ˇΦpt1 ` t2, xq ´ Φpt1,Φpt2, xq
ˇ

ˇ “ Opt21|t2| ` t
2
2|t1|q

for the integrator (which does not satisfy a flow property, contrary to ϕ). Note also that the inequality

ε}mεptN q ´m
ε,∆t
N } “ Op∆t

1
2 q

is used, see Lemma 4.4 for a precise statement. The inequality above is combined with (5) in the proof of (4),
again local error terms of size Op∆t

3
2 q give a global error term of size Op∆t

1
2 q. More technical arguments

and auxiliary results are required and are omitted in this sketch of proof, see Section 6 for details.
Note that the recent preprint [3] is also concerned with the proof of uniform (strong) error estimates

for a class of multiscale SDE systems in a diffusion approximation regime. However, the structure of the
systems, the results and the techniques of proof are substantially different, which justifies to perform the
analysis in separate articles.

The analysis of numerical methods for multiscale stochastic differential equations is an active research
area. The recent articles [2] and [11] propose uniformly accurate methods for SDE systems which are differ-
ent from (1) considered in this article. The recent article [4] has introduced a notion of asymptotic preserving
schemes which applies to (1), and some uniform error estimates were proved for SDE systems in an averaging
regime. We also refer to the PhD thesis [17] for supplementary results and numerical experiments. In this
article, as already mentioned, we fill a gap in [4] and prove some uniform error estimates in the diffusion
approximation regime, for the scheme (3) applied to (1). The articles [6] and [13] illustrate why effective
numerical approximation of solutions of SDEs may be more subtle than for deterministic problems. Many
other techniques have been introduced to design effective methods for the numerical approximation of mul-
tiscale SDE systems, let us mention spectral methods [1], heterogeneous multiscale methods [5], projective
integration methods [7], equation-free methods [9], parareal methods [12], micro-macro acceleration meth-
ods [18] for instance. We refer to the monographs [8, 10, 14, 15] for general results on numerical methods
applied to stochastic differential equations.

This article is organized as follows. Section 2 provides the main notation and assumptions. Convergence
results, when the time scale separation parameter ε and the time-step size ∆t vanish are stated in Section 3.
The main result of this article (strong error estimates in terms of ∆t, uniformly with respect to ε, see
Theorem 3.3) is stated in Section 3.2. Auxiliary results are given in Section 4. Some of the results are
proved in Section 5. The proof of the main result is provided in Section 6. Numerical results are reported
in Section 7.

2. Setting

Let d P N be an integer. Denote by Td the d-dimensional torus Rd{Zd. If x1, x2 P Td, the distance
between x1 and x2 is denoted by dpx1, d2q.

The time-scale separation parameter is denoted by ε. Without loss of generality, it is assumed that
ε P p0, ε0q, where ε0 is an arbitrary positive parameter. The time-step size of the numerical schemes is
denoted by ∆t. It is assumed that ∆t “ T {N where T P p0,8q is an arbitrary positive real number, and
N P N is an integer. For all n P t0, . . . , Nu, let tn “ n∆t. Without loss of generality, it is assumed that
∆t P p0,∆t0q, where ∆t0 “ T {N0 is an arbitrary positive real number. Equivalently, it is assumed that
N ě N0.

Let
`

βptq
˘

tě0
be a real-valued standard Wiener process, defined on a probability space pΩ,F ,Pq which

satisfies the usual conditions. The expectation operator is denoted by Er¨s. In the proof of the error estimates,
it is convenient to use the following notation. For any real number p P r1,8q and any Td-valued random
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variables X1,X2, set

dppX1,X2q “
`

ErdpX1,X2q
ps
˘

1
p .

Similarly, for any real number p P r1,8q and any real-valued random variable Y, set

}Y}p “
`

Er|Y|ps
˘

1
p .

The values of constants C P p0,8q may change from line to line in the proofs below. However note that they
are always independent of the parameters ε and ∆t.

2.1. The multiscale SDE system. We consider the following class of multiscale stochastic differential
equations systems

(6)

$

’

&

’

%

dXεptq “
σpXεptqqmεptq

ε
dt

dmεptq “ ´
mεptq

ε2
dt`

1

ε
dβptq,

where Xεptq P Td and mεptq P R, for all t ě 0. The component mε is solution of a one-dimensional stochastic
differential equation, and is an Ornstein–Uhlenbeck process. It does not depend on the component Xε. The
mapping σ satisfies Assumption 1 below.

Assumption 1. Let σ : Td Ñ Rd be a mapping of class C3.

The initial values for the SDE system (6) are given by Xεp0q “ xε0 and mεp0q “ mε
0, such that Assump-

tion 2 below is satisfied.

Assumption 2. There exists x0
0 P Td such that

xε0 Ñ
εÑ0

x0
0.

Moreover, one has the following uniform upper bound:

sup
εPp0,ε0q

|mε
0| ă 8.

It is assumed that the initial values xε0 P Td and mε
0 P R are deterministic. The case of random initial

values, independent of the Wiener process
`

βptq
˘

tě0
, can be treated by a standard conditioning argument,

provided that suitable moment bounds are satisfied. This treatment is omitted in the sequel. Note that the
constants appearing in the estimates below may depend on the value of sup

εPp0,ε0q

|mε
0|, however this dependence

is not indicated explicitly.
It is straightforward to check that the SDE system (6) admits a unique global solution. Let us give an

expression of this solution which plays a crucial role in this article, for the construction and the analysis of
numerical schemes which are effective when ε varies and vanishes.

For all t ě 0, define

(7) ζεptq “
1

ε

ż t

0

mεpsqds,

where the Ornstein–Uhlenbeck process mε is given by

(8) mεptq “ e´
t
ε2 mε

0 `
1

ε

ż t

0

e´
t´s

ε2 dβpsq.

Let pt, xq P Rˆ Td ÞÑ ϕpt, xq be the flow map associated with ordinary differential equation (ODE)

(9)
dxptq

dt
“ σpxptqq,

meaning that for all t P R and x P Td one has

(10) Btϕpt, xq “ σpϕpt, xqq.
4



Since σ is Lipschitz continuous by Assumption 1, the mapping ϕ is well-defined. The evolution equation for
Xε can be interpreted as

dXεptq “ σpXεptqqdζεptq

using the definition (7) of ζε. Owing to the definition (10) of ϕ and to the chain rule, the unique global
solution of (6), which can be formulated as follows: for all t ě 0 one has

(11) Xεptq “ ϕpζεptq, xε0q.

It is worth noting that the expression (11) and the arguments above require the definition of the flow
map ϕ for all values t P R in the real line of the time variable. Finally, recall that the flow map ϕ satisfies
the following flow property: for all t1, t2 P R, one has

(12) ϕpt1 ` t2, ¨q “ ϕpt2, ϕpt1, ¨qq.

2.2. The numerical scheme. Let us now describe the class of proposed numerical schemes. The
objective is to approximate the slow component Xε solving the SDE (6), uniformly with respect to the time-
scale parameter ε P p0, ε0q. The approximation needs to be consistent for any fixed ε, and to avoid stringent
stability conditions depending on ε on the time-step size ∆t. The definition of the numerical scheme is
inspired by the expression (11) for Xεptq, and is based on a mapping Φ : RˆTd Ñ Td called the integrator,
associated with the ODE (9). Let us first state the main conditions required on the integrator.

Assumption 3. Let Φ : R ˆ Td Ñ Td be a mapping of class C3, such that there exists C P p0,8q such
that for all t P R and all x P Td, one has

(13) d
`

Φpt, xq, ϕpt, xq
˘

ď C|t|3eC|t|,

and for all t1, t2 P R and x1, x2 P Td, one has

(14) d
`

Φpt2, x2q,Φpt1, x1q
˘

ď C
`

|t2 ´ t1| ` dpx2, x1q
˘

eCp|t1|`|t2|q.

Finally, for all i, j P t0, 1, 2, 3u with i` j ď 3, one has for all t P R, the upper bound

(15) sup
xPRd

|BitB
j
xΦpt, xq| ď CeC|t|.

If the integrator Φ satisfies Assumption (3), the numerical scheme

(16) xn`1 “ Φp∆t, xnq

provides an approximation xN of the solution ϕptN , x0q of the ordinary differential equation (9), when the
time-step size ∆t ą 0 vanishes. On the one hand, the conditions (14) and (15) are technical requirements
for the analysis below. They are variants of properties satisfied by the flow map ϕ. On the other hand, the
condition (13) is fundamental: it means that the numerical scheme (16) is (at least) a second-order scheme
for the approximation of the solution of the ODE (9): for any initial value x0 P Td and all T P p0,8q, there
exists CpT, x0q P p0,8q such that

dpxN , ϕptN , x0qq ď CpT, x0q∆t
2,

where we recall that T “ N∆t. As will explained below, the second-order accuracy of the integrator Φ
related to the ODE (9) plays a crucial role in this article.

Let us give some examples of integrators which satisfy Assumption 3: introduce
‚ the second-order Taylor scheme: Φpt, xq “ x` tσpxq ` t2

2 σ
1pxqσpxq,

‚ the explicit midpoint scheme: Φpt, xq “ x` tσpx` t
2σpxqq,

‚ Heun’s method: Φpt, xq “ x` t
2

`

σpxq ` σpx` tσpxqq
˘

,
for all t P R and x P Td. For the three examples above, the exponential growth with respect to t1, t2 in the
right-hand side of (14) and with respect to t in the right-hand side of (15) can be replaced by a polynomial
growth. Obviously, Φpt, xq “ ϕpt, xq is also a possible choice, if the flow map ϕ is known.

However, note that standard explicit Euler integrator, given by ΦEpt, xq “ x`tσpxq, does not satisfy As-
sumption 3. Indeed it is in general a first-order integrator (except if σ is constant), and does not satisfy (13):
instead one only has

d
`

ΦEpt, xq, ϕpt, xq
˘

ď C|t|2eC|t|

5



for all t P R and x P Td.
One may also use splitting schemes to define integrators. Assume that σ “ σ1 ` σ2 and let ϕ1 and

ϕ2 be the flow maps associated with the ODEs dx1ptq
dt “ σ1pxptqq and

dx2ptq
dt “ σ2pxptqq respectively. The

Strang splitting integrator Φpt, ¨q “ ϕ2p
t
2 , ¨q ˝ ϕ1pt, ¨q ˝ ϕ2p

t
2 , ¨q also satisfies Assumption 3. However, in

general the Lie–Trotter splitting integrator ΦLTpt, ¨q “ ϕ2pt, ¨q ˝ϕ1pt, ¨q is only of order 1 and does not satisfy
Assumption 3, like the standard explicit Euler integrator.

We are now in position to introduce the scheme studied in this article, for the approximation of the
solution of the SDE (6):

(17)

$

’

’

&

’

’

%

Xε,∆t
n`1 “ Φp

∆tmε,∆t
n`1

ε
,Xε,∆t

n q

mε,∆t
n`1 “ mε,∆t

n ´
∆t

ε2
mε,∆t
n`1 `

∆βn
ε

where ∆βn “ βptn`1q ´ βptnq, with tn “ n∆t. The initial values are given by Xε,∆t
0 “ xε0 “ Xεp0q and

mε,∆t
0 “ mε

0 “ mεp0q, thus they do not depend on the time-step size ∆t.
The construction of the scheme (6) is motivated by the identity

Xεptn`1q “ ϕ
`

Xεptnq, ζ
εptn`1q ´ ζ

εptnq
˘

“ ϕ
`

Xεptnq,
1

ε

ż tn`1

tn

mεpsqds
˘

which is satisfied by the solution of the SDE (6), for all n P t0, . . . , N ´ 1u. The first equality follows from
the expression (11) and the flow property (12), whereas the second equality follows from the definition (7) of
the process ζε. The construction of the scheme (17) is a straightforward combination of two approximations.
On the one hand, the flow map ϕ is replaced by the integrator Φ. On the other hand, the component mε

is discretized using an implicit Euler scheme, and the integral
ştn`1

tn
mεpsqds is approximated by a simple

quadrature rule (which is adapted to the choice of the implicit Euler scheme). Even if the discretization of
the component mε is implicit, in practice it is explicit using the expression

mε
n`1 “

1

1` ∆t
ε2

`

mε
n `

∆βn
ε

˘

.

The scheme (17) is a generalization of the scheme given in [4, Corollary 3.15], which corresponds to
choosing Heun’s integrator for the mapping Φ.

3. Convergence results

In Section 3.1, we state results concerning the behavior ofXεptq andXε,∆t
n when the time scale separation

parameter ε vanishes: we exhibit a limiting stochastic differential equation and a limiting numerical scheme
respectively. Then, in Section 3.2, we state the main result of this article, giving strong error estimates, in
terms of the time-step size ∆t, uniformly with respect to the time scale separation parameter ε. Finally,
in Sections 3.3 and 3.4, we give consequences of the main result, and show that the numerical scheme (17)
is asymptotic preserving. The proofs of the results in Section 3.1 are postponed to Section 5, since they
exploit some of the auxiliary results from Section 4. The proof of the main result, Theorem 3.3, stated in
Section 3.2, is postponed to Section 6.

3.1. Asymptotic behavior when the time scale separation vanishes. In this section, we study
the behavior of theXεptq andXε

n when the time scale separation parameter ε vanishes and describe associated
evolution equations for the limits.

Let us first focus on the behavior of Xεptq. Introduce the stochastic differential equation

(18) dX0ptq “ σpX0ptqq ˝ dβptq

with initial value X0p0q “ x0
0 P Td (given in Assumption 2). The noise is interpreted in the Stratonovich

sense, and the SDE can be written in Itô form

dXptq “
1

2
σ1pXptqqσpXptqqdt` σpXptqqdβptq.

6



The solution of the SDE (18) is expressed as follows, using the flow map ϕ introduced in Section 2.1: for all
t ě 0, one has

(19) Xptq “ ϕpβptq, x0
0q.

The identity (19) is a straightforward consequence of the chain rule associated with the Stratonovich con-
vention and of the definition of ϕ as the flow map associated with the ODE (9). One has the following
result.

Proposition 3.1. Let Assumptions 1 and 2 be satisfied. For all T P p0,8q and p P r1,8q, there exists
CppT q P p0,8q such that

sup
0ďtďT

dppX
εptq, Xptqq ď CppT q

`

ε` dpxε0, x
0
0q
˘

Ñ
εÑ0

0.

Let us now focus on the behavior of Xε,∆t
n . Introduce the scheme defined by

(20) X0,∆t
n`1 “ Φp∆βn, X

0,∆t
n q,

for all n P t0, . . . , N ´ 1u, with initial value X0,∆t
0 “ x0

0 “ X0p0q, where we recall that one has ∆βn “
βptn`1q ´ βptnq. One has the following result.

Proposition 3.2. Let Assumptions 1, 2 and 3 be satisfied. For all p P r1,8q, all ∆t “ T {N P p0,∆t0q
and all n P t0, . . . , Nu, one has

(21) dppX
ε,∆t
n , X0,∆t

n q Ñ
εÑ0

0.

We refer to Section 5 for the proofs of Propositions 3.1 and 3.2. Note that the condition (13) from
Assumption 3 is not used to prove Proposition 3.2. When choosing different examples for the integrator Φ,
one recovers standard numerical schemes from the limiting scheme (20) for the approximation of the limiting
stochastic differential equation (18), see for instance [10, Part V].

3.2. Uniform strong error estimates for the scheme (17). We are now in position to state the
main result of this article.

Theorem 3.3. Let Assumptions 1, 2 and 3 be satisfied. For all T P p0,8q and p P r1,8q, there exists
CppT q P p0,8q such that for all ∆t P p0,∆t0q, one has

(22) sup
εPp0,ε0q

dp
`

Xε,∆t
N , XεpT q

˘

ď CppT q∆t
1
2 .

Before proceeding with the description of some consequences and the proof of Theorem 3.3, let us em-
phasize that the condition (13) from Assumption 3 is required for Theorem 3.3 to hold. Indeed, Theorem 3.3
does not hold when the integrator Φ is the standard explicit Euler integrator (if σ is not constant). Recall
that

ΦEpt, xq “ x` tσpxq

for all t P R and x P Td. Using Φ “ ΦE in the definitions of the schemes (17) and (20) gives the limiting
scheme

X0,∆t,E
n`1 “ X0,∆t,E

n `∆βnσpX
0,∆t,E
n q

with initial value X0,∆t,E
0 “ x0

0. This is the standard Euler–Maruyama scheme applied to the stochastic
differential equation

dX0,Eptq “ σpX0,Eptqqdβptq

with initial value X0,Ep0q “ x0
0, where the noise is interpreted in the Itô sense. It is a well-known result

that the standard Euler–Maruyama scheme applied in this setting is a method of strong order 1{2: for all
p P r1,8q, there exists CppT q P p0,8q such that for all ∆t P p0,∆t0q one has

dp
`

X0,∆t,E
N , X0,EpT q

˘

ď CppT q∆t
1
2

In general, since σ is not constant, one has X0,EpT q ‰ X0pT q, therefore

sup
εPp0,ε0q

dp
`

Xε,∆t,E
N , XεpT q

˘

7



does not converge to 0 when ∆tÑ 0. If the condition (13) from Assumption 3 is not satisfied, one can only
obtain strong error estimates

dp
`

Xε,∆t,E
N , XεpT q

˘

ď Cppε, T q∆t
1
2

which are not uniform with respect to ε: one has sup
εPp0,ε0q

Cppε, T q “ 8.

The arguments above illustrate why the uniform strong error estimates (22) from Theorem 3.3 are non
trivial results. The proof given in Section 6 illustrates the role of the condition (13) from Assumption 3. We
refer to Section 7 for numerical experiments which illustrate Theorem 3.3 and the discussion above.

3.3. Strong error estimates for the limiting scheme (20). As a corollary of Theorem 3.3, letting
εÑ 0 in the uniform strong error estimate (22), one checks that the limiting scheme (20) is an integrator of
order at least 1{2 for the limiting SDE (18).

Corollary 3.4. Let Assumptions 1 and 3 be satisfied. For all T P p0,8q and p P r1,8q, there exists
CppT q P p0,8q such that for all ∆t P p0,∆t0q, one has

(23) dp
`

X0,∆t
N , X0pT q

˘

ď CppT q∆t
1
2 .

The proof of Corollary 3.4 is a straightforward consequence of Propositions 3.1 and 3.2 and of Theo-
rem 3.3, the details are omitted.

Note that Corollary 3.4 is not a new result and can be proved directly by applying the fundamental
theorem for mean-square convergence when p “ 2, see for instance [14, Theorem 1.1]. The details are
omitted. Under additional regularity conditions on the mapping σ and on the integrator Φ, it is possible to
improve the result and obtain strong order of convergence 1 in the mean-square sense.

Proposition 3.5. Assume that for all x P Td the mappings ϕp¨, xq and Φp¨, xq are of class C4, and that
there exists C P p0,8q such that for all t P R one has

sup
xPTd

|B3
tϕpt, xq| ` sup

xPTd
|B4
tϕpt, xq| ` sup

xPTd
|B3
tΦpt, xq| ` sup

xPTd
|B4
tΦpt, xq| ď eC|t|.

For all T P p0,8q, there exists C2pT q P p0,8q such that for all ∆t P p0,∆t0q, one has the mean-square error
estimate

(24) sup
0ďnďN

d2

`

X∆t
n , Xpn∆tq

˘

ď C2pT q∆t

for the limiting scheme (20) applied to the limiting SDE (18).

Proof. In order to apply the fundamental theorem for mean-square convergence, see [14, Theorem 1.1],
it suffices to check that there exists C P p0,8q such that for all x P Td and all ∆t P p0,∆t0q, one has

d2

`

ϕp
?

∆tγ, xq,Φp
?

∆tγ, xq
˘

ď C∆t
3
2

d
`

Erϕp
?

∆tγ, xqs,ErΦp
?

∆tγ, xqs
˘

ď C∆t2,

where γ „ N p0, 1q is a standard real-valued Gaussian random variable.
The first claim is a straightforward consequence of the inequality (13) from Assumption 3, using the fact

that Er|γ|3eq|γ|s ă 8 for any positive real number q P r0,8q.
The second claim follows from a Taylor-expansion argument (which requires the additional regularity

conditions stated in Proposition 3.5), using the identity Erγ3s “ 0 and the fact that Er|γ|4eq|γ|s ă 8 for any
positive real number q P r0,8q. �

Proposition 3.5 suggest that the order 1{2 obtained in Theorem 3.3 may not be optimal, under appropri-
ate regularity conditions. Whether one can replace order 1{2 by order 1 in the uniform strong error estimates
of Theorem 3.3 is a question left open for future work.
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3.4. Asymptotic preserving property. As a consequence of Theorem 3.3, one also obtains that the
numerical scheme (6) is asymptotic preserving.

Proposition 3.6. For all p P r1,8q and T P p0,8q, one has

(25) lim
εÑ0

lim
∆tÑ0

dppX
ε,∆t
N , XεpT qq “ lim

∆tÑ0
lim
εÑ0

dppX
ε,∆t
N , XεpT qq “ 0.

Note that the result differs from the ones considered in the recent article [4], where the asymptotic
preserving property is understood in the sense of convergence in distribution. As already explained in [4]
and using the arguments given above in Section 3.2, Proposition 3.6 does not hold when the mapping Φ is
the standard explicit Euler integrator, again the role of the condition 13 from Assumption 3 is required to
have Proposition 3.6. Note that in [4] only the Heun integrator was considered.

Proof. On the one hand, Theorem 3.3 implies

lim
εÑ0

lim
∆tÑ0

dppX
ε,∆t
N , XεpT qq “ lim

εÑ0
0 “ 0.

On the other hand, applying Proposition 3.1 and Proposition 3.2 in the first step, and Corollary 3.4 in the
second step, one obtains

lim
∆tÑ0

lim
εÑ0

dppX
ε,∆t
N , XεpT qq “ lim

∆tÑ0
dppX

0,∆t
N , X0pT qq “ 0.

The proof of Proposition 3.6 is thus completed. �

4. Auxiliary results

The objective of this section is to state and prove some auxiliary results which are used to prove Theo-
rem 3.3 in Section 6. Let us emphasize that the most important results are Lemma 4.2, which is a consequence
of the condition (13) from Assumption 3, and Lemma 4.4. The other auxiliary results are also needed but
play less important roles in the analysis.

4.1. Properties of the flow map and of the integrator. Lemma 4.1 below is a standard result in
the analysis of ordinary differential equations. Its proof is given for completeness. It is worth comparing the
result of Lemma 4.1 for the flow map ϕ with the conditions imposed in Assumption 3 for the integrator Φ.

Lemma 4.1. There exists C P p0,8q such that for all x1, x2 P Td and t1, t2 P R, one has

d
`

ϕpt1, x1q, ϕpt2, x2q
˘

ď C
`

|t2 ´ t1| ` e
Cp|t1|`|t2|q|x2 ´ x1|

˘

.

Proof of Lemma 4.1. First, owing to (10), if x P Td and t1, t2 P R, one has the equality

ϕpt2, xq ´ ϕpt1, xq “

ż t2

t1

σpϕpt, xqqdt

and since σ is bounded by Assumption 1, one obtains the inequality

d
`

ϕpt1, xq, ϕpt2, xq
˘

ď C|t2 ´ t1|.

Second, if x1, x2 P Td, then for all t ě 0 let ηpt;x1, x2q “ d
`

ϕpt, x1q, ϕpt, x2q
˘

. One has

ηpt;x1, x2q ď

ż t

0

sup
xPTd

}σ1pxq}ηps;x1, x2qds ď C

ż t

0

ηps;x1, x2qds,

since σ is of class C1 with bounded derivative by Assumption 1. Using the identity ηp0;x1, x2q “ dpx1, x2q,
and applying Gronwall’s lemma, one obtains for all t ě 0 the inequality

d
`

ϕpt, x1q, ϕpt, x2q
˘

“ ηpt;x1, x2q ď eCtdpx1, x2q.

Similarly, when t ď 0, one obtains

d
`

ϕpt, x1q, ϕpt, x2q
˘

ď eC|t|dpx1, x2q.

Combining the upper bounds and using the triangle inequality then concludes the proof of Lemma 4.1.
�
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Before stating the next auxiliary result, observe that the following identities hold, as a consequence of
the condition (13) from Assumption 3: for all x P Rd,

(26)

BtΦpt “ 0, xq “ Btϕpt “ 0, xq “ σpxq

B2
tΦpt “ 0, xq “ B2

tϕpt “ 0, xq “ σ1pxqσpxq

BtBxΦpt “ 0, xq “ BtBxϕpt “ 0, xq “ σ1pxq.

The first and the third equalities in (26) only require the integrator to be of order at least 1, however the
assumption (13) that the order is at least 2 is required to obtain the second equality, which plays a crucial
role in the proof of Lemma 4.2 below.

Let us define the auxiliary function δΦ as follows: for all t1, t2 P R and x P Td, set

(27) δΦpt1, t2, xq “ Φpt1 ` t2, xq ´ Φpt1,Φpt2, xqq.

In general, δΦpt1, t2, xq ‰ 0 since the integrator does not satisfy a flow property similar to (12) for the
flow map – which can be written as the property δϕpt1, t2, xq :“ ϕpt1 ` t2, xq ´ ϕpt1,Φpt2, xqq “ 0 for all
t1, t2 P R and x P Td. Lemma 4.2 below gives an upper bound for δΦpt1, t2, xq which is crucial for the proof
of Theorem 3.3.

Lemma 4.2. There exists C P p0,8q such that for all t1, t2 P R and x P Td, one has

(28) d
`

Φpt1 ` t2, xq,Φpt1,Φpt2, xq
˘

ď C
`

|t1|t
2
2 ` t

2
1|t2|

˘

eCp|t1|`|t2|q.

Proof of Lemma 4.2. Owing to the regularity conditions on Φ from Lemma 3, the mapping δΦ :
R2 ˆ Td Ñ Rd is of class C3, and for all t1, t2 P R and x P Td, one has

Bt1Bt2δΦpt1, t2, xq “ Bt1Bt2
`

Φpt1 ` t2, xq ´ Φpt1,Φpt2, xqq
˘

“ Bt1

`

BtΦpt1 ` t2, xq ´ BxΦpt1,Φpt2, xqqBtΦpt2, xq
˘

“ B2
tΦpt1 ` t2, xq ´ BtBxΦpt1,Φpt2, xqqBtΦpt2, xq.

As a consequence of the three identities (26), for all x P Td, one has

Bt1Bt2δΦpt1 “ 0, t2 “ 0, xq “ 0.

In addition, as a consequence of the condition (15) (Assumption 3), one has upper bounds

sup
xPTd

|B2
t1Bt2δΦpt1, t2, xq| ` sup

xPTd
|Bt1B

2
t2ept1, t2;xq| ď CeC|t1|`C|t2|.

for all t1, t2 P R. Therefore one obtains the inequality

sup
xPTd

|Bt1Bt2δΦpt1, t2, xq| ď CeC|t1|`C|t2|p|t1| ` |t2|q

for all t1, t2 P R.
Note also that, for all x P Td, one has

δΦp0, t2, xq “ Bt2δΦp0, t2, xq “ 0

for all t2 P R and
δΦpt1, 0, xq “ 0

for all t1 P R.
First, integrating with respect to the t1 variable gives for all t1, t2 P R

|Bt2δΦpt1, t2, xq| ď

ż |t1|

0

|Bt1Bt2δΦpt, t2, xq|dt ď CeC|t1|`C|t2|p|t1| ` |t2|q|t1|.

Second, integrating with respect to the t2 variable gives for all t1, t2 P R

|δΦpt1, t2, xq| ď

ż |t2|

0

|Bt2δΦpt1, t, xq|dt ď CeC|t1|`C|t2|p|t1| ` |t2|q|t1||t2|.

Using the identity p|t1| ` |t2|q|t1||t2| “
`

|t1|t
2
2 ` t

2
1|t2|

˘

then concludes the proof of Lemma 4.2. �
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Remark 4.3. For the standard explicit Euler scheme, such that ΦEpt, xq “ x` tσpxq, one has

δΦEpt1, t2, xq “ x` pt1 ` t2qσpxq ´
`

ΦEpt2, xq ` t1σpΦ
Ept2, xqq

˘

“ t1
`

σpxq ´ σpx` t2σpxqq
˘

and one only obtains the inequality

d
`

ΦEpt1 ` t2, xq,Φ
Ept1,Φ

Ept2, xq
˘

ď C|t1||t2|.

The comparison of this inequality with (28) illustrates why using a second-order integrator (satisfying (13)
from Assumption 3) is crucial in the proof of uniform strong error estimates.

4.2. Stong error estimate for the approximation of the Ornstein–Uhlenbeck component.
Let us provide a useful strong error estimate for the approximation of mεptnq by mε,∆t

n .

Lemma 4.4. For all p P r1,8q, there exists Cp P p0,8q such that for all ε P p0, ε0q, all ∆t P p0,∆t0q and
all n P N, one has

(29) }mε,∆t
n ´mεptnq}p ď Cp

`

?
∆t

ε
`

1

n

˘

.

Note that the error estimate (29) is not uniform with respect to ε. In addition, an additional error term
1{n appears, which is not small if n “ 1 for instance. In the proof of Theorem 3.3 in Section 6, Lemma 4.4
is used to obtain upper bounds for ε}mε,∆t

n ´mεptnq}p, which are uniform with respect to ε. The error terms
1{n and 1{n2 are summed for n “ 1, . . . , N and using

N
ÿ

n“1

1

n
ď CpT q| logp∆tq| ,

N
ÿ

n“1

1

n2
ď C

with T “ N∆t is sufficient to obtain the required strong error estimates.
Lemma 4.4 has been stated and proved in the PhD thesis [17]. However, due to its importance for the

proof of Theorem 3.3, a detailed proof is given below.

Proof of Lemma 4.4. It suffices to consider the case p “ 2, since the random variable mε,∆t
n ´mεptnq

is Gaussian.
Using the identities

mεptnq “ e´
tn
ε2 mε

0 `
1

ε

ż tn

0

e´
tn´s

ε2 dβpsq “ e´
t
ε2 mε

0 `
1

ε

n´1
ÿ

`“0

ż t``1

t`

e´
tn´s

ε2 dβpsq

mε,∆t
n “

1

p1` ∆t
ε2 q

n
mε

0 `
1

ε

n´1
ÿ

`“0

1

p1` ∆t
ε2 q

n´`

`

βptn`1q ´ βptnq
˘

,

and Itô’s isometry formula, one obtains

Er|mε,∆t
n ´mεptnq|

2s ď 3
´ 1

p1` ∆t
ε2 q

n
´ e´

n∆t
ε2

¯2

|mε
0|

2

`
3∆t

ε2

n´1
ÿ

`“0

´ 1

p1` ∆t
ε2 q

n´`
´ e´

pn´`q∆t

ε2

¯2

`
3

ε2

n´1
ÿ

`“0

ż t``1

t`

´

e´
tn´t`
ε2 ´ e´

tn´s

ε2

¯2

ds.

Note that one has the inequality

sup
nPN

sup
zPp0,8q

n
ˇ

ˇ

1

p1` zqn
´ e´nz

ˇ

ˇ ă 8.

Indeed, for all n P N the maximum of the function

z P r0,8q ÞÑ
1

p1` zqn
´ e´nz P r0,8q
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is attained for a real number z “ zn satisfying e´nzn “ 1
p1`znqn`1 : as a consequence

sup
zPp0,8q

` 1

p1` zqn
´ e´nz

˘

“
1

p1` znqn
´ e´nzn “

zn
p1` znqn`1

ď
zn

pn` 1qzn
ď

1

n` 1
.

As a consequence of the inequality above, one obtains upper bounds for the first and the second error terms
above:

´ 1

p1` ∆t
ε2 q

n
´ e´

n∆t
ε2

¯2

|mε
0|

2 ď
C

n2
,

using Assumption 2, and

∆t

ε2

n´1
ÿ

`“0

´ 1

p1` ∆t
ε2 q

n´`
´ e´

pn´`q∆t

ε2

¯2

ď C
∆t

ε2

n´1
ÿ

`“0

1

pn´ `q2
ď C

∆t

ε2
.

The third error term is treated as follows: using the inequality

sup
zPp0,8q

pe´z ´ 1q2

z
ă 8,

one obtains

1

ε2

n´1
ÿ

`“0

ż t``1

t`

´

e´
tn´t`
ε2 ´ e´

tn´s

ε2

¯2

ds “
1

ε2

n´1
ÿ

`“0

ż t``1

t`

´

e´
s´t`
ε2 ´ 1

¯2

e´
tn´s

ε2 ds

ď
C

ε2
∆t

ε2

ż tn

0

e´
tn´s

ε2 ds

ď
C∆t

ε2
.

Gathering the estimates then concludes the proof of Lemma 4.4. �

4.3. Properties of the Ornstein–Uhlenbeck component. This section is devoted to the proof of
Lemma 4.5 below, which states a series of results concerning mεptq and ζεptq, see (8) and (7) respectively.

Lemma 4.5.
‚ One has moment bounds for mεptq, uniformly with respect to ε P p0, ε0q and t ě 0: for all p P r1,8q,

one has

(30) sup
εPp0,ε0q

sup
tě0

}mεptq}p ă 8.

In addition, one has exponential moment bounds for mεptq, uniformly with respect to ε P p0, ε0q and t ě 0:
for all q P p0,8q, one has

(31) sup
εPp0,ε0q

sup
tě0

Ereq|m
ε
ptq|s ă 8.

‚ For all t ě 0, ζεptq converges to βptq when εÑ 0, in the following sense: for all p P r1,8q, there exists
Cp P p0,8q such that for all ε P p0, ε0q one has

(32) sup
tě0

}ζεptq ´ βptq}p ď Cpε.

‚ One has exponential moment bounds for ζεptq and βptq, uniformly with respect to ε P p0, ε0q and to
t P r0, T s: for all T P p0,8q and all q P p0,8q, one has

(33) sup
εPp0,ε0q

sup
0ďtďT

Ereq|ζ
ε
pT q|s ` sup

0ďtďT
Ereq|βpT q|s ă 8.

‚ One has bounds on the increments of ζε, uniformly with respect to ε P p0, ε0q: for all p P r1,8q, there
exists Cp P p0,8q such that for all t1, t2 ě 0 one has

(34) sup
εPp0,ε0q

Er|ζεpt2q ´ ζεpt1q|2ps ď Cp|t2 ´ t1|
p.

12



Proof of Lemma 4.5. ‚ Proof of the inequalities (30) and (31).
Since mεptq is a Gaussian random variable, it suffices to consider the case p “ 2. For all ε P p0, ε0q and

t ě 0, one has

mεptq “ e´
t
ε2 mε

0 `
1

ε

ż t

0

e´
t´s

ε2 dβpsq,

and applying Itô’s isometry formula yields

Er|mεptq|2s “ e´2 t
ε2 |mε

0|
2 `

1

ε2

ż t

0

e´2 t´s
ε2 ds ď sup

εPp0,ε0q

|mε
0|

2 `
1

2
.

Using Assumption 2 then yields (30).
The exponential moment bounds (31) are then a straightforward consequence of the uniform boundedness

with respect to ε P p0, ε0q and t ě 0 of the mean and of the variance of the Gaussian random variable mεptq.
‚ Proof of the inequality (32).
Observe that for all t ě 0 and ε P p0, ε0q, one has

mεptq ´mεp0q “ ´
1

ε2

ż t

0

mεpsqds`
1

ε
βptq,

therefore one has the identity

ζεptq “
1

ε

ż t

0

mεpsqds “ βptq ` εpmε
0 ´m

εptqq.

Using the inequality (30), one then obtains the error estimate

Er|ζεptq ´ βptq|2s ď 2ε2 sup
εPp0,ε0q

sup
tě0

Er|mεptq|2s ď Cε2.

The constant C P p0,8q does not depend on ε P p0, ε0 or t ě 0. This gives (32) with p “ 2. Since ζεpT q´βpT q
is a Gaussian random variable, this also yields (32) for arbitrary p P r1,8q.

‚ Proof of the inequality (33).
First, βptq is a centered Gaussian random variable with variance Er|βptq|2s “ t ď T . As a consequence,

one has
sup

0ďtďT
Ere

1
4T |βptq|

2

s ă 8.

Let q P p0,8q. Using Young’s inequality, one has 4q|βptq| ď 1
4T |βptq|

2 ` 16Tq2, therefore one obtains the
exponential moment bounds

sup
0ďtďT

Ereq|βpT q|s ă 8.

Second, note that

Ereq|ζ
ε
ptq|s ď Ereq|βptq|`q|ζ

ε
ptq´βpT q|s ď

`

Ere2q|βptq|s
˘

1
2
`

Ere2q|ζεptq´βptq|s
˘

1
2 ,

using the Cauchy–Schwarz inequality. It suffices to deal with the second factor in the right-hand side above,
the first factor being upper bounded using the estimate proved above. Owing to the inequality (32), the
Gaussian random variable ζεptq´βptq has a mean and a variance which are bounded uniformly with respect
to ε P p0, ε0q and t P r0,8q. As a consequence, there exists c P p0,8q such that

sup
εPp0,ε0q

sup
tě0

Erec|ζ
ε
ptq´βptq|2s ă 8.

Using Young’s inequality gives

2q|ζεptq ´ βptq| ď c|ζεptq ´ βptq|2 `
q2

c
,

and the conclusion of the proof of the inequality (33) is then straightforward.
‚ Proof of the inequality (34).
Since the random variable

ζεpt2q ´ ζ
εpt1q “

1

ε

ż t2

t1

mεpsqds

is Gaussian, it suffices to consider the case p “ 1.
13



Without loss of generality, assume that t1 ď t2.
First, note that the mean of ζεpt2q ´ ζεpt1q satisfies
ˇ

ˇErζεpt2q ´ ζεpt1qs
ˇ

ˇ “
1

ε

ˇ

ˇ

ż t2

t1

Ermεpsqsds
ˇ

ˇ “
1

ε

ż t2

t1

e´
s
ε2 ds|mε

0| ď ε
`

e´
t1
ε2 ´ e´

t2
ε2
˘

|mε
0| ď Cpt2 ´ t1q

1
2 ,

where C does not depend on ε, using the inequality

sup
z1,z2ě0

|e´z2 ´ e´z1 |

|z2 ´ z1|
1
2

ă 8

and Assumption 2.
Second, the variance of ζεpt2q ´ ζεpt1q satisfies

Er
ˇ

ˇζεpt2q ´ ζ
εpt1q ´ Erζεpt2q ´ ζεpt1qs

ˇ

ˇ

2
s “

1

ε2
Er
ˇ

ˇ

ż t2

t1

`

mεpsq ´ Ermεpsqs
˘

ds
ˇ

ˇ

2

“
1

ε2

ż t2

t1

ż t2

t1

E
”1

ε

ż s1

0

e´
ps1´sq

ε2 dβpsq
1

ε

ż s2

0

e´
ps2´sq

ε2 dβpsq
ı

ds1ds2

“
2

ε2

ż t2

t1

ż t2

s1

1

ε2

ż s1

0

e´
s2´s1
ε2 e´2

ps1´sq

ε2 dsds2ds1

ď
1

ε2

ż t2

t1

ż t2

s1

e´
s2´s1
ε2 p1´ e´

2s1
ε2 qds2ds1

ď t2 ´ t1.

Combining the estimates concludes the proof of the inequality (34). �

4.4. Properties of the discretized Ornstein–Uhlenbeck component. This section is devoted to
the proof of Lemma 4.6 below, which is a variant of Lemma 4.5 from Section 4.3 above, which states a series
of results concerning mε,∆t

n .

Lemma 4.6.
‚ One has moment bounds for mε,∆t

n , uniformly with respect to ∆t P p0,∆t0q, ε P p0, ε0q and n P N: for
all p P r1,8q, one has

(35) sup
εPp0,ε0q

sup
∆tPp0,∆t0q

sup
nPN

}mε,∆t
n }p ă 8.

In addition, one has exponential moment bounds for mε,∆t
n , uniformly with respect to ∆t P p0,∆t0,

ε P p0, ε0q and n P N: for all q P p0,8q, one has

(36) sup
εPp0,ε0q

sup
∆tPp0,∆t0q

sup
nPN

Ereq|m
ε,∆t
n |s ă 8.

‚ For all n ě 0,
∆tmε,∆tn`1

ε converges to ∆βn “ βptn`1q´ βptnq when εÑ 0, in the following sense: for all
p P r1,8q, there exists Cp P p0,8q such that for all ε P p0, ε0q one has

(37) sup
∆tPp0,∆t0q

sup
ně0

}
∆tmε,∆t

n`1

ε
´∆βn}p ď Cpε.

‚ One has exponential moment bounds for
∆tmε,∆tn`1

ε , uniformly with respect to ∆t P p0,∆t0q, ε P p0, ε0q
and to n ě 0: for all T P p0,8q and all q P p0,8q, one has

(38) sup
εPp0,ε0q

sup
∆tPp0,∆t0q

sup
ně0

Ereq|
∆tm

ε,∆t
n`1
ε |s ă 8.

‚ One has an error estimate for
∆tmε,∆tn`1

ε , uniformly with respect to ε P p0, ε0q: for all p P r1,8q, there
exists Cp P p0,8q such that one has

(39) sup
εPp0,∆t0q

sup
∆tPp0,∆t0q

sup
ně0

1

∆tp
Er|

∆tmε,∆t
n`1

ε
|2ps ă 8.
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Proof of Lemma 4.6. ‚ Proof of the inequalities (35) and (36).
Since mε,∆t

n is a Gaussian random variable, it suffices to consider the case p “ 2. For all ε P p0, ε0q,
∆t P p0,∆t0q and n ě 0, one has

mε,∆t
n “

1

p1` ∆t
ε2 q

n
mε

0 `
1

ε

n´1
ÿ

`

1

p1` ∆t
ε2 q

n´`
∆β`.

Since the Gaussian random variables
`

∆β`
˘

`ě0
are centered and independent, with variance ∆t, one obtains

Er|mε,∆t
n |2s “

1

p1` ∆t
ε2 q

2n
|mε

0|
2 `

∆t

ε2

n´1
ÿ

`“0

1

p1` ∆t
ε2 q

2pn´`q
ď |mε

0|
2 `

1

2` ∆t
ε2

ď sup
εPp0,ε0q

|mε
0|

2 `
1

2
.

Using Assumption 2 then yields (35).
The exponential moment bounds (36) are then a straightforward consequence of the uniform boundedness

with respect to ε P p0, ε0q and t ě 0 of the mean and of the variance of the Gaussian random variable mε,∆t
n .

‚ Proof of the inequality (37).

Since ∆tmε,∆tn`1

ε ´
?

∆tγn is a Gaussian random variable, it suffices to consider the case p “ 2. By the
definition of the scheme, one has the equality

∆tmε,∆t
n`1

ε
“ ∆βn ` εpm

ε,∆t
n ´mε,∆t

n`1q.

Using the inequality (35), one then obtains (37).
‚ Proof of the inequality (38).

As a consequence of the inequality (37), the mean and variance of the Gaussian random variable ∆tmε,∆tn`1

ε
are bounded uniformly with respect to ε P p0, ε0q, ∆t P p0,∆t0q and n ě 0, there exists c P p0,8q such that

sup
εPp0,ε0q

sup
∆tPp0,∆t0q

sup
nPě0

Erec|
∆tm

ε,∆t
n`1
ε |

2

s ă 8.

Using Young’s inequality then concludes the proof of the inequality (38). The details are similar to those
used in the proof of Lemma 4.5 and are omitted.

‚ Proof of the inequality (39).

Since ∆tmε,∆tn`1

ε is a Gaussian random variable, it suffices to consider the case p “ 1.
Using the identity

mε,∆t
n “

1

p1` ∆t
ε2 q

n
mε

0 ` ε

n´1
ÿ

`“0

1

p1` ∆t
ε2 q

n´`
∆β`,

and the equality

∆t

ε2

n´1
ÿ

`“0

1

p1` ∆t
ε2 q

2pn´`q
“

1

2` ∆t
ε2

,

one obtains

Er|
∆tmε,∆t

n`1

ε
|2s ď ∆t

∆t
ε2

p1` ∆t
ε q

2pn`1q
|mε

0|
2 `∆t

∆t
ε2

2` ∆t
ε2

ď ∆t|mε
0|

2 `∆t.

Using Assumption 2, this concludes the proof of the inequality (39). �

5. Proofs of the results from Section 3.1

This short section is devoted to giving detailed proofs of Proposition 3.1 and 3.2, concerning the asymp-
totic behavior of Xεptq and Xε,∆t

n when εÑ 0 respectively. The proofs are straightforward consequences of
the auxiliary results studied in Section 4.
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5.1. Proof of Proposition 3.1.

Proof of Proposition 3.1. Let T P p0,8q and p P r1,8q. For all t P r0, T s, the random variables
Xεptq and Xptq are expressed in terms of the flow map ϕ and of the Gaussian random variables ζεptq and
βptq using (11) and (19) respectively. Applying Lemma 4.1, one obtains

dppX
εptq, Xptqq “ dp

`

ϕpζεptq, xε0q, ϕpβptq, x0q
˘

ď }ζεptq ´ βptq}p ` }e
C|ζεptq|`C|βptq|}pdpx

ε
0, x

0
0q.

Using the inequality (32) and the exponential moment bounds (33) from Lemma 4.5 yields the inequality

sup
0ďtďT

dppX
εptq, Xptqq ď CppT q

`

ε` dpxε0, x
0
0q
˘

.

Using Assumption 2 then concludes the proof of Proposition 3.1. �

5.2. Proof of Proposition 3.2.

Proof of Proposition 3.2. Using the definitions (17) and (20) of the schemes, for all n P t0, . . . , N´
1u, one has

dpXε,∆t
n`1 , X

0,∆t
n`1 q “ d

`

Φp
∆tmε

n`1

ε
,Xε,∆t

n q,Φp∆βn, X
0,∆t
n q

˘

ď CeC|
∆tmεn`1

ε |`C|∆βn|
`

|
∆tmε

n`1

ε
´∆βn| ` dpXε,∆t

n , X0,∆t
n q

˘

,

using the inequality (14) from Assumption 3. Using Hölder’s inequality, the exponential moment bounds (38)
and the inequality (37) from Lemma 4.6, there exists Cp P p0,8q such that for all n P t0, . . . , u one has

dppX
ε,∆t
n`1 , X

0,∆t
n`1 q ď Cp

`

ε` d2ppX
ε,∆t
n , X0,∆t

n q
˘

.

Owing to Assumption 2, one has

dppX
ε,∆t
0 , X0,∆t

0 q “ dpxε0, x
0
0q Ñ

εÑ0
0

and it is then straightforward to check recursively that for all p P r1,8q and n P t0, . . . , Nu one has

dppX
ε,∆t
n`1 , X

0,∆t
n q Ñ

εÑ0
0.

This concludes the proof of Proposition 3.2. �

6. Proof of the main result

This section is devoted to the proof of Theorem 3.3.

Proof of Theorem 3.3. Let us introduce an auxiliary process
`

Y ε,∆tn

˘

0ďnďN
, defined by

(40) Y ε,∆tn “ Φ
`

εpmε
n ´m

εptnqq, X
ε,∆t
n

˘

,

for all n P t0, . . . , Nu.
The error is then decomposed as follows: for all p P r1,8q, one has

(41) dppX
ε,∆t
N , XεptN qq ď dppX

ε,∆t
N , Y ε,∆tN q ` dppY

ε,∆t
N , XεptN qq.

The first error term dppX
ε,∆t
N , Y ε,∆tN q in the right-hand side of (41) is treated as follows: using Lemma 4.1

and the inequality (13) from Assumption 3, one obtains

dppX
ε,∆t
N , Y ε,∆tN q “ dp

`

Xε,∆t
N ,Φ

`

εpmε,∆t
N ,mεptN qq, X

ε,∆t
N

˘˘

ď dp
`

ϕp0, Xε,∆t
N q, ϕ

`

εpmε,∆t
N ´mεptN qq, X

ε,∆t
N

˘˘

` dp
`

ϕ
`

εpmε,∆t
N ´mεptN qq, X

ε,∆t
N

˘

,Φ
`

εpmε,∆t
n ´mεptN qq, X

ε,∆t
N

˘˘

ď Cε}mε,∆t
N ´mεptN q}p ` Cε

3}pmε,∆t
N ´mεptN qq

3eCε|m
ε,∆t
N ´mεptN q|}p.
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Using Hölder’s inequality, the exponential moment bounds (31) (Lemma 4.5) and (36) (Lemma 4.6), and
the inequality (29) from Lemma 4.4, one obtains

dppX
ε,∆t
N , Y ε,∆tN q ď Cp

`

}εpmε,∆t
N ´mεptN qq}p ` }εpm

ε,∆t
N ´mεptN qq}

3
4p

˘

ď Cpε
`

?
∆t

ε
`

1

N

˘

` Cpε
3
`

?
∆t

ε
`

1

N

˘3

ď CppT q∆t
1
2 ,

using the inequality 1{N “ ∆t{T ď CpT q∆t1{2 in the last step.
It remains to study the second error term dppY

ε,∆t
N , XεptN qq in the right-hand side of (41). The strategy

is based on a telescoping sum argument: using the expression (11) for XεptN q “ XεpT q and the equalities
Y ε,∆t0 “ Xε,∆t

0 “ Xεp0q, one has

d
`

Y ε,∆tN , XεptN q
˘

“ d
`

ϕp0, Y ε,∆tN q, ϕpζεptN q, Y
ε,∆t
0 q

˘

ď

N´1
ÿ

n“0

d
´

ϕpζεptN q ´ ζ
εptn`1q, Y

ε,∆t
n`1 q, ϕpζ

εptN q ´ ζ
εptnq, Y

ε,∆t
n q

¯

ď

N´1
ÿ

n“0

d
´

ϕpζεptN q ´ ζ
εptn`1q, Y

ε,∆t
n`1 q, ϕ

`

pζεptN q ´ ζ
εptn`1q, ϕpζ

εptn`1q ´ ζ
εptnq, Y

ε,∆t
n q

˘

¯

,

where the last inequality is a consequence of the flow property (12) of the map ϕ.
Using the Lipschitz continuity property of the mapping ϕpζεptN q´ ζεptn`1q, ¨q given in Lemma 4.1, then

Hölder’s inequality and the exponential moment bounds (33) and (38), one obtains the inequality

(42)

dppY
ε,∆t
N , XεptN qq ď C

N´1
ÿ

n“0

}d
`

Y ε,∆tn`1 , ϕpζ
εptn`1q ´ ζ

εptnq, Y
ε,∆t
n q

˘

eC|ζ
ε
ptN q´ζ

ε
ptn`1q|}p

ď CppT q
N´1
ÿ

n“0

d2p

`

Y ε,∆tn`1 , ϕpζ
εptn`1q ´ ζ

εptnq, Y
ε,∆t
n q

˘

.

We claim that the following identity holds: for all n P t0, . . . , N ´ 1u, one has

(43) Y ε,∆tn`1 ´ Φpζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n q “ Rε,∆tn,1 `Rε,∆tn,2

with the error terms Rε,∆tn,1 and Rε,∆tn,2 defined by

Rε,∆tn,1 “ ´δΦ
´

εpmε,∆t
n`1 ´m

εptn`1qq,
∆tmε,∆t

n`1

ε
,Xε

n

¯

Rε,∆tn,2 “ δΦ
´

ζεptn`1q ´ ζ
εptnq, εpm

ε,∆t
n ´mεptnqq, X

ε
n

¯

.

using the auxiliary function δΦ defined by (27).
The proof of the claim (43) is performed in two steps. First, using the definition (40) of the auxiliary

random variable Y ε,∆tn`1 and the definition (17) of the numerical scheme, one has

Y ε,∆tn`1 “ Φpεpmε,∆t
n`1 ´m

εptn`1qq, X
ε,∆t
n`1 q

“ Φpεpmε,∆t
n`1 ´m

εptn`1qq,Φp
∆tmε,∆t

n`1

ε
,Xε

nqq

“ Φpεpmε
n`1 ´m

εptn`1qq `
∆tmε,∆t

n`1

ε
,Xε

nq `R
ε,∆t
n,1 .

Second, using the identities
∆tmε

n`1

ε
“ ∆βn ` εpm

ε,∆t
n ´mε,∆t

n`1q

ζεptn`1q ´ ζ
εptnq “

ż tn`1

tn

mεptq

ε
dt “ βptn`1q ´ βptnq ` εpm

εptnq ´m
εptn`1qq

17



and ∆βn “ βptn`1q ´ βptnq, one obtains

Y ε,∆tn`1 ´R
ε,∆t
n,1 “ Φpεpmε,∆t

n ´mεptn`1qq `∆βn, X
ε
nq

“ Φp∆βn ` εpm
εptnq ´m

εptn`1qq ` εpm
ε,∆t
n ´mεptnqq, X

ε
nq

“ Φpζεptn`1q ´ ζ
εptnq ` εpm

ε,∆t
n ´mεptnqq, X

ε
nq

“ Φpζεptn`1q ´ ζ
εptnq,Φpεpm

ε,∆t
n ´mεptnqq, X

ε
nqq `R

ε,∆t
n,2

“ Φpζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n q `Rε,∆tn,2 ,

using the definition (40) of Y ε,∆tn in the last step. This concludes the proof of the claim (43).
Combining (42) and (43), one obtains the following upper bound for the error:

dppY
ε,∆t
N , XεptN qq ď CppT q

N´1
ÿ

n“0

d2p

´

Φ
`

ζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n

˘

, ϕ
`

ζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n

˘

¯

` CppT q
N´1
ÿ

n“0

d2ppR
ε,∆t
n,1 , 0q ` CppT q

N´1
ÿ

n“0

d2ppR
ε,∆t
n,2 , 0q.

To conclude the proof, it remains to prove upper bounds for the three terms in the right-hand side of the
inequality above.

‚ Using the inequality (13) from Assumption 3, Hölder’s inequality, the exponential moment bounds (33),
and finally the inequality (34), one obtains, for all n P t0, . . . , N ´ 1u,

d2p

´

Φ
`

ζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n

˘

, ϕ
`

ζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n

˘

¯

ď C}
`

ζεptn`1q ´ ζ
εptnq

˘3
eC|ζ

ε
ptn`1q´ζ

ε
ptnq|}2p

ď CppT q}ζ
εptn`1q ´ ζ

εptnq}
3
7p

ď CppT q∆t
3
2 .

Therefore one has the upper bound

(44)
N´1
ÿ

n“0

d2p

´

Φ
`

ζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n

˘

, ϕ
`

ζεptn`1q ´ ζ
εptnq, Y

ε,∆t
n

˘

¯

ď CppT q∆t
1
2 .

‚ Using the inequality (28) from Lemma 4.2 with t1 “ εpmε,∆t
n`1 ´ mεptn`1qq and t2 “

∆tmε,∆tn`1

ε , one
obtains, for all n P t0, . . . , N ´ 1u,

d2ppR
ε,∆t
n,1 , 0q ď C}εpmε,∆t

n`1 ´m
εptn`1qq

`∆tmε,∆t
n`1

ε

˘2
eC|εpm

ε,∆t
n`1´m

ε
ptn`1qq|eC|

∆tm
ε,∆t
n`1
ε |}2p

` C}ε2pmε,∆t
n`1 ´m

εptn`1qq
2 ∆tmε,∆t

n`1

ε
eC|εpm

ε,∆t
n`1´m

ε
ptn`1qq|eC|

∆tm
ε,∆t
n`1
ε |}2p

ď CppT q}εpm
ε,∆t
n`1 ´m

εptn`1qq
`∆tmε,∆t

n`1

ε

˘2
}3p

` CppT q}ε
2pmε,∆t

n`1 ´m
εptn`1qq

2 ∆tmε,∆t
n`1

ε
}3p,

using Hölder’s inequality and the exponential moment bounds (31), (36) and (38). Finally, using Hölder’s
inequality, the error estimate (29) from Lemma 4.4 and the moment bound (39), one obtains, for all n P
t0, . . . , N ´ 1u,

d2ppR
ε,∆t
n,1 , 0q ď CppT q

`

∆t
1
2 `

1

n` 1

˘

∆t` CppT q
`

∆t`
1

pn` 1q2
˘

∆t
1
2 .

Therefore one has the upper bound

(45)
N´1
ÿ

n“0

d2ppR
ε,∆t
n,1 , 0q ď CppT q∆t

1
2 .
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‚ Note that Rε,∆t0,2 “ 0. Using the inequality (28) from Lemma 4.2 with t1 “ ζεptn`1q ´ ζεptnq and
t2 “ εpmε,∆t

n ´mεptnqq, one obtains, for all n P t1, . . . , N ´ 1u,

d2ppR
ε,∆t
n,2 , 0q ď C}pζεptn`1q ´ ζ

εptnqq
`

εpmε,∆t
n ´mεptnqq

˘2
eC|ζ

ε
ptn`1q´ζ

ε
ptnq|eC|εpm

ε,∆t
n ´mεptnqq|}2p

` C}
`

ζεptn`1q ´ ζ
εptnq

˘2
εpmε,∆t

n ´mεptnqqe
C|ζεptn`1q´ζ

ε
ptnq|eC|εpm

ε,∆t
n ´mεptnqq|}2p

ď CppT q}pζ
εptn`1q ´ ζ

εptnqq
`

εpmε,∆t
n ´mεptnqq

˘2
}3p

` CppT q}
`

ζεptn`1q ´ ζ
εptnq

˘2
εpmε,∆t

n ´mεptnqq}3p

using Hölder’s inequality and the exponential moment bounds (31), (36) and (33). Finally, using Hölder’s
inequality, the error estimate (29) from Lemma 4.4 and the moment bound (34), one obtains, for all n P
t1, . . . , N ´ 1u,

d2ppR
ε,∆t
n,2 , 0q ď CppT q∆t

1
2

`

∆t`
1

n2

˘

` CppT q∆t
`

∆t
1
2 `

1

n

˘

.

Therefore one has the upper bound

(46)
N´1
ÿ

n“0

d2ppR
ε,∆t
n,2 , 0q ď CppT q∆t

1
2 .

Combining the upper bound (42) and the three inequalities (44), (45) and (46), one obtains

dppY
ε,∆t
N , XεptN qq ď CppT q∆t

1
2 .

This concludes the treatment of the second error term in the right-hand side of (41). Combining the two
upper bounds yields (22), which concludes the proof of Theorem 3.3. �

7. Numerical experiments

The objective of this section is to illustrate Theorem 3.3 with numerical experiments. Set d “ 1,
T “ 1, x0 “ 0 and σpxq “ cospxq for all x P T “ T1 “ R{Z. The reference time-step size denoted by
href “ ∆tref “ 2´18, and the time-step size h “ ∆t takes values in t2´6, . . . , 2´16u. The mean-square error
is estimated by averaging the error over Ms samples. The error is represented in logarithmic scales. The
integrator Φ is given by Heun’s method: Φpt, xq “ x` t

2

`

σpxq ` σpx` tσpxqq
˘

for all t P R and x P T. One
observes similar results when using for instance the explicit midpoint method, the numerical results are not
reported.

Let us first confirm that the order of convergence of the limiting scheme (20) is equal to 1, see Proposi-
tion 3.5. This is illustrated by Figure 1.
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Figure 1. Mean-square error as a function of the time-step size h “ ∆t for the limiting
scheme. The dotted lines have slopes 1{2 and 1.

In Figure 2, one has ε P t0.04, 0.02, 0.01u and Ms “ 103. One observes that for large values of h, the
error decreases when ε decreases, whereas for small values of h the error increases when ε decreases. For any
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Figure 2. Mean-square error as a function of the time-step size h “ ∆t, with ε “
0.04, 0.02, 0.01. The dotted lines have slopes 1{2 and 1.

value of ε, for sufficiently small values of h the order of convergence is equal to 1. However, for larger values
of h one seems to observe a lower order of convergence.

Let us provide an additional numerical experiment, for different values of ε, in order to confirm the
results of Figure 2 and their interpretation. In Figure 3, one has ε P t0.1, 0.01, 0.001u and Ms “ 102. For
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Figure 3. Mean-square error as a function of the time-step size h “ ∆t, with ε “
0.1, 0.01, 0.001. The dotted lines have slopes 1{2 and 1.

the largest value ε “ 0.1, one observes a decrease of the mean-square error with order of convergence 1. For
the other values of ε, the behavior is different. For ε “ 0.01, the error saturates for large values of h, and
decreases with order 1 when h is sufficiently small – this is the same behavior as observed in Figure 2. For
ε “ 0.001, one observes first a decrease with order 1 for large h, and then the error saturates for smaller
values of h. If one could decrease the values of h, one would again observe a decrease of the error with order
1 for this value of ε.
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Owing to the results of Figure 2 and 3, it is not possible to replace the order of convergence 1{2 in the
error estimate given in Theorem 3.3 by 1. The behavior of the mean-square error when ∆t and ε vary is not
trivial. However, it is remarkable to be able to obtain a uniform error estimate with respect to ε, with order
of convergence 1{2 with respect to ∆t.

Is is also worth providing numerical experiments when the standard explicit Euler scheme is used, i. e.
Φpt, xq “ x ` tσpxq. In that case, as explained in Section 3.2, Theorem 3.3 does not hold. Figure 4 gives
results with Ms “ 102, and with ε P t0.04, 0.02, 0.01u (left) and ε P t0.1, 0.01, 0.001u (right).
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Figure 4. Mean-square error for the standard Euler scheme as a function of the time-step
size h “ ∆t, with ε “ 0.04, 0.02, 0.01 (left) and ε “ 0.1, 0.01, 0.001 (right). The dotted lines
have slopes 1{2 and 1.

In Figure 4, one observes that for a given value of ε, the error decreases when h is sufficiently small,
but the error is large for large values of h, contrary to what can be seen in Figures 2 and 3. For ε “ 0.001,
the values of h are not sufficiently small to observe the decrease of the error in Figure 4. This comparison
illustrates the superiory of the scheme (17) studied in this article for the approximation of the multiscale
SDE system (6), and how Theorem 3.3 is a non trivial theoretical results with a huge importance in practice.
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