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Introduction

In this article, we consider multiscale systems of stochastic differential equations of the type where P p0, 0 q is a time-scale separation parameter. On the one hand, X ptq takes values in the ddimensional torus T d " R d {p2πZq d in arbitrary dimension d P N, and σ : T d Ñ R d is a mapping which is at least of class C 3 . On the other hand, the Wiener process β and the Ornstein-Uhlenbeck process m are real-valued. The objective of this article is to study numerical schemes for the approximation of the component X , for arbitrary values of the time-scale separation parameter , in particular when it vanishes. This is not a trivial task since the component m evolves at the fast time scale t{ 2 , and a crude discretization would impose stringent conditions on the time-step size ∆t.

It is a well-known result in the analysis of multiscale stochastic systems that X ptq converges, at least in distribution, when Ñ 0, to X 0 ptq, for all t ě 0, where X 0 is the solution of the stochastic differential equation [START_REF] Almuslimani | Uniformly accurate schemes for drift-oscillatory stochastic differential equations[END_REF] dX 0 ptq " σpX 0 ptqq ˝dβptq where the noise is interpreted in the sense of Stratonovich. We refer for instance to [START_REF] Pavliotis | Multiscale methods[END_REF]Section 11.7.3] for a description of this convergence result, and see Proposition 3.1 below for a precise statement, where convergence is understood in a stronger sense than convergence in distribution. The convergence result X Ñ X 0 belongs to the class of Wong-Zakai approximation results (the Stratonovich noise ˝dβptq is approximated by a smoother version dζ ptq), it is also sometimes called a diffusion approximation result. In order to define numerical schemes which perform better than crude methods when varies and may vanish, it is relevant to resort to the notion of asymptotic preserving schemes as studied in the recent article [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF]: if ∆t " T {N denotes the time-step size with given T P p0, 8q and N P N, one has a commutative diagram property

X ,∆t N N Ñ8 Ý ÝÝÝ Ñ X pT q § § đ Ñ0 § § đ Ñ0 X 0,∆t N N Ñ8
Ý ÝÝÝ Ñ X 0 pT q, where `X ,∆t n , m ,∆t n ˘0ďnďN is the scheme for given values of and ∆t, and one needs to check that ' the scheme is consistent for any value of ą 0 when ∆t Ñ 0, ' there exists a limiting scheme `X0,∆t n ˘0ďnďN when Ñ 0 for any value of ∆t ą 0, ' the limiting scheme is consistent with the limiting equation when ∆t Ñ 0. As explained in [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF], the last property may fail to hold for some crude methods, for instance using a standard explicit Euler scheme for the discretization of the component X does not capture the Itô-Stratonovich correction term.

In this article, we study numerical schemes which can be written as

(3) $ ' ' & ' ' % X ,∆t n`1 " Φp ∆tm ,∆t n`1 , X ,∆t n q m ,∆t n`1 " m ,∆t n ´∆t 2 m ,∆t n`1 `∆β n ,
where ∆β n " βpt n`1 q ´βpt n q, t n " n∆t. The mapping Φ is an integrator associated with the ordinary differential equation dxptq dt " σpxptqq, which is assumed to be at least of order 2, see Assumption 3 below for a precise statement.

Let us state the main result of this article, see Theorem 3.3 for a precise statement: one has strong error estimates [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF] sup

Pp0, 0q
`ErdpX ,∆t N , X pT qqs ˘1 p ď C p pT q∆t
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which are uniform with respect to the time-scale separation parameter, for all p P r1, 8q and T P p0, 8q. This means that X pT q can be approximated by X ,∆t N with a cost which is independent of . One also checks (see Proposition 3.6) that the asymptotic preserving property is satisfied, where the convergence results in the diagram above are all understood in the sense of convergence in L p pΩq.

Note that the construction of the scheme (3) is inspired by the expression X ptq " ϕpζ ptq, X p0qq

for the solution of [START_REF] Abdulle | Spectral methods for multiscale stochastic differential equations[END_REF], where ζ ptq " ´1 ş t 0 m psqds, and ϕ is the flow map associated with the ordinary differential equation above. One also has X 0 ptq " ϕpβptq, Xp0qq, and the limiting scheme is given by X 0,∆t n`1 " Φp∆β n , X 0,∆t n q.

All the expressions above require to consider real-valued Ornstein-Uhlenbeck process m and Wiener process β, and also that the evolution of m ptq is independent of the slow component X ptq. Even if this situation is restrictive, the analysis requires some non trivial techniques. The analysis of more general situations may be investigated in future works.

Let us give the most crucial arguments of the proof of (4), omitting technicalities. In particular the objective of this discussion is to illustrate why assuming that Φ is an integrator of order at least 2 for the associated differential equation above is fundamental. That assumption can be written [START_REF] Liu | Analysis of multiscale methods for stochastic differential equations[END_REF] Φpt, xq ´ϕpt, xq " Op|t| 3 q when |t| Ñ 0, see [START_REF] Li | Effectiveness of implicit methods for stiff stochastic differential equations[END_REF] from Assumption 3 for a more precise statement. For an order 1 method, one would only have Op|t| 2 q in the right-hand side of (5). Using inequalities

∆β n " Op∆t 1 2 q, ∆tm n`1 " Op∆t 1 2 q
one may already understand why (5) may be useful to obtain the strong error estimates (4) after summation of local error terms of size Op∆t q. An additional ingredient of the proof is Lemma 4.2, which gives upper bounds

ˇˇΦpt 1 `t2 , xq ´Φpt 1 , Φpt 2 , xq ˇˇ" Opt 2 1 |t 2 | `t2
2 |t 1 |q for the integrator (which does not satisfy a flow property, contrary to ϕ). Note also that the inequality

}m pt N q ´m ,∆t N } " Op∆t 1 2 q
is used, see Lemma 4.4 for a precise statement. The inequality above is combined with [START_REF] Liu | Analysis of multiscale methods for stochastic differential equations[END_REF] in the proof of (4), again local error terms of size Op∆t 3 2 q give a global error term of size Op∆t 1 2 q. More technical arguments and auxiliary results are required and are omitted in this sketch of proof, see Section 6 for details.

Note that the recent preprint [START_REF] Bréhier | Uniform strong and weak error estimates for numerical schemes applied to multiscale sdes in a smoluchowskikramers diffusion approximation regime[END_REF] is also concerned with the proof of uniform (strong) error estimates for a class of multiscale SDE systems in a diffusion approximation regime. However, the structure of the systems, the results and the techniques of proof are substantially different, which justifies to perform the analysis in separate articles.

The analysis of numerical methods for multiscale stochastic differential equations is an active research area. The recent articles [START_REF] Almuslimani | Uniformly accurate schemes for drift-oscillatory stochastic differential equations[END_REF] and [START_REF] Laurent | A uniformly accurate scheme for the numerical integration of penalized langevin dynamics[END_REF] propose uniformly accurate methods for SDE systems which are different from [START_REF] Abdulle | Spectral methods for multiscale stochastic differential equations[END_REF] considered in this article. The recent article [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF] has introduced a notion of asymptotic preserving schemes which applies to [START_REF] Abdulle | Spectral methods for multiscale stochastic differential equations[END_REF], and some uniform error estimates were proved for SDE systems in an averaging regime. We also refer to the PhD thesis [START_REF] Rakotonirina-Ricquebourg | Etude théorique et numérique d'équations cinétiques stochastiques multi-échelles[END_REF] for supplementary results and numerical experiments. In this article, as already mentioned, we fill a gap in [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF] and prove some uniform error estimates in the diffusion approximation regime, for the scheme (3) applied to [START_REF] Abdulle | Spectral methods for multiscale stochastic differential equations[END_REF]. The articles [START_REF] Frank | A note on statistical consistency of numerical integrators for multiscale dynamics[END_REF] and [START_REF] Li | Effectiveness of implicit methods for stiff stochastic differential equations[END_REF] illustrate why effective numerical approximation of solutions of SDEs may be more subtle than for deterministic problems. Many other techniques have been introduced to design effective methods for the numerical approximation of multiscale SDE systems, let us mention spectral methods [START_REF] Abdulle | Spectral methods for multiscale stochastic differential equations[END_REF], heterogeneous multiscale methods [START_REF] Liu | Analysis of multiscale methods for stochastic differential equations[END_REF], projective integration methods [START_REF] Givon | Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems[END_REF], equation-free methods [START_REF] Kevrekidis | Equation-free, coarsegrained multiscale computation: enabling microscopic simulators to perform system-level analysis[END_REF], parareal methods [START_REF] Legoll | Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study[END_REF], micro-macro acceleration methods [START_REF] Vandecasteele | Efficiency of a micro-macro acceleration method for scale-separated stochastic differential equations[END_REF] for instance. We refer to the monographs [START_REF] Gobet | Monte-Carlo methods and stochastic processes[END_REF][START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF][START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF][START_REF] Pagès | Numerical probability. Universitext[END_REF] for general results on numerical methods applied to stochastic differential equations.

This article is organized as follows. Section 2 provides the main notation and assumptions. Convergence results, when the time scale separation parameter and the time-step size ∆t vanish are stated in Section 3. The main result of this article (strong error estimates in terms of ∆t, uniformly with respect to , see Theorem 3.3) is stated in Section 3.2. Auxiliary results are given in Section 4. Some of the results are proved in Section 5. The proof of the main result is provided in Section 6. Numerical results are reported in Section 7.

Setting

Let d P N be an integer. Denote by

T d the d-dimensional torus R d {Z d . If x 1 , x 2 P T d , the distance between x 1 and x 2 is denoted by dpx 1 , d 2 q.
The time-scale separation parameter is denoted by . Without loss of generality, it is assumed that P p0, 0 q, where 0 is an arbitrary positive parameter. The time-step size of the numerical schemes is denoted by ∆t. It is assumed that ∆t " T {N where T P p0, 8q is an arbitrary positive real number, and N P N is an integer. For all n P t0, . . . , N u, let t n " n∆t. Without loss of generality, it is assumed that ∆t P p0, ∆t 0 q, where ∆t 0 " T {N 0 is an arbitrary positive real number. Equivalently, it is assumed that N ě N 0 .

Let `βptq ˘tě0 be a real-valued standard Wiener process, defined on a probability space pΩ, F, Pq which satisfies the usual conditions. The expectation operator is denoted by Er¨s. In the proof of the error estimates, it is convenient to use the following notation. For any real number p P r1, 8q and any T d -valued random variables X 1 , X 2 , set d p pX 1 , X 2 q " `ErdpX 1 , X 2 q p s ˘1 p .

Similarly, for any real number p P r1, 8q and any real-valued random variable Y, set }Y} p " `Er|Y| p s ˘1 p .

The values of constants C P p0, 8q may change from line to line in the proofs below. However note that they are always independent of the parameters and ∆t. The initial values for the SDE system (6) are given by X p0q " x 0 and m p0q " m 0 , such that Assumption 2 below is satisfied.

Assumption 2. There exists x 0 0 P T d such that

x 0 Ñ Ñ0 x 0 0 .
Moreover, one has the following uniform upper bound:

sup Pp0, 0q |m 0 | ă 8.
It is assumed that the initial values x 0 P T d and m 0 P R are deterministic. The case of random initial values, independent of the Wiener process `βptq ˘tě0 , can be treated by a standard conditioning argument, provided that suitable moment bounds are satisfied. This treatment is omitted in the sequel. Note that the constants appearing in the estimates below may depend on the value of sup Pp0, 0q |m 0 |, however this dependence is not indicated explicitly.

It is straightforward to check that the SDE system (6) admits a unique global solution. Let us give an expression of this solution which plays a crucial role in this article, for the construction and the analysis of numerical schemes which are effective when varies and vanishes.

For all t ě 0, define Since σ is Lipschitz continuous by Assumption 1, the mapping ϕ is well-defined. The evolution equation for X can be interpreted as dX ptq " σpX ptqqdζ ptq using the definition (7) of ζ . Owing to the definition [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF] of ϕ and to the chain rule, the unique global solution of [START_REF] Frank | A note on statistical consistency of numerical integrators for multiscale dynamics[END_REF], which can be formulated as follows: for all t ě 0 one has [START_REF] Laurent | A uniformly accurate scheme for the numerical integration of penalized langevin dynamics[END_REF] X ptq " ϕpζ ptq, x 0 q.

It is worth noting that the expression [START_REF] Laurent | A uniformly accurate scheme for the numerical integration of penalized langevin dynamics[END_REF] and the arguments above require the definition of the flow map ϕ for all values t P R in the real line of the time variable. Finally, recall that the flow map ϕ satisfies the following flow property: for all t 1 , t 2 P R, one has [START_REF] Legoll | Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study[END_REF] ϕpt 1 `t2 , ¨q " ϕpt 2 , ϕpt 1 , ¨qq.

2.2. The numerical scheme. Let us now describe the class of proposed numerical schemes. The objective is to approximate the slow component X solving the SDE [START_REF] Frank | A note on statistical consistency of numerical integrators for multiscale dynamics[END_REF], uniformly with respect to the timescale parameter P p0, 0 q. The approximation needs to be consistent for any fixed , and to avoid stringent stability conditions depending on on the time-step size ∆t. The definition of the numerical scheme is inspired by the expression [START_REF] Laurent | A uniformly accurate scheme for the numerical integration of penalized langevin dynamics[END_REF] for X ptq, and is based on a mapping Φ : R ˆTd Ñ T d called the integrator, associated with the ODE [START_REF] Kevrekidis | Equation-free, coarsegrained multiscale computation: enabling microscopic simulators to perform system-level analysis[END_REF]. Let us first state the main conditions required on the integrator. Assumption 3. Let Φ : R ˆTd Ñ T d be a mapping of class C 3 , such that there exists C P p0, 8q such that for all t P R and all x P T d , one has

(13) d `Φpt, xq, ϕpt, xq ˘ď C|t| 3 e C|t| ,
and for all t 1 , t 2 P R and x 1 , x 2 P T d , one has

(14) d `Φpt 2 , x 2 q, Φpt 1 , x 1 q ˘ď C `|t 2 ´t1 | `dpx 2 , x 1 q ˘eCp|t1|`|t2|q .
Finally, for all i, j P t0, 1, 2, 3u with i `j ď 3, one has for all t P R, the upper bound

(15) sup xPR d |B i t B j x Φpt, xq| ď Ce C|t| .
If the integrator Φ satisfies Assumption (3), the numerical scheme [START_REF] Pavliotis | Multiscale methods[END_REF] x n`1 " Φp∆t, x n q provides an approximation x N of the solution ϕpt N , x 0 q of the ordinary differential equation ( 9), when the time-step size ∆t ą 0 vanishes. On the one hand, the conditions ( 14) and ( 15) are technical requirements for the analysis below. They are variants of properties satisfied by the flow map ϕ. On the other hand, the condition ( 13) is fundamental: it means that the numerical scheme ( 16) is (at least) a second-order scheme for the approximation of the solution of the ODE (9): for any initial value x 0 P T d and all T P p0, 8q, there exists CpT, x 0 q P p0, 8q such that

dpx N , ϕpt N , x 0 qq ď CpT, x 0 q∆t 2 ,
where we recall that T " N ∆t. As will explained below, the second-order accuracy of the integrator Φ related to the ODE (9) plays a crucial role in this article.

Let us give some examples of integrators which satisfy Assumption 3: introduce ' the second-order Taylor scheme: Φpt, xq " x `tσpxq `t2 2 σ 1 pxqσpxq, ' the explicit midpoint scheme: Φpt, xq " x `tσpx `t 2 σpxqq, ' Heun's method: Φpt, xq " x `t 2 `σpxq `σpx `tσpxqq ˘, for all t P R and x P T d . For the three examples above, the exponential growth with respect to t 1 , t 2 in the right-hand side of ( 14) and with respect to t in the right-hand side of ( 15) can be replaced by a polynomial growth. Obviously, Φpt, xq " ϕpt, xq is also a possible choice, if the flow map ϕ is known. However, note that standard explicit Euler integrator, given by Φ E pt, xq " x `tσpxq, does not satisfy Assumption 3. Indeed it is in general a first-order integrator (except if σ is constant), and does not satisfy (13): instead one only has d `ΦE pt, xq, ϕpt, xq ˘ď C|t| 2 e C|t| for all t P R and x P T d . One may also use splitting schemes to define integrators. Assume that σ " σ 1 `σ2 and let ϕ 1 and ϕ 2 be the flow maps associated with the ODEs dx1ptq dt " σ 1 pxptqq and dx2ptq dt " σ 2 pxptqq respectively. The Strang splitting integrator Φpt, ¨q " ϕ 2 p t 2 , ¨q ˝ϕ1 pt, ¨q ˝ϕ2 p t 2 , ¨q also satisfies Assumption 3. However, in general the Lie-Trotter splitting integrator Φ LT pt, ¨q " ϕ 2 pt, ¨q ˝ϕ1 pt, ¨q is only of order 1 and does not satisfy Assumption 3, like the standard explicit Euler integrator.

We are now in position to introduce the scheme studied in this article, for the approximation of the solution of the SDE ( 6):

(17) $ ' ' & ' ' % X ,∆t n`1 " Φp ∆tm ,∆t n`1 , X ,∆t n q m ,∆t n`1 " m ,∆t n ´∆t 2 m ,∆t n`1 `∆β n
where ∆β n " βpt n`1 q ´βpt n q, with t n " n∆t. The initial values are given by X ,∆t 0 " x 0 " X p0q and m ,∆t 0 " m 0 " m p0q, thus they do not depend on the time-step size ∆t. The construction of the scheme ( 6) is motivated by the identity

X pt n`1 q " ϕ `X pt n q, ζ pt n`1 q ´ζ pt n q ˘" ϕ `X pt n q, 1 ż tn`1 tn
m psqds which is satisfied by the solution of the SDE ( 6), for all n P t0, . . . , N ´1u. The first equality follows from the expression [START_REF] Laurent | A uniformly accurate scheme for the numerical integration of penalized langevin dynamics[END_REF] and the flow property [START_REF] Legoll | Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study[END_REF], whereas the second equality follows from the definition (7) of the process ζ . The construction of the scheme ( 17) is a straightforward combination of two approximations. On the one hand, the flow map ϕ is replaced by the integrator Φ. On the other hand, the component m is discretized using an implicit Euler scheme, and the integral ş tn`1 tn m psqds is approximated by a simple quadrature rule (which is adapted to the choice of the implicit Euler scheme). Even if the discretization of the component m is implicit, in practice it is explicit using the expression

m n`1 " 1 1 `∆t 2 `m n `∆β n ˘.
The scheme [START_REF] Rakotonirina-Ricquebourg | Etude théorique et numérique d'équations cinétiques stochastiques multi-échelles[END_REF] is a generalization of the scheme given in [4, Corollary 3.15], which corresponds to choosing Heun's integrator for the mapping Φ.

Convergence results

In Section 3.1, we state results concerning the behavior of X ptq and X ,∆t n when the time scale separation parameter vanishes: we exhibit a limiting stochastic differential equation and a limiting numerical scheme respectively. Then, in Section 3.2, we state the main result of this article, giving strong error estimates, in terms of the time-step size ∆t, uniformly with respect to the time scale separation parameter . Finally, in Sections 3.3 and 3.4, we give consequences of the main result, and show that the numerical scheme ( 17) is asymptotic preserving. The proofs of the results in Section 3.1 are postponed to Section 5, since they exploit some of the auxiliary results from Section 4. The proof of the main result, Theorem 3.3, stated in Section 3.2, is postponed to Section 6.

Asymptotic behavior when the time scale separation vanishes.

In this section, we study the behavior of the X ptq and X n when the time scale separation parameter vanishes and describe associated evolution equations for the limits.

Let us first focus on the behavior of X ptq. Introduce the stochastic differential equation ( 18) dX 0 ptq " σpX 0 ptqq ˝dβptq with initial value X 0 p0q " x 0 0 P T d (given in Assumption 2). The noise is interpreted in the Stratonovich sense, and the SDE can be written in Itô form

dXptq " 1 2 σ 1 pXptqqσpXptqqdt `σpXptqqdβptq.
The solution of the SDE ( 18) is expressed as follows, using the flow map ϕ introduced in Section 2.1: for all t ě 0, one has (19) Xptq " ϕpβptq, x 0 0 q. The identity (19) is a straightforward consequence of the chain rule associated with the Stratonovich convention and of the definition of ϕ as the flow map associated with the ODE [START_REF] Kevrekidis | Equation-free, coarsegrained multiscale computation: enabling microscopic simulators to perform system-level analysis[END_REF]. One has the following result.

Proposition 3.1. Let Assumptions 1 and 2 be satisfied. For all T P p0, 8q and p P r1, 8q, there exists C p pT q P p0, 8q such that

sup 0ďtďT d p pX ptq, Xptqq ď C p pT q ` `dpx 0 , x 0 0 q ˘Ñ Ñ0 0.
Let us now focus on the behavior of X ,∆t n . Introduce the scheme defined by

(20) X 0,∆t n`1 " Φp∆β n , X 0,∆t n q,
for all n P t0, . . . , N ´1u, with initial value X 0,∆t 0 " x 0 0 " X 0 p0q, where we recall that one has ∆β n " βpt n`1 q ´βpt n q. One has the following result. Proposition 3.2. Let Assumptions 1, 2 and 3 be satisfied. For all p P r1, 8q, all ∆t " T {N P p0, ∆t 0 q and all n P t0, . . . , N u, one has

(21) d p pX ,∆t n , X 0,∆t n q Ñ Ñ0 0.
We refer to Section 5 for the proofs of Propositions 3.1 and 3.2. Note that the condition (13) from Assumption 3 is not used to prove Proposition 3.2. When choosing different examples for the integrator Φ, one recovers standard numerical schemes from the limiting scheme (20) for the approximation of the limiting stochastic differential equation [START_REF] Vandecasteele | Efficiency of a micro-macro acceleration method for scale-separated stochastic differential equations[END_REF], see for instance [10, Part V].

3.2. Uniform strong error estimates for the scheme [START_REF] Rakotonirina-Ricquebourg | Etude théorique et numérique d'équations cinétiques stochastiques multi-échelles[END_REF]. We are now in position to state the main result of this article. Theorem 3.3. Let Assumptions 1, 2 and 3 be satisfied. For all T P p0, 8q and p P r1, 8q, there exists C p pT q P p0, 8q such that for all ∆t P p0, ∆t 0 q, one has

(22) sup Pp0, 0q d p `X ,∆t N , X pT q ˘ď C p pT q∆t 1 2 .
Before proceeding with the description of some consequences and the proof of Theorem 3.3, let us emphasize that the condition (13) from Assumption 3 is required for Theorem 3.3 to hold. Indeed, Theorem 3.3 does not hold when the integrator Φ is the standard explicit Euler integrator (if σ is not constant). Recall that Φ E pt, xq " x `tσpxq for all t P R and x P T d . Using Φ " Φ E in the definitions of the schemes ( 17) and (20) gives the limiting scheme

X 0,∆t,E n`1 " X 0,∆t,E n `∆β n σpX 0,∆t,E n q
with initial value X 0,∆t,E 0 " x 0 0 . This is the standard Euler-Maruyama scheme applied to the stochastic differential equation dX 0,E ptq " σpX 0,E ptqqdβptq with initial value X 0,E p0q " x 0 0 , where the noise is interpreted in the Itô sense. It is a well-known result that the standard Euler-Maruyama scheme applied in this setting is a method of strong order 1{2: for all p P r1, 8q, there exists C p pT q P p0, 8q such that for all ∆t P p0, ∆t 0 q one has

d p `X0,∆t,E N , X 0,E pT q ˘ď C p pT q∆t 1 2
In general, since σ is not constant, one has X 0,E pT q ‰ X 0 pT q, therefore sup

Pp0, 0q d p `X ,∆t,E N , X pT q
does not converge to 0 when ∆t Ñ 0. If the condition (13) from Assumption 3 is not satisfied, one can only obtain strong error estimates

d p `X ,∆t,E N , X pT q ˘ď C p p , T q∆t 1 2
which are not uniform with respect to : one has sup Pp0, 0q C p p , T q " 8.

The arguments above illustrate why the uniform strong error estimates (22) from Theorem 3.3 are non trivial results. The proof given in Section 6 illustrates the role of the condition (13) from Assumption 3. We refer to Section 7 for numerical experiments which illustrate Theorem 3.3 and the discussion above.

3.3.

Strong error estimates for the limiting scheme (20). As a corollary of Theorem 3.3, letting Ñ 0 in the uniform strong error estimate (22), one checks that the limiting scheme ( 20) is an integrator of order at least 1{2 for the limiting SDE [START_REF] Vandecasteele | Efficiency of a micro-macro acceleration method for scale-separated stochastic differential equations[END_REF].

Corollary 3.4. Let Assumptions 1 and 3 be satisfied. For all T P p0, 8q and p P r1, 8q, there exists C p pT q P p0, 8q such that for all ∆t P p0, ∆t 0 q, one has

(23) d p `X0,∆t N , X 0 pT q ˘ď C p pT q∆t 1 2 .
The proof of Corollary 3.4 is a straightforward consequence of Propositions 3.1 and 3.2 and of Theorem 3.3, the details are omitted.

Note that Corollary 3.4 is not a new result and can be proved directly by applying the fundamental theorem for mean-square convergence when p " 2, see for instance [START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF]Theorem 1.1]. The details are omitted. Under additional regularity conditions on the mapping σ and on the integrator Φ, it is possible to improve the result and obtain strong order of convergence 1 in the mean-square sense. For all T P p0, 8q, there exists C 2 pT q P p0, 8q such that for all ∆t P p0, ∆t 0 q, one has the mean-square error estimate

(24) sup 0ďnďN d 2 `X∆t n , Xpn∆tq ˘ď C 2 pT q∆t
for the limiting scheme (20) applied to the limiting SDE [START_REF] Vandecasteele | Efficiency of a micro-macro acceleration method for scale-separated stochastic differential equations[END_REF].

Proof. In order to apply the fundamental theorem for mean-square convergence, see [14, Theorem 1.1], it suffices to check that there exists C P p0, 8q such that for all x P T d and all ∆t P p0, ∆t 0 q, one has

d 2 `ϕp ? ∆tγ, xq, Φp ? ∆tγ, xq ˘ď C∆t 3 2 d `Erϕp ? ∆tγ, xqs, ErΦp ? ∆tγ, xqs ˘ď C∆t 2 ,
where γ " N p0, 1q is a standard real-valued Gaussian random variable.

The first claim is a straightforward consequence of the inequality (13) from Assumption 3, using the fact that Er|γ| 3 e q|γ| s ă 8 for any positive real number q P r0, 8q.

The second claim follows from a Taylor-expansion argument (which requires the additional regularity conditions stated in Proposition 3.5), using the identity Erγ 3 s " 0 and the fact that Er|γ| 4 e q|γ| s ă 8 for any positive real number q P r0, 8q. Proposition 3.5 suggest that the order 1{2 obtained in Theorem 3.3 may not be optimal, under appropriate regularity conditions. Whether one can replace order 1{2 by order 1 in the uniform strong error estimates of Theorem 3.3 is a question left open for future work.

Asymptotic preserving property.

As a consequence of Theorem 3.3, one also obtains that the numerical scheme ( 6) is asymptotic preserving. Proposition 3.6. For all p P r1, 8q and T P p0, 8q, one has Note that the result differs from the ones considered in the recent article [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF], where the asymptotic preserving property is understood in the sense of convergence in distribution. As already explained in [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF] and using the arguments given above in Section 3.2, Proposition 3.6 does not hold when the mapping Φ is the standard explicit Euler integrator, again the role of the condition 13 from Assumption 3 is required to have Proposition 3.6. Note that in [START_REF] Bréhier | On asymptotic preserving schemes for a class of stochastic differential equations in averaging and diffusion approximation regimes[END_REF] only the Heun integrator was considered.

Proof. On the one hand, Theorem 3. The proof of Proposition 3.6 is thus completed.

Auxiliary results

The objective of this section is to state and prove some auxiliary results which are used to prove Theorem 3.3 in Section 6. Let us emphasize that the most important results are Lemma 4.2, which is a consequence of the condition (13) from Assumption 3, and Lemma 4.4. The other auxiliary results are also needed but play less important roles in the analysis. Lemma 4.1. There exists C P p0, 8q such that for all x 1 , x 2 P T d and t 1 , t 2 P R, one has

d `ϕpt 1 , x 1 q, ϕpt 2 , x 2 q ˘ď C `|t 2 ´t1 | `eCp|t1|`|t2|q |x 2 ´x1 | ˘.
Proof of Lemma 4.1. First, owing to [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF] Second, if x 1 , x 2 P T d , then for all t ě 0 let ηpt; x 1 , x 2 q " d `ϕpt, x 1 q, ϕpt, x 2 q ˘. One has

ηpt; x 1 , x 2 q ď ż t 0 sup xPT d }σ 1 pxq}ηps; x 1 , x 2 qds ď C ż t 0 ηps; x 1 , x 2 qds,
since σ is of class C 1 with bounded derivative by Assumption 1. Using the identity ηp0; x 1 , x 2 q " dpx 1 , x 2 q, and applying Gronwall's lemma, one obtains for all t ě 0 the inequality d `ϕpt, x 1 q, ϕpt, x 2 q ˘" ηpt; x 1 , x 2 q ď e Ct dpx 1 , x 2 q.

Similarly, when t ď 0, one obtains d `ϕpt, x 1 q, ϕpt, x 2 q ˘ď e C|t| dpx 1 , x 2 q.

Combining the upper bounds and using the triangle inequality then concludes the proof of Lemma 4.1.

Before stating the next auxiliary result, observe that the following identities hold, as a consequence of the condition (13) from Assumption 3: for all x P R d , (26)

B t Φpt " 0, xq " B t ϕpt " 0, xq " σpxq B 2 t Φpt " 0, xq " B 2 t ϕpt " 0, xq " σ 1 pxqσpxq B t B x Φpt " 0, xq " B t B x ϕpt " 0, xq " σ 1 pxq.
The first and the third equalities in (26) only require the integrator to be of order at least 1, however the assumption (13) that the order is at least 2 is required to obtain the second equality, which plays a crucial role in the proof of Lemma 4.2 below.

Let us define the auxiliary function δΦ as follows: for all t 1 , t 

B t1 B t2 δΦpt 1 , t 2 , xq " B t1 B t2 `Φpt 1 `t2 , xq ´Φpt 1 , Φpt 2 , xqq " B t1 `Bt Φpt 1 `t2 , xq ´Bx Φpt 1 , Φpt 2 , xqqB t Φpt 2 , xq " 
B 2 t Φpt 1 `t2 , xq ´Bt B x Φpt 1 , Φpt 2 , xqqB t Φpt 2 , xq.
As a consequence of the three identities (26), for all x P T d , one has B t1 B t2 δΦpt 1 " 0, t 2 " 0, xq " 0.

In addition, as a consequence of the condition [START_REF] Pagès | Numerical probability. Universitext[END_REF] 

d `ΦE pt 1 `t2 , xq, Φ E pt 1 , Φ E pt 2 , xq ˘ď C|t 1 ||t 2 |.
The comparison of this inequality with (28) illustrates why using a second-order integrator (satisfying (13) from Assumption 3) is crucial in the proof of uniform strong error estimates.

4.2.

Stong error estimate for the approximation of the Ornstein-Uhlenbeck component. Let us provide a useful strong error estimate for the approximation of m pt n q by m ,∆t n . Lemma 4.4. For all p P r1, 8q, there exists C p P p0, 8q such that for all P p0, 0 q, all ∆t P p0, ∆t 0 q and all n P N, one has

(29) }m ,∆t n ´m pt n q} p ď C p `?∆t `1 n ˘.
Note that the error estimate ( 29) is not uniform with respect to . In addition, an additional error term 1{n appears, which is not small if n " 1 for instance. In the proof of Theorem 3.3 in Section 6, Lemma 4.4 is used to obtain upper bounds for }m ,∆t n ´m pt n q} p , which are uniform with respect to . The error terms 1{n and 1{n 2 are summed for n " 1, . . . , N and using

N ÿ n"1 1 n ď CpT q| logp∆tq| , N ÿ n"1 1 n 2 ď C
with T " N ∆t is sufficient to obtain the required strong error estimates. Lemma 4.4 has been stated and proved in the PhD thesis [START_REF] Rakotonirina-Ricquebourg | Etude théorique et numérique d'équations cinétiques stochastiques multi-échelles[END_REF]. However, due to its importance for the proof of Theorem 3.3, a detailed proof is given below.

Proof of Lemma 4.4. It suffices to consider the case p " 2, since the random variable m ,∆t n ´m pt n q is Gaussian.

Using the identities m pt n q " e ´tn 2 m 0 `1

ż tn 0 e ´tn´s 2 dβpsq " e ´t 2 m 0 `1 n´1 ÿ "0 ż t `1 t e ´tn´s 2 dβpsq m ,∆t n " 1 p1 `∆t 2 q n m 0 `1 n´1 ÿ "0 1 p1 `∆t 2 q n´ `βpt n`1 q ´βpt n q ˘,
and Itô's isometry formula, one obtains

Er|m ,∆t n ´m pt n q| 2 s ď 3 ´1 p1 `∆t 2 q n ´e´n ∆t 2 ¯2|m 0 | 2 `3∆t 2 n´1 ÿ "0 ´1 p1 `∆t 2 q n´ ´e´p n´ q∆t 2 ¯2 `3 2 n´1 ÿ "0 ż t `1 t ´e´t n ´t 2 ´e´t n ´s 2 ¯2ds.
Note that one has the inequality

sup nPN sup zPp0,8q n ˇˇ1 p1 `zq n ´e´nz ˇˇă 8.
Indeed, for all n P N the maximum of the function

z P r0, 8q Þ Ñ 1 p1 `zq n ´e´nz P r0, 8q
is attained for a real number z " z n satisfying e ´nzn " 1 p1`znq n`1 : as a consequence sup zPp0,8q `1 p1 `zq n ´e´nz ˘" 1 p1 `zn q n ´e´nzn " z n p1 `zn q n`1 ď

z n pn `1qz n ď 1 n `1 .
As a consequence of the inequality above, one obtains upper bounds for the first and the second error terms above: ´1 p1 `∆t

2 q n ´e´n ∆t 2 ¯2|m 0 | 2 ď C n 2 ,
using Assumption 2, and

∆t 2 n´1 ÿ "0 ´1 p1 `∆t 2 q n´ ´e´p n´ q∆t 2 ¯2 ď C ∆t 2 n´1 ÿ "0 1 pn ´ q 2 ď C ∆t 2 .
The third error term is treated as follows: using the inequality

sup zPp0,8q
pe ´z ´1q 2 z ă 8, one obtains

1 2 n´1 ÿ "0 ż t `1 t ´e´t n ´t 2 ´e´t n ´s 2 ¯2ds " 1 2 n´1 ÿ "0 ż t `1 t ´e´s ´t 2 ´1¯2 e ´tn´s 2 ds ď C 2 ∆t 2 ż tn 0 e ´tn´s 2 ds ď C∆t 2 .
Gathering the estimates then concludes the proof of Lemma 4.4.

4.3.

Properties of the Ornstein-Uhlenbeck component. This section is devoted to the proof of Lemma 4.5 below, which states a series of results concerning m ptq and ζ ptq, see ( 8) and ( 7) respectively. Lemma 4.5. ' One has moment bounds for m ptq, uniformly with respect to P p0, 0 q and t ě 0: for all p P r1, 8q, one has

(30) sup Pp0, 0q sup tě0 }m ptq} p ă 8.
In addition, one has exponential moment bounds for m ptq, uniformly with respect to P p0, 0 q and t ě 0: for all q P p0, 8q, one has

(31) sup Pp0, 0q sup tě0 Ere q|m ptq| s ă 8.
' For all t ě 0, ζ ptq converges to βptq when Ñ 0, in the following sense: for all p P r1, 8q, there exists C p P p0, 8q such that for all P p0, 0 q one has (32) sup tě0 }ζ ptq ´βptq} p ď C p .

' One has exponential moment bounds for ζ ptq and βptq, uniformly with respect to P p0, 0 q and to t P r0, T s: for all T P p0, 8q and all q P p0, 8q, one has ' One has bounds on the increments of ζ , uniformly with respect to P p0, 0 q: for all p P r1, 8q, there exists C p P p0, 8q such that for all t 1 , t 2 ě 0 one has

(34) sup Pp0, 0q Er|ζ pt 2 q ´ζ pt 1 q| 2p s ď C p |t 2 ´t1 | p .
Proof of Lemma 4.5. ' Proof of the inequalities (30) and (31). Since m ptq is a Gaussian random variable, it suffices to consider the case p " 2. For all P p0, 0 q and t ě 0, one has m ptq " e ´t 2 m 0 `1 ż t 0 e ´t´s 2 dβpsq, and applying Itô's isometry formula yields

Er|m ptq| 2 s " e ´2 t 2 |m 0 | 2 `1 2 ż t 0 e ´2 t´s 2 ds ď sup εPp0, 0 q |m ε 0 | 2 `1 2 .
Using Assumption 2 then yields (30). The exponential moment bounds (31) are then a straightforward consequence of the uniform boundedness with respect to P p0, 0 q and t ě 0 of the mean and of the variance of the Gaussian random variable m ptq.

' Proof of the inequality (32).

Observe that for all t ě 0 and P p0, 0 q, one has m ptq ´m p0q " ´1 2 ż t 0 m psqds `1 βptq, therefore one has the identity

ζ ptq " 1 ż t 0 m psqds " βptq ` pm 0 ´m ptqq.
Using the inequality (30), one then obtains the error estimate

Er|ζ ptq ´βptq| 2 s ď 2 2 sup εPp0, 0 q sup tě0 Er|m ε ptq| 2 s ď C 2 .
The constant C P p0, 8q does not depend on P p0, 0 or t ě 0. This gives (32) with p " 2. Since ζ pT q´βpT q is a Gaussian random variable, this also yields (32) for arbitrary p P r1, 8q. ' Proof of the inequality (33). First, βptq is a centered Gaussian random variable with variance Er|βptq| 2 s " t ď T . As a consequence, one has

sup 0ďtďT Ere 1 4T |βptq| 2 s ă 8.
Let q P p0, 8q. Using Young's inequality, one has 4q|βptq| ď 1 4T |βptq| 2 `16T q 2 , therefore one obtains the exponential moment bounds sup 0ďtďT Ere q|βpT q| s ă 8.

Second, note that

Ere q|ζ ptq| s ď Ere q|βptq|`q|ζ ptq´βpT q| s ď `Ere 2q|βptq| s ˘1 2 `Ere 2q|ζ ptq´βptq| s ˘1 2 , using the Cauchy-Schwarz inequality. It suffices to deal with the second factor in the right-hand side above, the first factor being upper bounded using the estimate proved above. Owing to the inequality (32), the Gaussian random variable ζ ptq ´βptq has a mean and a variance which are bounded uniformly with respect to P p0, 0 q and t P r0, 8q. As a consequence, there exists c P p0, 8q such that sup Pp0, 0q sup tě0 Ere c|ζ ptq´βptq| 2 s ă 8.

Using Young's inequality gives

2q|ζ ptq ´βptq| ď c|ζ ptq ´βptq| 2 `q2 c , and the conclusion of the proof of the inequality (33) is then straightforward. ' Proof of the inequality (34). Since the random variable

ζ pt 2 q ´ζ pt 1 q " 1 ż t2 t1 m psqds
is Gaussian, it suffices to consider the case p " 1.

Without loss of generality, assume that t 1 ď t 2 . First, note that the mean of ζ pt 2 q ´ζ pt 1 q satisfies ˇˇErζ pt 2 q ´ζ pt 1 qs ˇˇ" 1 ˇˇż t2 t1

Erm psqsds ˇˇ"

1 ż t2 t1 e ´s 2 ds|m 0 | ď `e´t 1 2 ´e´t 2 2 ˘|m 0 | ď Cpt 2 ´t1 q 1 2 ,
where C does not depend on , using the inequality

sup z1,z2ě0 |e ´z2 ´e´z1 | |z 2 ´z1 | 1 2 ă 8
and Assumption 2.

Second, the variance of ζ pt 2 q ´ζ pt 1 q satisfies Er ˇˇζ pt 2 q ´ζ pt 1 q ´Erζ pt 2 q ´ζ pt 1 qs Combining the estimates concludes the proof of the inequality (34). , uniformly with respect to ∆t P p0, ∆t 0 q, P p0, 0 q and n P N: for all p P r1, 8q, one has In addition, one has exponential moment bounds for m ,∆t n , uniformly with respect to ∆t P p0, ∆t 0 , P p0, 0 q and n P N: for all q P p0, 8q, one has ' For all n ě 0, ∆tm ,∆t n`1 converges to ∆β n " βpt n`1 q ´βpt n q when Ñ 0, in the following sense: for all p P r1, 8q, there exists C p P p0, 8q such that for all P p0, 0 q one has (37) sup ∆tPp0,∆t0q

ˇˇ2
sup ně0 } ∆tm ,∆t n`1 ´∆β n } p ď C p .
' One has exponential moment bounds for ∆tm ,∆t n`1 , uniformly with respect to ∆t P p0, ∆t 0 q, P p0, 0 q and to n ě 0: for all T P p0, 8q and all q P p0, 8q, one has is a Gaussian random variable, it suffices to consider the case p " 2. For all P p0, 0 q, ∆t P p0, ∆t 0 q and n ě 0, one has

(
m ,∆t n " 1 p1 `∆t 2 q n m 0 `1 n´1 ÿ 1 p1 `∆t 2 q n´ ∆β .
Since the Gaussian random variables `∆β ˘ ě0 are centered and independent, with variance ∆t, one obtains

Er|m ,∆t n | 2 s " 1 p1 `∆t 2 q 2n |m 0 | 2 `∆t 2 n´1 ÿ "0 1 p1 `∆t 2 q 2pn´ q ď |m 0 | 2 `1 2 `∆t 2 ď sup εPp0, 0q |m ε 0 | 2 `1 2 .
Using Assumption 2 then yields (35).

The exponential moment bounds (36) are then a straightforward consequence of the uniform boundedness with respect to P p0, 0 q and t ě 0 of the mean and of the variance of the Gaussian random variable m ,∆t n . ' Proof of the inequality (37). Since ∆tm ,∆t n`1 ´?∆tγ n is a Gaussian random variable, it suffices to consider the case p " 2. By the definition of the scheme, one has the equality ∆tm ,∆t n`1 " ∆β n ` pm ,∆t n ´m ,∆t n`1 q.

Using the inequality (35), one then obtains (37). ' Proof of the inequality (38).

As a consequence of the inequality (37), the mean and variance of the Gaussian random variable

∆tm ,∆t n`1
are bounded uniformly with respect to P p0, 0 q, ∆t P p0, ∆t 0 q and n ě 0, there exists c P p0, 8q such that Since ∆tm ,∆t n`1 is a Gaussian random variable, it suffices to consider the case p " 1. Using the identity

m ,∆t n " 1 p1 `∆t 2 q n m 0 ` n´1 ÿ "0 1 
p1 `∆t 2 q n´ ∆β , and the equality

∆t 2 n´1 ÿ "0 1 p1 `∆t 2 q 2pn´ q " 1 2 `∆t 2 , one obtains Er| ∆tm ,∆t n`1 | 2 s ď ∆t ∆t 2 p1 `∆t q 2pn`1q |m 0 | 2 `∆t ∆t 2 2 `∆t 2 ď ∆t|m 0 | 2 `∆t.
Using Assumption 2, this concludes the proof of the inequality (39).

Proofs of the results from Section 3.1

This short section is devoted to giving detailed proofs of Proposition 3.1 and 3.2, concerning the asymptotic behavior of X ptq and X ,∆t n when Ñ 0 respectively. The proofs are straightforward consequences of the auxiliary results studied in Section 4.

Proof of Proposition 3.1.

Proof of Proposition 3.1. Let T P p0, 8q and p P r1, 8q. For all t P r0, T s, the random variables X ptq and Xptq are expressed in terms of the flow map ϕ and of the Gaussian random variables ζ ptq and βptq using ( 11) and ( 19) respectively. Applying Lemma 4.1, one obtains d p pX ptq, Xptqq " d p `ϕpζ ptq, x 0 q, ϕpβptq, x 0 q ď }ζ ptq ´βptq} p `}e C|ζ ptq|`C|βptq| } p dpx 0 , x 0 0 q. Using the inequality (32) and the exponential moment bounds (33) from Lemma 4.5 yields the inequality sup 0ďtďT d p pX ptq, Xptqq ď C p pT q ` `dpx 0 , x 0 0 q ˘.

Using Assumption 2 then concludes the proof of Proposition 3.1.

Proof of Proposition 3.2.

Proof of Proposition 3.2. Using the definitions ( 17) and (20) of the schemes, for all n P t0, . . . , N 1u, one has

dpX ,∆t n`1 , X 0,∆t n`1 q " d `Φp ∆tm n`1 , X ,∆t n q, Φp∆β n , X 0,∆t n q ď Ce C| ∆tm n`1 |`C|∆βn| `| ∆tm n`1 ´∆β n | `dpX ,∆t n , X 0,∆t n q ˘,
using the inequality ( 14) from Assumption 3. Using Hölder's inequality, the exponential moment bounds (38) and the inequality (37) from Lemma 4.6, there exists C p P p0, 8q such that for all n P t0, . . . , u one has

d p pX ,∆t n`1 , X 0,∆t n`1 q ď C p ` `d2p pX ,∆t n , X 0,∆t n q ˘.
Owing to Assumption 2, one has d p pX ,∆t 0 , X 0,∆t 0 q " dpx 0 , x 0 0 q Ñ Ñ0 0 and it is then straightforward to check recursively that for all p P r1, 8q and n P t0, . . . , N u one has

d p pX ,∆t n`1 , X 0,∆t n q Ñ Ñ0 0.
This concludes the proof of Proposition 3.2.

Proof of the main result

This section is devoted to the proof of Theorem 3.3.

Proof of Theorem 3. 

d p pX ,∆t N , X pt N qq ď d p pX ,∆t N , Y ,∆t N q `dp pY ,∆t N , X pt N qq.
The first error term d p pX ,∆t N , Y ,∆t N q in the right-hand side of (41) is treated as follows: using Lemma 4.1 and the inequality (13) from Assumption 3, one obtains

d p pX ,∆t N , Y ,∆t N q " d p `X ,∆t N , Φ ` pm ,∆t N , m pt N qq, X ,∆t N ˘ď d p `ϕp0, X ,∆t N q, ϕ ` pm ,∆t N ´m pt N qq, X ,∆t N ˘d p `ϕ` pm ,∆t N ´m pt N qq, X ,∆t N ˘, Φ ` pm ,∆t n ´m pt N qq, X ,∆t N ˘ď C }m ,∆t N ´m pt N q} p `C 3 }pm ,∆t N ´m pt N qq 3 e C |m ,∆t N ´m pt N q| } p .
' Note that R ,∆t 0,2 " 0. Using the inequality (28) from Lemma 4.2 with t 1 " ζ pt n`1 q ´ζ pt n q and t 2 " pm ,∆t n ´m pt n qq, one obtains, for all n P t1, . . . , N ´1u, .

d
Combining the upper bound (42) and the three inequalities (44), ( 45) and ( 46), one obtains

d p pY ,∆t N , X pt N qq ď C p pT q∆t 1 2 .
This concludes the treatment of the second error term in the right-hand side of (41). Combining the two upper bounds yields (22), which concludes the proof of Theorem 3.3.

Numerical experiments

The objective of this section is to illustrate Theorem 3.3 with numerical experiments. Set d " 1, T " 1, x 0 " 0 and σpxq " cospxq for all x P T " T 1 " R{Z. The reference time-step size denoted by h ref " ∆t ref " 2 ´18 , and the time-step size h " ∆t takes values in t2 ´6, . . . , 2 ´16 u. The mean-square error is estimated by averaging the error over M s samples. The error is represented in logarithmic scales. The integrator Φ is given by Heun's method: Φpt, xq " x `t 2 `σpxq `σpx `tσpxqq ˘for all t P R and x P T. One observes similar results when using for instance the explicit midpoint method, the numerical results are not reported.

Let us first confirm that the order of convergence of the limiting scheme (20) is equal to 1, see Proposition 3.5. This is illustrated by Figure 1. In Figure 2, one has P t0.04, 0.02, 0.01u and M s " 10 3 . One observes that for large values of h, the error decreases when decreases, whereas for small values of h the error increases when decreases. For any value of , for sufficiently small values of h the order of convergence is equal to 1. However, for larger values of h one seems to observe a lower order of convergence.

Let us provide an additional numerical experiment, for different values of , in order to confirm the results of Figure 2 and their interpretation. In Figure 3, one has P t0.1, 0.01, 0.001u and M s " 10 2 . For the largest value " 0.1, one observes a decrease of the mean-square error with order of convergence 1. For the other values of , the behavior is different. For " 0.01, the error saturates for large values of h, and decreases with order 1 when h is sufficiently small -this is the same behavior as observed in Figure 2. For " 0.001, one observes first a decrease with order 1 for large h, and then the error saturates for smaller values of h. If one could decrease the values of h, one would again observe a decrease of the error with order 1 for this value of .

Owing to the results of Figure 2 and 3, it is not possible to replace the order of convergence 1{2 in the error estimate given in Theorem 3.3 by 1. The behavior of the mean-square error when ∆t and vary is not trivial. However, it is remarkable to be able to obtain a uniform error estimate with respect to , with order of convergence 1{2 with respect to ∆t.

Is is also worth providing numerical experiments when the standard explicit Euler scheme is used, i. e. Φpt, xq " x `tσpxq. In that case, as explained in Section 3.2, Theorem 3.3 does not hold. Figure 4 gives results with M s " 10 2 , and with P t0.04, 0.02, 0.01u (left) and P t0.1, 0.01, 0.001u (right). In Figure 4, one observes that for a given value of , the error decreases when h is sufficiently small, but the error is large for large values of h, contrary to what can be seen in Figures 2 and3. For " 0.001, the values of h are not sufficiently small to observe the decrease of the error in Figure 4. This comparison illustrates the superiory of the scheme [START_REF] Rakotonirina-Ricquebourg | Etude théorique et numérique d'équations cinétiques stochastiques multi-échelles[END_REF] studied in this article for the approximation of the multiscale SDE system (6), and how Theorem 3.3 is a non trivial theoretical results with a huge importance in practice.

3 2 q

 2 to obtain a global error term of size Op∆t 1 2

d

  p pX ,∆t N , X pT qq " lim ∆tÑ0 lim Ñ0 d p pX ,∆t N , X pT qq " 0.

  On the other hand, applying Proposition 3.1 and Proposition 3.2 in the first step, and Corollary 3.4 in the second step, one obtains lim ∆tÑ0 lim Ñ0 d p pX ,∆t N , X pT qq " lim ∆tÑ0 d p pX 0,∆t N , X 0 pT qq " 0.

4. 1 .

 1 Properties of the flow map and of the integrator. Lemma 4.1 below is a standard result in the analysis of ordinary differential equations. Its proof is given for completeness. It is worth comparing the result of Lemma 4.1 for the flow map ϕ with the conditions imposed in Assumption 3 for the integrator Φ.

Ere

  q|ζ pT q| s `sup 0ďtďT Ere q|βpT q| s ă 8.

4. 4 ..

 4 Properties of the discretized Ornstein-Uhlenbeck component. This section is devoted to the proof of Lemma 4.6 below, which is a variant of Lemma 4.5 from Section 4.3 above, which states a series of results concerning m ,∆t n Lemma 4.6. ' One has moment bounds for m ,∆t n

2 s ă 8 .

 28 Using Young's inequality then concludes the proof of the inequality (38). The details are similar to those used in the proof of Lemma 4.5 and are omitted.' Proof of the inequality (39).
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Figure 2 .

 2 Figure 2. Mean-square error as a function of the time-step size h " ∆t, with " 0.04, 0.02, 0.01. The dotted lines have slopes 1{2 and 1.

Figure 3 .

 3 Figure 3. Mean-square error as a function of the time-step size h " ∆t, with " 0.1, 0.01, 0.001. The dotted lines have slopes 1{2 and 1.

Figure 4 .

 4 Figure 4. Mean-square error for the standard Euler scheme as a function of the time-step size h " ∆t, with " 0.04, 0.02, 0.01 (left) and " 0.1, 0.01, 0.001 (right). The dotted lines have slopes 1{2 and 1.

  T d and m ptq P R, for all t ě 0. The component m is solution of a one-dimensional stochastic differential equation, and is an Ornstein-Uhlenbeck process. It does not depend on the component X . The mapping σ satisfies Assumption 1 below. Assumption 1. Let σ : T d Ñ R d be a mapping of class C 3 .

	2.1. The multiscale SDE system. We consider the following class of multiscale stochastic differential
	equations systems			
		$ ' &	dX ptq "	σpX ptqqm ptq dt
	(6)	' %	dm ptq " ´m	ptq 2 dt `1 dβptq,
	where X ptq P			

  Proposition 3.5. Assume that for all x P T d the mappings ϕp¨, xq and Φp¨, xq are of class C 4 , and that there exists C P p0, 8q such that for all t P R one has

	sup xPT d	|B 3 t ϕpt, xq| `sup xPT d	|B 4 t ϕpt, xq| `sup xPT d	|B 3 t Φpt, xq| `sup xPT d	|B 4

t Φpt, xq| ď e C|t| .

  2 P R and x P T d , set (27) δΦpt 1 , t 2 , xq " Φpt 1 `t2 , xq ´Φpt 1 , Φpt 2 , xqq. In general, δΦpt 1 , t 2 , xq ‰ 0 since the integrator does not satisfy a flow property similar to (12) for the flow map -which can be written as the property δϕpt 1 , t 2 , xq :" ϕpt 1 `t2 , xq ´ϕpt 1 , Φpt 2 , xqq " 0 for all t 1 , t 2 P R and x P T d . Lemma 4.2 below gives an upper bound for δΦpt 1 , t 2 , xq which is crucial for the proof of Theorem 3.3. Owing to the regularity conditions on Φ from Lemma 3, the mapping δΦ : R 2 ˆTd Ñ R d is of class C 3 , and for all t 1 , t 2 P R and x P T d , one has

Lemma 4.2. There exists C P p0, 8q such that for all t 1 , t 2 P R and x P T d , one has

(28) d `Φpt 1 `t2 , xq, Φpt 1 , Φpt 2 , xq ˘ď C `|t 1 |t 2 2 `t2 1 |t 2 | ˘eCp|t1|`|t2|q .

Proof of Lemma 4.2.

  First, integrating with respect to the t 1 variable gives for all t 1 , t 2 P R|B t2 δΦpt 1 , t 2 , xq| ď |B t1 B t2 δΦpt, t 2 , xq|dt ď Ce C|t1|`C|t2| p|t 1 | `|t 2 |q|t 1 |.Second, integrating with respect to the t 2 variable gives for all t 1 , t 2 P R Remark 4.3. For the standard explicit Euler scheme, such that Φ E pt, xq " x `tσpxq, one has δΦ E pt 1 , t 2 , xq " x `pt 1 `t2 qσpxq ´`Φ E pt 2 , xq `t1 σpΦ E pt 2 , xqq "

		t 1 `σpxq ´σpx `t2 σpxqq	ȃnd
	one only obtains the inequality	
		(Assumption 3), one has upper bounds
	sup xPT d	|B 2 t1 B t2 δΦpt 1 , t 2 , xq| `sup xPT d	|B t1 B 2
		ż |t1|	
		0	

t2 ept 1 , t 2 ; xq| ď Ce C|t1|`C|t2| . for all t 1 , t 2 P R. Therefore one obtains the inequality sup xPT d |B t1 B t2 δΦpt 1 , t 2 , xq| ď Ce C|t1|`C|t2| p|t 1 | `|t 2 |q for all t 1 , t 2 P R. Note also that, for all x P T d , one has δΦp0, t 2 , xq " B t2 δΦp0, t 2 , xq " 0 for all t 2 P R and δΦpt 1 , 0, xq " 0 for all t 1 P R. |δΦpt 1 , t 2 , xq| ď ż |t2| 0 |B t2 δΦpt 1 , t, xq|dt ď Ce C|t1|`C|t2| p|t 1 | `|t 2 |q|t 1 ||t 2 |. Using the identity p|t 1 | `|t 2 |q|t 1 ||t 2 | " `|t 1 |t 2 2 `t2 1 |t 2 | ˘then concludes the proof of Lemma 4.2.

  Proof of Lemma 4.6. ' Proof of the inequalities (35) and (36).

	Since m ,∆t n					
	38)	sup	sup		sup	Ere q|	,∆t n`1 | s ă 8. ∆tm
		Pp0, 0q	∆tPp0,∆t0q	ně0
	' One has an error estimate for	∆tm ,∆t n`1 , uniformly with respect to P p0, 0 q: for all p P r1, 8q, there
	exists C p P p0, 8q such that one has				
	(39)	sup Pp0,∆t0q	sup ∆tPp0,∆t0q	sup ně0	1 ∆t p Er|	∆tm ,∆t n`1 | 2p s ă 8.

  2p pR ,∆t n,2 , 0q ď C}pζ pt n`1 q ´ζ pt n qq

					`	pm ,∆t n	´m pt n qq ˘2e C|ζ ptn`1q´ζ ptnq| e C| pm ,∆t n	´m ptnqq| } 2p
	`C}	`ζ	pt n`1 q ´ζ pt n q	˘2	pm ,∆t n	´m pt n qqe C|ζ ptn`1q´ζ ptnq| e C| pm ,∆t n	´m ptnqq| } 2p
	ď C p pT q}pζ pt n`1 q ´ζ pt n qq	`	pm ,∆t n	´m pt n qq ˘2} 3p
	`Cp pT q} `ζ	pt n`1 q ´ζ pt n q	˘2	pm ,∆t n	´m pt n qq} 3p
	using Hölder's inequality and the exponential moment bounds (31), (36) and (33). Finally, using Hölder's
	inequality, the error estimate (29) from Lemma 4.4 and the moment bound (34), one obtains, for all n P
	t1, . . . , N ´1u,						
	d 2p pR ,∆t n,2 , 0q ď C p pT q∆t	1 2 `∆t	`1 n 2 ˘`C p pT q∆t `∆t	1 2 `1 n	˘.
	Therefore one has the upper bound			
				N ´1		
	(46)			ÿ	d 2p pR ,∆t n,2 , 0q ď C p pT q∆t	1 2
				n"0		
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, X pt N qq in the right-hand side of (41). The strategy is based on a telescoping sum argument: using the expression [START_REF] Laurent | A uniformly accurate scheme for the numerical integration of penalized langevin dynamics[END_REF] for X pt N q " X pT q and the equalities

ÿ n"0 d ´ϕpζ pt N q ´ζ pt n`1 q, Y ,∆t n`1 q, ϕ `pζ pt N q ´ζ pt n`1 q, ϕpζ pt n`1 q ´ζ pt n q, Y ,∆t n q ˘¯, where the last inequality is a consequence of the flow property [START_REF] Legoll | Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study[END_REF] of the map ϕ.

Using the Lipschitz continuity property of the mapping ϕpζ pt N q ´ζ pt n`1 q, ¨q given in Lemma 4.1, then Hölder's inequality and the exponential moment bounds (33) and (38), one obtains the inequality (42)

We claim that the following identity holds: for all n P t0, . . . , N ´1u, one has

with the error terms R ,∆t n,1 and R ,∆t n,2 defined by

using the auxiliary function δΦ defined by (27).

The proof of the claim (43) is performed in two steps. First, using the definition (40) of the auxiliary random variable Y ,∆t n`1 and the definition (17) of the numerical scheme, one has

Second, using the identities ∆tm n`1 " ∆β n ` pm ,∆t n ´m ,∆t n`1 q ζ pt n`1 q ´ζ pt n q " ż tn`1 tn m ptq dt " βpt n`1 q ´βpt n q ` pm pt n q ´m pt n`1 qq and ∆β n " βpt n`1 q ´βpt n q, one obtains Y ,∆t n`1 ´R ,∆t n,1 " Φp pm ,∆t n ´m pt n`1 qq `∆β n , X n q " Φp∆β n ` pm pt n q ´m pt n`1 qq ` pm ,∆t n ´m pt n qq, X n q " Φpζ pt n`1 q ´ζ pt n q ` pm ,∆t n ´m pt n qq, X n q " Φpζ pt n`1 q ´ζ pt n q, Φp pm ,∆t n ´m pt n qq, X n qq `R ,∆t n,2

" Φpζ pt n`1 q ´ζ pt n q, Y ,∆t n q `R ,∆t n,2 , using the definition (40) of Y ,∆t n in the last step. This concludes the proof of the claim (43). Combining ( 42) and ( 43), one obtains the following upper bound for the error:

To conclude the proof, it remains to prove upper bounds for the three terms in the right-hand side of the inequality above. ' Using the inequality (13) from Assumption 3, Hölder's inequality, the exponential moment bounds (33), and finally the inequality (34), one obtains, for all n P t0, . . . , N ´1u,

Therefore one has the upper bound (44)