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Abstract: This work proposes a set-valued extension of the classical unknown input observers for
linear continuous-time systems without using set-by-step set-membership computations or imposing the
positivity property of the dynamics of the estimation error. In fact, based on an explicit set-integration
method of the estimation error, the framing and convergence properties of the proposed set-valued
unknown input observer are demonstrated. Moreover, thanks to the proposed design approach, robust
threshold on the residual can be established a priori. Simulation results are reported to highlight the
effectiveness of the proposed state estimator in the presence of unknown inputs.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
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1. INTRODUCTION

A crucial issue in model-based fault diagnosis is the genera-
tion of reliable residual signals that indicate the presence of
faults in the systems. In the literature, several approaches have
been proposed to deal with this problem. For instance, one can
mention factorization methods for residual generation, parity
vector methods, online parameters identification approaches
and observer-based approaches, the interested reader can refer
to (Chen and Patton, 1999) and the references therein. The core
idea behind the observer approaches consists in estimating the
outputs of the system from the available data. Then, the output
estimation error can be considered as a residual. In this case,
the estimation of the state vector is worthless. Thus, as a matter
of fact, the use of functional observers is advisable. However,
for fault detection and isolation issue the use of unknown input
observer is more suitable. By definition, the estimation error of
unknown input observer has to converge towards zero regard-
less of the presence of unknown disturbances in the system.
In other words, the estimation error is decoupled from the un-
known inputs. This fact allows one to generate robust residual
signals. In the literature, necessary and sufficient conditions are
provided to show the existence of unknown input observers and
a variety of synthesis methods have been proposed for both
setting: deterministic (Saif, 1998; Takahashi and Peres, 1999;
Valcher, 1999; Chen and Patton, 1999; Darouach et al., 1994;
Hou and Miiller, 1992) and stochastic (Darouach et al., 2003;
Hou and Patton, 1998; Saberi et al., 2000).

Notice, in the case where the representation of the system is af-
fected by bounded uncertainties, like additive modeling errors,
process and measurement noises set-valued methods (Alamo
et al., 2005; Le et al., 2013; Ben Chabane et al., 2014; Combas-
tel, 2015; Raissi et al., 2012; Efimov and Raissi, 2016; Mazenc
etal.,2014; Cacace et al., 2015; Meslem et al., 2018; Tang et al.,

2019; Meslem and Ramdani, 2020; Meslem et al., 2020b) offer
an interesting alternative to design robust unknown input ob-
servers. This promising research topic has been already tackled
in the literature. For example, the concept of interval observer is
extended to the case of unknown input observers in (Robinson
et al., 2017; Meyer et al., 2018). In (Robinson et al., 2017),
a reduced-order unknown input interval observer is proposed
while in (Meyer et al., 2018) a full-order unknown input interval
observer is introduced. For discrete-time systems, zonotopic
computation rules (Shephard, 1974; Kiihn, 1998; Combastel,
2003) are applied in (Xu et al., 2016) to compute step-by-step
outer approximations of the actual state vector of the system
regardless the presence of the unknown inputs. Recently, in
(Meslem et al., 2020a), interval analysis (Alefeld and Mayer,
2000; Jaulin et al., 2001) is applied to design interval ver-
sions of full-order and reduced-order unknown input observers
(Chen and Patton, 1999) and (Hou and Miiller, 1992). These
extensions are mainly based on the explicit reachability method
for linear discrete-time systems introduced in (Meslem et al.,
2018).

In the present contribution, a modified version of the set-
integration method developed in (Meslem et al., 2020b) is used
to design set-valued unknown input observer for continuous-
time systems. This allows one to get: (i) Guaranteed bounds on
the actual state vector of the system ; (i7) Reliable thresholds
of the residual signals that are insensitive to both initial state
estimation errors and unknown inputs.

The remaining parts of this paper are organized as follows.
Section 2 recalls briefly the classical structure of unknown
input observes for linear continuous-time systems. Section 3
presents a simple method to compute upper and lower bounds
of the range of a given box by linear transformation. Then, the
proposed set-valued unknown input observer is introduced in
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Section 4. Two numerical examples are studied in Section 5 to
show the effectiveness of the proposed method. Conclusion and
some perspectives are given in Section 6.

2. UNKNOWN INPUT OBSERVER

This section provides a straightforward and concise introduc-
tion on the design of unknown input observers (Patton et al.,
1989; Hou and Miiller, 1992; Maquin et al., 1994) for linear
continuous-time systems. This class of dynamical systems is
described by:

x(t) = Ax(t)+Bu(t)+Rd(t) 1)

y(t) = Cx(7)
where x(t) € R” stands for the state vector, y(f) € R" represents
the output vector, u(r) € R™ is the input vector and d(t) € R™
stands for the unknown input vector with n, > n,. The system
matrices A, B, C, and R are of appropriate dimensions. Notice
that, the matrices C and R are assumed to be a full row rank
matrix and a full column rank matrix, respectively.

By definition, unknown input observers have to estimate online
the state vector of (1) despite the presence of completely
unknown inputs gathered in vector d(r).

2.1 Conditions and design procedure

The existence of unknown input observers for system (1) is
shown if the following necessary and sufficient conditions
(Chen and Patton, 1999) are satisfied:

o rank(CR) = rank(R)
e (C,A)) is a detectable pair

where,

A} =A—R(CR)*CA 2)
and (CR)* stands for the pseudo-inverse matrix of CR. Thus,
the linear system described by

2(t) = Nz(t) +Mu(t) + Ly(r) 3)
(1) = 2(t) + Ky(1)
is an unknown input observer for system (1). Moreover, a
simple procedure to compute all the matrices involved in (3)
is itemized as follows:

K=R(CR)*,M = (I, — KC)B

Choose desired eigenvalues for the matrix N
Compute L; by pole assignment techniques
N=A,—-LC,L=L+NK

That is, thanks to this design procedure, one can affirm that the
output vector £(¢) of (3) is converging towards the actual state
vector of system (1) and the dynamics of the estimation error
e(t) = x(r) — %(¢) is stable. More formally, one has: V||e(to)|| #
0, |le(#)]| is bounded and

lim |le(r)]| =0 4)

t—r—+oo

3. BOUNDS ON THE RANGE OF A LINEAR
TRANSFORMATION

Let us denote by x a given box in R” that can be defined as
follows:

x:={xeR"|x <x<x, x, x, €R"} 5)

where the real vectors x; and x, are its upper and lower
bound, respectively. The operator < in (5) should be understood

component-wise. Now, let denote by & the range of a linear
transformation of the box x. That is,

P ={p=Hx:xe€x} (6)
where H is a real matrix of dimension m x n. Lower and upper
bounds on the polytope & can be determined as suggested in
the following lemma.

Lemma 1. (Efimov and Raissi, 2016) The bounds of the small-
est box that contains the polytope defined in (6) are computed
by:
Pu = H+xu 7H_)C]
pr=H'x—H x, @
where H* and H™ are two element-wise non-negative matrices
computed by the following formulas:
H" = max{0,,,H} ®)
H =H'-H

Notice, in (8), 0,, , stands for a zero matrix of dimension m X n
and the max operator is applied element-wise. Thus, one can
claim that for all p € & one has:

Pi < p < pu 9)

It is worth pointing out that the result of this lemma plays an
important role in the extension of the point-valued unknown
input observer (3) to the set-valued case.

4. RELTIABLE UNKNOWN INPUT OBSERVER

In this section, we will show how guaranteed bounds on the
estimation error can be determined in the case where system (1)
is affected by both state disturbance and measurement noises.
That is, the case of systems described by:
X(t) = Ax(t) + Bu(t) + Ew(t) + Rd(t)
y(t) = Cx(t) + Fv(r)
where, w(t) € R™, v(t) € R™ and its time derivative v(r) are
assumed to be unknown-but-bounded vectors that represent the
state disturbances, measurement noises and their time deriva-
tives, respectively. Notice that, by unknown-but-bounded vec-
tors we mean that:

e There exist bounded sets 7, ¥ and & such that,
w(t) e W
VtZtm{ vit) € ¥V
v(t) € &
e There exists a bounded set 2 that contains the initial
state x(#) of (10). That is,
x(to) € 2o (12)

The matrices E and F are assumed constant with appropriate
dimensions.

(10)

(1D

By direct computation one can show that, in this case, the esti-
mation error is governed by the following differential equation

é(t) = Ne(t) + Gr(t) (13)
where
G=[(l,—KC)E —L\F —KF] (14)
and w(t) »
r(t)z(v(t))é(”i/):% (15)
V(1) 3

Thus, the objective is to compute upper and lower bounds (e, (7)
and ¢;(¢), respectively) of the estimation error such that the
following properties are satisfied:
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e Framing: Vxy € Zp and 1 > 1,
() +e(t) <x(t) <R(t) +eyu(r)
e Convergence:
im Jleu(t) — er(t) < 8

where & is a non-negative constant that depends on the
size of the set Z.

4.1 Set-integration method

To achieve the above mentioned goal, we extend and improve
in this work the set-integration method introduced in (Meslem
et al., 2020b). This allows one to apply it in future work for
solving certain fault diagnosis problem based on generalized
observer scheme.

Let us denote by r, and r; upper and lower bounds of the set Z.
That is,
Vr(t) e Z, rp <r(t)<ry (16)
On the other hand, let us define the set of all the possible initial
estimation error by
5’0 = 5!5/0 —)?(l‘())

where £(#p) should be picked from the set Zy. Since 2y is a
bounded set, &) is bounded too. Then, let us denote by e,(t)
and e, (fp) two real vectors that satisfy

Ve(l‘()) € &, el(t()) < €(t0) < eu(t()) 17
Moreover, we define by ¥y (z,19) and Wy (z,19) the following

real matrices

Wy (t,00) = eNi—10) (18)

Wy 6(t 1) = V)G (19)
Proposition 1. The outputs of the following bounding system
Sult) = T;,G(tato)ru =Wy s(t,10)r

‘S:l(t) = lI‘;,G(Ial‘())rl_lP[T/,G(tvl‘O)ru
(20)

eu(t) = su(t) +¥5 (1,10)eu(to) — ¥y (1,10)e(10)

er(t) = s;1(t) +¥5(t,10)er(to) — Py (t,10)eu(to)
with initial conditions s, (t9) = s;(f9) = 0, provide a guaranteed
enclosure for all the possible estimation error solutions to (13).
That is,

Ve(ty) € &b, ei(t) <e(t) <e,(r) 21
Furthermore, since N is Hurwitz stable by construction, we
have

i — <
im_[leu(t) — er(t) < 8 (22)
Proof 1. The proof of this proposition follows up the same
guidelines used in (Meslem et al., 2020b). O

Remark 1. Notice, unlike the reachability method introduced
in (Meslem et al., 2020b) where the bounding Lemma 1 is
applied twice, the proposed set integration method applies this
lemma only once. This allows reducing conservatism linked to
the over-approximation of a polytope by an axis-aligned box.

Remark 2. Tt is worth pointing out that system (20) can be
solved numerically offline. Thus, the bounds of the estimation
error can be known a priori.

4.2 Robust unknown input observer

Now, thanks to the set-integration method introduced in Propo-
sition 1, a robust unknown input observer (set-valued observer)

will be designed to provide reliable estimations of the real state
vector of system (10) in the presence of unknown inputs and
unknown-but-bounded uncertainties.

Proposition 2. The unknown input observer (3) combined with
the reliable generator of the bounds of the estimation error
(20), provide a guaranteed enclosure of the actual state of (10)
despite the presence of state and measurements disturbances
and unknown inputs. Thatis, Vd(t) € R",Yw(t) € # ,v(t) € ¥
and x(t9) € %o, one has:

Vit > 1y, £(t) +e(t) < x(r) < X(t) +ey(t) (23)
and
Vie{l,...n}, tLiTm (eu,,'(t) - ely,'(t)) <6 24)

where §; are nonnegative constants and ey ;(t) denotes the ith
element of the vector e (7).

Proof 2. Note that, the framing property (23) is a direct conse-
quence of (21) and the convergence property (24) is straightfor-
wardly deduced form (22). O

Remark 3. In order to improve the tightness of the computed
state enclosure (23), that is to get smaller values for the con-
stants &;, it is recommended:

e As far as possible, consider some bounded inputs in (10)
as unknown inputs

e Apply nonlinear optimization methods to compute the
observer gain L; that minimizing the width of estimation
error box.

4.3 Generating robust set-membership thresholds

Unknown input observers play an important role in the design
of diagnostic algorithms. In fact, by analyzing the residual
signals generated by a bundle of these observers, fault detec-
tion and localization strategies are established. By definition a
residual is the different between the measured and estimated
outputs of the system,

er(1) = y(t) =9(t) (25)
and alarms are generated at each time these residuals exceed
user-defined thresholds £(¢). That is, when the following con-
dition is violated:

ler(t)]l2 < &(1) (26)
In practice, finding the right thresholds is not an easy task
due to the uncertainties that affecting the available models of
physical systems and the sensitivity of the residuals to the tran-
sient regime of the estimation error. To overcome these issues,
based on the proposed set-integration method, we propose the
following reliable set-membership test,
g(t) <ep(t) <glt) 27
where
&(t) = Cley(t) —C el(r)
e(t) = CTey(t) — Ceult)
That is, as long as the residual signals stays inside the wrap
defined by the robust upper and lower thresholds €,(z) and
&/(t), the behavior of the system is safe and no alarm has to
be activated.

(28)

5. ILLUSTRATIVE EXAMPLES

Two numerical examples borrowed from the literature are stud-
ied is this section to show the merit of the proposed method.
Two experiments are performed with the first example to high-
light the advantages of the introduced method, while the second
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example is used to compare the performance of our method
with that of a selected interval observer-based method.

5.1 Example 1

In this subsection the effectiveness of the proposed reliable
unknown input observer is shown on a numerical example. The
considered system is borrowed from (Chen and Patton, 1999),
where the system matrices are defined as follows:

110 0
A:(—l 0 O),B:(l),
0 —1 -1 0
I -1
-1 0
100 10
C—<001>’F<01)

The bounded set of initial conditions x(#y) is a box described

by,
[71v 5]
)C(to) € % = [_17 5]
[_ 1’ 5]
In this example, the considered state disturbance is an unknown
but bounded nonlinear term,
vVt > 19, w(t) =0.1sin (x2(2)) € # =[-0.1,0.1] (31
The measurement noises are assumed to be bounded and belong
to the bounded box,

(29)

(30)

—0.01, 0.01
vt zio, V(1) €V = ( %—0.017 0.01} > (32)
with bounded time derivatives. That is,
. —0.1, 0.1
wEmﬂﬁﬂx?<LQ10d> (33)

On the other hand, the simulated unknown input d(¢) is defined

as follows:
5ifr € [5,7]
d(r) = { (34)
0 otherwise
and the system input is given by
u(t) = 10sin(20¢) (35)

For the simulation purpose, the applied measurement noises
vector is expressed by:

() = 0.01cos(10r)
V=1 0.01sin(10¢)
First experiment  For this example we have rank(CR) =
rand(R) and the pair (C,A;) is observable. Thus, Proposition
2 can be applied to compute a guaranteed enclosure of the state

vector of the system in the presence of unknown input (34). The
chosen eigenvalues for the matrix N are

M=—-1,2=-2,4=-3
Thus, all the matrices involved in (3) and (20) are given by
—-0.2412 0 3

—2.0039 0 0.0481 0
N - ( ) 7 M - ( 1 ) 7
0.1608 —1 —3.9961 0

0 —0.0481 10
L=(-1 -3 J,k=[00
0 2.9961 00

(36)

(37

(38)

T T
N = = = = upper bound

= T T
EX 1
- N lower bound L
= 2F ™ 3 q
i e e T real state / \
& of- —~{um___.,,\.4// ——
=
-2t I i i i .
50 2 4 6 8 10 12
t
S 61\ T = = = = upper bound i ! 1
4k b --=-=- lower bound 4
= \‘ real state
= 2b 4
7 b AVAV NoA i (\/\/
= of . ARAARANAVY AAAAAAN]
= 2BwS L L L L L E|
50 2 4 6 8 10 12
t
T . T
= = == upper bound
lower bound
M\ real state et |
o
L L L L
6 8 10 12

Fig. 1. Guaranteed enclosure of the actual state trajectory.

o

eur(t) — era(t)

o N a

Fig. 2. The width of the estimated state enclosure.

The simulation results are presented in Figures 1 and 2. Figure 1
shows the estimated intervals for each state variable that contain
the actual state trajectory of the system plotted in solid lines.
Recall that, the upper and lower bounds of the state vector
depicted by the dashed lines, in Figure 1, are computed by
x,(t) = £(t) + e,(t) and by x;(t) = £(¢) + ¢;(¢), respectively.
The convergence of the width of the estimated state enclosure
is illustrated in Figure 2, were the entries of the width vector

e(t) =e,(t) —er) (39)

are plotted. As shown in this figure, after the transient regime
this width vector converges towards the steady state

el =(0.122,0.125,0.115)

which is determined graphically offline. On the other hand,
as observed in Figure 1, despite the presence of the unknown
input between the time instants ¢t = 5 and ¢t = 7 the proposed
state estimator keeps providing a guaranteed enclosure of the
real state vector of the system. Moreover, the curves in Figure
2 confirm that the width of the estimated enclosure is not
impacted by the presence of this unknown input.

Second experiment  As suggested in Remark 3, to increase
the accuracy of the estimated state enclosure (23) it is possible
to deal with some bounded inputs in (10) as unknown inputs.
In this second experiment, we consider the nonlinear term (31)
as a second unknown input. Thus, the new matrices R and E
are defined by R = (E R) and E = 0. In this case, we still have
rank(CR) = rank(R) and the pair (C,A;) is detectable. Thus,
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eu(t) — era(t)
N

==
0 2 4 6 8 10 12
t

Fig. 3. The width of the estimation error in both cases: Solid
lines the show results of the first experiment while the
dashed lines show those of the second experiment.

Proposition 2 is still applicable. Now, for the same eigenvalues
defined in (37), we get the following matrices involved in (3)

and (20):
-3 0 0 0
N:<0—10)7M:<1>7
0 0 -2 0

00 10
L:(lO),K:(Ol)
00 01

To show the effectiveness of this way of dealing with some
bounded uncertainties, the width vector (39) is used as key
performance indicator. For both experiments the width vector is
plotted in Figure 3. Solid lines represent the performance indi-
cator of the first experiment while the dashed lines correspond
to that of the second experiment. As observed in this figure,
overall the width vector obtained in the second experiment
is lower than those of the first experiment, especially at the
transient regime. That means, the estimated state enclosure in
the second experiment is tighter than that obtained in the first
experiment. Thus, we can conclude that whenever it is possible,
we should consider the bounded state disturbances as unknown
inputs in order to better manage their impact on the accuracy of
the estimated state enclosure.

(40)

5.2 Example 2

In this second example we consider a Sth-order lateral axis
model of a fixed-wing aircraft at cruise flight conditions bor-
rowed from (Gucik-Derigny et al., 2014). The system matrices
are:

0 0 ! 0 0
0  —0.154 —0.0042 154 0
A=| 0 0249 -1 52 0 |.B=0
0.0386 —0.996 —0.0003 —0.117 0
0 05 0 0 -05
0 0
—0.744 —0.032 8 (1) (1) 8 _01
R=| 0337 —112 |, c=
o 0001 0
. 0 1000 0
(41)

and E, F are identity matrices of appropriate dimensions. The
considered initial state vectors are:

(1)

LA e a4 0wm
T
’
v

ua(t), @ (), @

ralt)

ni(t),

Tu(t).

Fig. 4. Set-valued estimation of the actual state trajectory of the
system.

wu, 1(t) — i, (1)
o n » o
’
’
)

Fig. 5. The element-wise widths of the estimated state enclo-
sure. Dashed lines correspond to the results of the pro-
posed method while the solid ones are those of the interval
observer method (Gucik-Derigny et al., 2014).

x(0) = (0.342,0.32,0.0178,—0.287, —0.9497)”

and £(0) = (0,0,0,0,0)”. Moreover, the endpoints of the initial
state box are known x,,(0) = —x;(0) = (1,1,1,1,1)7. The state
disturbances, measurement noises and their time derivatives are
unknown but belong in bounded boxes: V¢t > 0,

w(t) € [w,w], with W= —w=1e (1,1,1,1,1)T
v(r) € [v,¥], with v=—y=1e2(1,1,1,1)T
v(r) € [,V], with v=—p=1e '(1,1,1,1)T

Note that, in the simulation scenario w(t) is supposed to be
uniformly distributed pseudo random vector and

v(t) = le_z(sin(IOI),cos(IOt),sin(lOt),cos(lOt))T
On the other hand, the applied vector of unknown inputs is

d(r) = (cos(2mt), sin(2m))T. As proposed in (Gucik-Derigny
et al., 2014), the chosen eigenvalues for the state matrix N are:

M=—5A=—6A=—4 Ay=-3, As= 2

Figure 4 shows the efficiency of the proposed state estimator to
provide a tight enclosure of the actual state vector of the system
despite the presence of completely unknown inputs. Moreover,
in terms of accuracy, Figure 5 illustrates the superiority of the
proposed approach with respect to that introduced in (Gucik-
Derigny et al., 2014). As observed in this figure, except for
the case of the third state variable where both methods provide
similar result, the widths of the others enclosures of the state
variables obtained by the proposed method are always strictly
lower than those generated by the interval observer approach
(Gucik-Derigny et al., 2014).
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6. CONCLUSION

In this work, a converging set-integration method is ap-
plied to design set-valued unknown input observers for linear
continuous-time systems subject to both unkown-but-ounded
state disturbances and measurement noises. It is worth pointing
out that without requiring extra assumptions, guaranteed upper
and lower bounds on the estimation error can be computed a
priori. Moreover, based on this method, robust thresholds that
are insensitive to initial estimation error are proposed. This fact
allows one to design, in future works, robust fault detection and
isolation schemes.
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