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Energy absorbers and energy-harvesting devices have been under the scope of scientists and engineers for
decades to fulfill specific technological needs, mainly concerned with sound and vibration absorbers, and ef-
ficient mechanical energy converters. In this paper, as a proof of concept, we build a mass-in-mass device to
study the response of a linear absorber immersed in one of the spheres composing a linear array of equal elastic
spheres. Spheres barely touch one another and can thus sustain nonlinear solitary wave propagation only. The
linear intruder absorbs a given amount of energy depending on the frequency content of the incident solitary
wave. A numerical simulation is developed to account for the experimental finding. The validation of the
numerical model allows for the theoretical study of the energy absorbed by any number of intruders, and to
demonstrate that the former increases exponentially with the latter, indicating that only ten of the intruders is
enough to absorb the system energy. A detailed study of the transmitted energy from an external source into the
chain reveals that, due to nonlinearity, the array of spheres is able to convert almost any mechanical shock to a
well defined solitary or trains of solitary waves, whose frequency content is nearly independent on the excita-
tion amplitude. This property leads to the design of a device, which is optimized to absorb energy over a broad
frequency range.

Keywords: Acoustic metamaterials, Granular chains, Mechanical metamaterials, Solitons, Dissipative dynamics, Earthquakes,
Energy harvesting devices, Nonlinear acoustics

I. INTRODUCTION

Mass-in-mass (MIM) systems [1–18] and nonlinear energy
sinks (NESs) [19–22] are promising strategies for designing
tailored metamaterials with unusual acoustical and mechani-
cal properties. MIM lattices have been investigated for more
than a decade [1–3], leading to stimulating concepts and appli-
cations. For example, equivalent models to represent a lattice
system consisting of MIM units have been introduced and the
need for a negative-mass-density concept demonstrated [1].
Wave attenuation properties and energy-transfer mechanisms
of metamaterials, modeled by MIM lattices, have been cap-
tured through negative-effective-mass density [2], which has
been found also useful in the description of dispersion curves
and band-gap structures of multiresonators [3]. Periodic
graded one-dimensional (1D) metacomposites for enlarging
the band-gaps [10], and frequency-graded 1D metamaterials
have also been envisaged [11]. For instance, a potential solu-
tion towards low frequency and wideband acoustic or vibra-
tion insulation has been proposed through the design of tuned
frequency-graded arrangement of resonating units capable of
extending the attenuation band of 1D metamaterial [13].

Applications of locally resonant MIM in the domain of
seismic isolation have been recently proposed [8, 17], and
the impact of nonlinear harmonics on the attenuation mech-
anisms identified [17]. Hierarchically organized local res-
onators, which possess the ability to efficiently tailor elas-
tic wave or vibration attenuation to various frequency re-
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gions [14], are among contemporary strategies of designing
metamaterials. Active control of strongly nonlinear periodic
systems has recently been explored, leading to effective ma-
nipulation of band structures of the lattice [18]. The localized
modes of vibration involved in MIM systems are valuable al-
ternatives for implementing sound metamaterials due to their
exceptional properties in the nonlinear regime [5, 7]. Indeed,
in contrast to localized modes arising in a mechanical lattice
due to mass or rigidity defects, resonant defects can be tuned
from being extremely localized to totally delocalized by an
external force [5]. The possibility of inducing coupling in
a network of resonant defects through the tuning of the lo-
calization distance appears as a possible strategy to control
energy transmission, which may be useful for the design of
specific switches for sound transmission. A classical way to
enhance energy dissipation, for the control of mechanical vi-
brations and wave attenuation, is to consider a viscoelastic
material (like a polymer or rubber) together with a resonant
system: the loss factor of a mass-spring-dashpot system is in-
deed η = c/2

√
km, it is thus possible to tune the attenuation

(i.e. how fast and how much potential and kinetic energy can
be dissipated) by appropriately choosing a stiffness k and/or a
mass m at given constant viscous coefficient c. A well-known
practical example is the tuned mass damper (TMD) [23–29],
which takes advantage of an amplification of the mechanical
response, at the resonant frequencyω =

√
k/m, to enhance the

frequency-dependent dissipation in a narrow tunable spectral
band. In the same spirit, locally resonant metamaterials can
exhibit a higher dissipation throughout the spectrum, gener-
ally refereed to as metadamping [30–38]. The practical im-
plementation of metadampers [30, 32, 33], relies on the inclu-
sion of distributed locally resonant scatterers in a surrounding
elastic matrix [31]. In the long wavelength approximation, the
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local resonators lead to an effective medium exhibiting an ar-
tificial dissipative feature that can be engineered at will, like
in a TMD. In this sense, MIM phononic lattices thus result
to be the discrete counterparts of the metadampers. The main
weakness of linear resonant systems relies on the fact that they
are frequency selective: broadband excitations do not fit. In-
stead, NES [19–21] are well-known nonlinear counterparts of
the TMD that can accommodate such a limitation. They in-
clude a nonlinear component (generally the stiffness), which
provokes an irreversible and broadband targeted energy trans-
fer (TET) across spatial or temporal scales [22]. These sys-
tems are proven to be useful when implemented to control
linear primary systems; their nonlinear nature provides a pas-
sive self-tunable capability to adapt the frequency response to
the strength of an excitation. In this frame, arrays of highly
nonlinear elements have been found to exhibit remarkable ca-
pabilities to broaden sharp impact and vice versa [39–44]. For
example, this phenomenon is found in 1D metacomposites of
spheres barely touching one another in both the stepped [41]
and tapered chain configurations [40]. A solitary wave propa-
gating through the large-diameter section array, at the bound-
ary with the array section of small diameter, splits in several
solitary waves, which are narrower and propagate faster. A se-
quence of solitary wave, of decreasing amplitude and width,
is generated. Thus, generation of solitary waves provides a
mechanism of transfer of energy from low to high frequency,
depending on the ratio of sphere diameter.

Here, our paper deals with a system taking advantage of
a succession of compact resonators embedded in a nonlinear
phononic lattice made of an alignment of nonresonant spher-
ical particles: such a lattice supports solitary wave with com-
pact spatial and time support. This means that the waves
propagating along these lattices have a well-defined frequency
content that can be tuned to match the frequency of the in-
clusions. This contrasts noticeably with NES (a nonlinear
damper embedded in a linear system): our system is a non-
linear lattice inducing a TET while a linear resonant damper
further dissipates irreversibly the mechanical energy. It is thus
possible to adapt any excitation to the frequency response of
the damped linear resonator. As a proof of concept, we build a
mass-in-mass device to study the response of a linear absorber
immersed in one of the spheres composing a linear array of
equal elastic spheres. Spheres barely touch one another and
can thus sustain nonlinear solitary wave propagation. The lin-
ear intruder absorbs a given amount of energy depending on
the frequency content of the incident solitary wave. A numer-
ical simulation is developed to account for the experimental
finding. The validation of the numerical calculation allows
for the theoretical study of the energy absorbed by any num-
ber of intruders, and to demonstrate that the absorbed energy
varies exponentially with the intruder number, indicating that
only a few intruders is enough to absorb the system energy.
A detailed study of the transmitted energy from an external
source into the chain reveals that, due to nonlinearity, the ar-
ray of spheres is able to convert almost any energy pulse to
a well-defined solitary or trains of solitary waves, whose fre-
quency content is nearly independent on the excitation ampli-
tude. This property leads to the design of a device, which is

optimized to absorb energy at a broad band.
The paper is organized as follows: In Sec. II experimen-

tal devices, measurements protocols, and intruder preparation
are given. In Sec. III the main features of the solitary wave
passage through a sphere holding an in-mass intruder are in-
vestigated experimentally. In Sec. IV numerical simulations
are developed and contrasted to experimental results. The in-
truder energy and the energy transferred due to solitary wave
passage are studied. These results are generalized to the case
of several spheres holding intruders. The progressive energy
transfer from solitary to intruders is investigated. Finally, in
Sec. V discussions and conclusions are given.

II. EXPERIMENTAL SETUP

Bakelite spheres have been chosen to illustrate the proof of
principle, because this material is easy to machine compared
to steel beads used in previous experiments. Bakelite has low
density ρ = 1775 kg/m3, is nearly incompressible, Poisson
ratio ν = 0.44, and has a relatively low Young’s modulus,
Y = 3.9 GPa, that can accommodate large strain with low
plastic deformation. In addition, it is fairly elastic material,
i.e. weakly dissipative. The chain is made of 16 equal beads,
with radius R = 19 mm and mass M = 51 g, see Fig. 1(a). The
beads, barely touching one another, are aligned on a horizon-
tal Plexiglas track. A nonlinear compressive wave is initiated
from the impact of a small striker made of steel, with mass
Ms = 3 g, radius Rs = 4.5 mm, density ρs = 7980 kg/m3,
Poisson ratio νs = 0.27, and Young’s modulus, Ys = 203 GPa.
The striker trajectory is guided by a curved ramp, see Fig. 1(a),
which ensures nearly centered impact with an acceptable re-
peatability. Adjusting the initial height of release allows pre-
cise control of the collision velocity of the striker on the first
bead of the chain. The pulse is monitored by measuring the
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FIG. 1: Experimental setup. (a) Schematic view showing a linear
chain of beads including a bead sensor, a resonant absorber and data
acquisition facilities. To excite wave propagation the chain is im-
pacted by a small striker bead. The contact forces are labeled in blue
and positions of beads in red. (b) Force sensor embedded in a bead.
(c) Energy absorber: a rigid cylindrical accelerometer stands for the
internal mass, clamped between two-half spheres via soft polymer
disks on each sides, acting as linear springs inside.
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load with a piezoelectric transducer (PCB 200B02, with sen-
sitivity 11.24 mV/N and stiffness 1.9 kN/µm) inserted inside a
bead cut in two parts, as shown in Fig 1(b). The total mass of
the sensor bead matches the mass of a regular bead. The em-
bedded sensor thus allows nonintrusive measurements of the
force along the chain.

One of the spheres hosts a resonant inclusion composed of
a mass and a linear spring, as shown in Fig. 1(c). The internal
mass is a rigid cylindrical accelerometer (PCB 352A24, with
sensitivity 10.2 mV/N and mass m = 3.7 g) inserted in a cylin-
drical cavity that is machined in the host bead. The cavity is
centered to maintain a nearly homogeneous mass distribution
and the host bead is cut into two equal halves to facilitate as-
sembly. The accelerometer is clamped between the two caps
via thin disks made of an elastic polymer placed on each side:
the whole thus performs as a resonant energy absorber. Here,
the accelerometer intrinsically senses its absolute movement,
i.e. the acceleration of the internal mass. Note that the host
bead includes a metallic ring to tune its total mass to that of a
regular bead of the chain. Polymers used are commercial ones
(Zhermack-SpA: Elite Double) available in various Young’s
modulus. These polymer layers have been designed to act as
two opposite springs whose spring constant and damping fac-
tor can be tuned by changing their thickness and adding dissi-
pative compound to the polymeric matrix. Here, the selected
polymer layers have a thickness of about 1 mm and are made
of the Elite Double 32 of Young’s modulus 1.11 MPa, pro-
viding an approximate value of the elastic constant of about
k ≈ 3.1 × 105 N/m. Concerning the data-acquisition facilities,
the signals provided by the force sensor and the accelerome-
ter are amplified by a conditioner PCB482A16, recorded by a
two-channel numeric oscilloscope Tektronix TDS2012B, and
transferred to a computer.

III. EXPERIMENTAL RESULTS

As an experimental benchmark, we first study the solitary
wave propagation in the absence of the bead containing the in-
truder. Solitary waves are excited at one free end of the chain
through the impact with the striker, (Rs = 4.5 mm) at speed,
Vs = 0.45 m/s. As in early work [39], solitary wave propaga-
tion through the chain can be investigated nonintrusively by
means of the embedded sensor, see Fig. 1(b), which respects
the translational symmetry of the chain by keeping both in-
variant the contact between spheres and the mass distribution.
Thus, the embedded sensor accurately senses the force at the
respective contact, which reflects the features of the solitary
wave traveling through it. By positioning the force sensor at
consecutive locations and recording the force at the respective
contacts, the solitary wave evolution through the chain can be
investigated. The force amplitude decrease with the distance
traveled by the solitary wave, indicating that some energy was
dissipated by the lattice, see Fig. 2(a). The bead with intruder
is then introduced in the chain: an additional decrease of the
solitary wave amplitude, of a few percent, after crossing the
host bead, is observed, see Fig. 2(b), indicating that some en-
ergy has been transferred to the intruder. Observation of the

acceleration of the intruder confirms that it vibrates at its nat-
ural frequency, dissipating its energy after a few oscillations,
see Fig. 2(c).

In order to provide a methodology that allows for the ef-
ficient exploration of the main design parameters of the ab-
sorber, we first develop a numeric modeling, which includes
relevant experimental details. Indeed, our numerical simula-
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FIG. 2: Force at the contacts of beads as a solitary wave passes
through consecutive bead contacts, obtained one at the time by re-
locating the sensor bead at successive positions. (a) Force due to
solitary wave propagation at contacts 6 to 11. (b) Contact forces in
the presence of a bead with the intruder located at position 8. Blue
and red lines indicate the additional force decrease experienced by
the propagating solitary wave when passing through the host bead.
(c) Acceleration signal indicating that energy has been transferred to
the intruder during the passage of the solitary wave. For all cases,
the solitary wave is excited by a steel striker (Rs = 4.5 mm and
Vs = 0.45 m/s). Dashed lines in (a)-(c) obtained through numeri-
cal simulations. (d) Numerical calculations of the chain energy in
the absence and in the presence of the intruder. A fraction of inci-
dent solitary wave energy is transmitted to the intruder. All numer-
ics are performed with the experimental parameters, R = 19 mm,
ρ = 1775 kg/m3, and ν = 0.44, and adjusted values Y = 4.5 GPa and
τ = 4.2 µs.
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tion based on a Runge-Kutta algorithm allows for the explo-
ration of the main features of solitary waves in interaction with
a localized vibration in an alignment of N particles, by solving
the nonlinear system of N equations,

MÜn = κn−1,n(Un−1 − Un)3/2

− κn,n+1(Un − Un+1)3/2

+ τκn−1,n
3
2

(Un−1 − Un)1/2(U̇n−1 − U̇n)

− τκn,n+1
3
2

(Un − Un+1)1/2(U̇n − U̇n+1) (1)

for n = (1 . . .N), with κn,n+1 = (θn + θn+1)−1 × (1/Rn +

1/Rn+1)−1/2 and θn = 3(1− ν2n)/(4Yn), being Un(t), Rn, Yn, and
νn, the instantaneous displacement, the radius, the Young’s
modulus, and the Poisson coefficient, respectively, of parti-
cle n. We approximate the main mechanism responsible for
the dissipation as an internal viscoelastic behavior of the bulk
material, which can be expressed as, FD = τ × ∂tFH , with
FH = κδ

3/2 [45] the Hertzian elastic force, δ the overlap de-
formation, and τ the relaxation time associated to the viscous
damping of Bakelite spheres.

An intruder is designed as a linear harmonic oscillator with
a linear dissipation. If a particle contains an intruder we
replace and solve the equation of the concerned degree-of-
freedom n in Eq. 1 by the coupled system of equations,

(M − m)Ün = k(un − Un) + c(u̇n − U̇n) + Fc, (2)
mün = k(Un − un) + c(U̇n − u̇n), (3)

where Fc, representing the contact forces acting on the left
and right side of the bead, is equal to the right-hand side of
the Eq. 1, where un(t) is the instantaneous displacement of the
inner intruder, and where k and c are the elastic constant and
the viscous friction coefficient, respectively. Our calculations
accurately reproduce the solitary wave propagation and atten-
uation, see Fig. 2(a)-(c), by adjusting the relaxation time of
spheres and the Young’s modulus, obtaining τ = 4.2 µs and
Y = 4.5 GPa, respectively. Moreover, the behavior of intruder
is fairly well captured by using the experimental values, for all
parameters, by tuning the value of spring constant and by ad-
justing the viscous dissipation due to the polymeric springs.
We obtain k = 3.95 N/m and c = 12 N s/m. As a check of
consistency, the frequency response of the intruder has been
experimentally characterized by sweeping the excitation fre-
quency in the range of 100 to 2500 Hz, see Fig. A1 of the
Appendix. Fitting the frequency response with a degree-of-
freedom resonator, see Sec. A1 of the Appendix, indicates
that the resonant frequency and the damping coefficient are
fres =

√
k/m/2π ≈1600 Hz and c ≈ 12 N s/m, respectively.

Both these values are consistent with the ones obtained in situ,
from the fit of the wave experiment mentioned above. More-
over, the resonant frequency is also compatible with the value
obtained from the intruder mass and the spring constant cal-
culated using the parameters of the polymer layer holding the
intruder, although the latter is more sensitive to uncertainties.

Thus, our numeric procedure is validated, which provides
us with an accurate tool to explore the dependence of energy
absorption on parameters that are difficult to access experi-
mentally. However, the value of Young’s modulus of Bake-
lite obtained through the adjusting procedure is about 15%
higher than the nominal value, which is quantitatively com-
patible with a stiffening effect due to the thwarted rotations
of the particles by the friction, as discussed in Ref. [39]. The
value of the viscoelastic relaxation time, also confirms that
Bakelite is a weakly dissipative material: an estimation of
the loss factor η = tan (ωτ) indicates η ≃ 10−2 ≪ 1 since
ωτ ≃ (∂tFH/FH)τ ≃ τ/τS W with τS W ≃ 0.5 ms the typical
half-duration of the solitary wave pulse, see Fig. 2(a) for in-
stance.

IV. NUMERICAL RESULTS

A. Local energy

In order to study how energy is transferred and dissipated
to the local oscillator, we define the energy of sphere n as,

En =
1
2

MU̇2
n +

2
5
κn−1,n(Un−1 − Un)5/2 (4)

and the energy of the intruder writes,

Eint
n =

1
2

mu̇2
n +

1
2

k(un − Un)2. (5)

The total chain energy (ET = ΣEn) evolution in time can be
calculated numerically and the case with intruder compared
to that without intruder, see Fig. 2(d). The presence of the in-
truder is revealed by the sudden decrease (nearly 4%) of the
chain energy observed when the solitary wave passes through
the host bead, see Fig. 2(d). Energy transfer and energy dis-
sipation occur at nearly the same time scale, see the solid red
line in Fig. 2(d).

B. Transfer of energy

In this section we investigate how the transfer of energy de-
pends on the resonance frequency of the local oscillator. In
practice this can be done by changing the spring constant by
simply replacing the stiffness of the polymeric layers. In order
to isolate the effect of the intruder stiffness, we perform this
analysis numerically, neglecting the dissipation of the beads,
but we consider that the rate of energy dissipated by the in-
truder is close to the experimental value, c ≈ 12 N s/m. For
soft springs [k = 103 N/m, see Fig. 3(a)], the intruder motion
is similar to that of the host bead but some delay occurs; for
very high spring constant [k = 107 N/m, see Fig. 3(c)], the
intruder moves rigidly with its host; for intermediate spring
constant [k = 105 N/m, see Fig. 3(b)], the relative displace-
ment of the intruder is clearly enhanced, see the early over-
shoot. The effect of the enhancement of the relative motion
affects the energy absorbed by the intruder, see Fig. 3(d). At
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very high spring constant the intruder just moves with the host
and therefore it acquires some kinetic energy. Since no rela-
tive motion occurs between the intruder and the host bead,
the kinetic energy of the intruder is transferred back to the
solitary wave without dissipation. However, at intermediate
spring constant, significant relative motion occurs, leading to
large deformation of the viscoelastic elastomer caps. Only a
very small amount of the energy captured by the intruder is
thus transferred back to the transmitted solitary wave, the rest
being dissipated by the viscoelasticity. Finally, at low spring
constant, the intruder motion is over damped. Here, the energy
transfer is less efficient because of the large impedance mis-
match between the elastic surrounding medium and the highly
viscous intruder, leading to a large reflection of the wave be-
fore it gets dissipated (see below). These observations indicate
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FIG. 3: (a-c) Motion of both the host bead and the intruder, for three
distinct values of the spring constant k of the intruder, and constant
viscous coefficient, c = 12 N s/m for equal excitation of the chain
(steel striker, Rs = 4.5 mm at Vs = 0.45 m/s). (a) k = 103 N/m, (b)
k = 105 N/m, (c) k = 107 N/m. (d) Total chain energy evolution at
early stages of solitary wave intruder interaction, for the same val-
ues of intruder stiffness as discussed in (a-c). Inset: injected energy
into the chain. A fraction of the energy of the incident striker pass
through the chain. In all cases, the host bead is located at position 8
and the chain composed of 38 bead. (e) Intruder frequency response
for distinct spring constants and frequency content of the incident
solitary wave (solid black line).

that the conditions to achieve optimized energy transfer to the
oscillator depend on both the intruder frequency response and
the frequency content of the incident solitary wave. Indeed,
maximum overlap of both spectra leads to better energy trans-
fer, as depicted in Fig. 3(e).

To explore which parameters optimize the energy absorp-
tion of the oscillator, we vary both the inner spring constant
and the intruder mass. Forces at contacts 10 and 25, with
the oscillator located at sphere 15, for three values of spring
constant, are presented on Fig. 4(a). Transmitted and re-
flected secondary waves are generated for intermediate val-
ues of k. These secondary waves are better visualized on in-
sets of Fig. 4(a). They correspond to a succession of delayed
nonlinear radiated waves [41, 43] stemming from — and thus
revealing — the back and forth oscillations of the resonant in-
truder. In order to evaluate the relevance of secondary waves
on the energy balance, the reflected and transmitted energy,
respectively, carried out by these waves are calculated as a
function of stiffness, see Fig. 4(b)-(c). A maximum on the
reflected waves occurs for a stiffness close to k = 105 N/m,
see Fig. 4(b). An optimum of the transmitted energy by sec-
ondary waves is also observed for the same value of stiffness,
see Fig. 4(c). Together with this maxima, a minimum on the
transmitted energy carried out by the main solitary wave is
observed, see Fig. 4(c), indicating that the reflected as well as
transmitted waves are associated to the same phenomenon. A
detailed description of the process of secondary solitary waves
generated through the interaction of a incident solitary wave
with a local oscillator is beyond the scope of the present work,
however, the presented evidence suggest that these waves are
generated when two conditions are fulfilled: i) the viscous re-
laxation time τ is longer than the oscillation period T = 1/ f ,
resulting in a weak-to-moderate dissipation, and ii) the reso-
nance frequency f is smaller than the cutoff of the frequency
content of the incident solitary wave ωS W ∝ 1/τS W , such that
a pulse excites efficiently the resonators and after its passage,
they still vibrate and radiate forward and backward secondary
waves. In summary, these two conditions read τS W < T < τ.
Note that the effect of the oscillator mass on the reflected and
transmitted energy carried out by secondary solitary waves is
presented in Sec. A2 of the Appendix; the absorbed energy
as well as the amplitude of secondary waves increases with
oscillator mass, see Fig. A2 of the Appendix. The effect of
the dissipation of the harmonic oscillator is also investigated
and presented in Sec. A2 of the Appendix. It is corroborated
that generation of secondary waves, reflected and transmitted,
depends strongly on the rate of dissipation energy of the har-
monic oscillator, see Figs. A3(d) and A3(e) of the Appendix,
respectively.

C. Multiple absorbers

We now focus on the effects of adding consecutive beads
with oscillators to the chain and explore how these oscillators
contribute to the absorption of energy from the incident soli-
tary wave. The experimental study of this configuration can
be laborious, and since numerical calculations presented pre-
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viously captures all the experimental observations, we take
advantage here to extrapolate these effects from simulations
only, in a first attempt. If an incident solitary wave crosses the
region of successive oscillators, a certain fraction of the en-
ergy carried out by the solitary wave is transmitted forward
to the next oscillators, while the rest is reflected backward
or absorbed. Figure 5(a) shows the effect of energy reduc-
tion in chains of spheres with increasing number of oscilla-
tors. Under the parameters used, the energy absorbed by an
intruder is rapidly dissipated by viscoelasticity. An exponen-
tial decay of the chain energy with n is observed for small
m ≪ M, see Fig. 5(b): at each passage of the incident soli-
tary wave through an intruder, one can neglect the reflection
thanks to the weak impedance mismatch between the original
bead and the one hosting a resonator. This situation can sim-
ply be expressed as En+1 = TEn, where T = 1 − A − R is
the transmission coefficient, withA the absorption coefficient
and R ≪ 1 the reflection coefficients. In this case, no energy
retropropagates backward but only propagates forward, such
that En = T

nE0, where E0 is the energy carried out by the in-
cident solitary wave prior any intruder interaction. In practice,
we find T ≃ 0.97 for the case described in Fig. 5(b), with the
lightest intruder mass, m = 2.7 g. Consistently, for increasing
m, the transmitted solitary wave generates increasing ampli-
tude secondary solitary wave, leading to an energy absorption
process that is more complex. Chain energy decreases rapidly

with number of oscillators but the functional dependence is no
longer exponential, Fig. 5(b). In fact, as m increases and the
mass of host bead decreases, the harmonic oscillator signifi-
cantly modifies solitary wave propagation. The effect of the
presence of heavier oscillators is to induce secondary solitary
waves whose amplitude increases as these waves propagate
through the chain zone containing local oscillators. Further
mass increase leads to the generation and propagation of ter-
tiary solitary waves, see Sec. A3 and Fig. A4 of the Appendix.
In this regime, the amplitude of secondary and tertiary waves
is increased by the passage through the chain of oscillators,
which reveals that the energy transferred from the main soli-
tary wave is radiated in the forward direction; the efficiency
of the local oscillator to dissipate the absorbed energy is thus
reduced. Note that studying further the mechanisms of ampli-
fication of secondary and tertiary waves is beyond the scope of
the present work. The effect of multiple successive absorbers
is investigated experimentally in Sec. A3 of the Appendix and
the results are contrasted to numerical calculations. A satis-
factory agreement is obtained, see Fig. A6 of the Appendix,
which provides further support to numerical predictions. Fi-
nally, the total energy of the chain as a function of intruder
number, for distinct striker velocity, Vs, with fixed mass shows
that the process of energy absorption operates robustly over
many different striker’s input energy, see Fig. 5(c).
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FIG. 5: (a) Total chain energy versus time, for chains of increasing
number, n, of intruders. In all cases, the first seven spheres do not
contain intruders and sphere 1 is the striker. All chains are excited in
the same manner using a steel striker Rs = 4.5 mm at Vs = 0.45 m/s.
Parameters are k = 105 N/m and c = 12 N s/m. (b) Total energy
of the chain as a function of intruder number, n, with different mass.
An exponential decrease of the chain energy with n is observed for
small m ≪ M. However, increasing m leads to an energy absorption
process that is more complex and a different functional dependence.
(c) Total energy of the chain as a function of intruder number, with
mass m = 4.7 g, for different striker velocity Vs.

D. Energy injection

To complete the description we investigate how the energy
effectively injected into the chain and how its spectral distri-
bution can be tuned to the frequency response of intruders in
order to achieve optimal energy absorption of any excitation.
We first explore the effect of the duration of the external im-
pact (impactor-first chain’s bead ) on the frequency content of
the solitary wave generated. Three parameters influence this
impact duration, the Young’s modulus, the speed, and the size
of the impactor. Using the numerical simulation, we observe
that changing the Young’s modulus by 3 orders of magnitude
produces a factor 3 variation in the duration, see Fig. 6(a).
Interestingly the solitary wave produced (analyzed at contact
30) does not present significant variations, see Fig. 6(d). Fre-
quency content of the propagating solitary wave shows similar
trends, see Fig. 6(g).

The effect of striker speed can be visualized through the
comparison of Fig. 6(a,d,g) to Fig. 6(b,e,h), respectively. Al-
though the contact force increases with impacting speed, the
impacting time is only reduced by a factor 2. Comparison of
Fig. 6(d) to Fig. 6(e) (solitary waves at contact 30) reflects
significant changes on the amplitude of solitary wave with
impacting speed. However, the frequency content of solitary
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FIG. 6: (a),(b),(c) Contact force at the striker and the first chain bead
for several Young’s modulus and representative values of striker size
and speed, as indicated at each panel. (d,(e),(f) Contact force result-
ing from the solitary wave passage at bead 30 for the same parame-
ters as (a),(b),(c). (g),(h),(i) Frequency content of solitary waves, as
detected at contact 30. In (i), frequency content of secondary solitary
waves are also shown.

waves is only slightly modified, Fig. 6(g) to Fig. 6(h). Fi-
nally, we explore the effect of increasing the striker size. A
significant increase of the impact time is observed with striker
size, see Fig. 6(c), which dramatically affects the solitary wave
propagation, see Fig. 6(f), leading to the creation of a train of
secondary solitary waves. This kind of secondary wave gen-
eration has been described in Refs. [41, 46, 47], and its origin
associated to a nonlinear mechanism. Again, little effect on
the frequency content of the solitary waves is observed, see
Fig. 6(i). To provide support to this result, we investigate ex-
perimentally how solitary waves of a characteristic frequency
distribution develop, see Fig. A7 of the Appendix. For stiff
impacters, see Fig. A7(a) of the Appendix, a single solitary
wave is injected into the chain, the frequency contents does
not vary significantly with impacter radius, as predicted by nu-
merical simulations. Interestingly, when the mass of impacter
is increased or the stiffness is decreased, see Figs. A7(c,d,g) of
the Appendix, the collision time increases significantly and, as
predicted by numerical calculations, the generation of a train
of solitary is indeed experimentally observed. Comparing the
Fourier transform of the transmitted solitary waves, it is cor-
roborated that their frequency content is nearly insensitive to
changes in Young’s modulus and mass of the impacter, see
Figs. A7(b,d,f,h) of the Appendix.

Hereafter, we turn our attention to the energy effectively
injected to the chain after striker impact. The main param-
eter controlling such energy transfer is the ratio of the mass
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of striker to the mass of a bead. At impact, during com-
pression, the kinetic energy of the striker is gradually trans-
formed into elastic energy at the first bead contact. This en-
ergy is then transformed back into kinetic energy, which re-
sults in the striker rebound if it is lighter than chain beads,
see Fig. 7(a),(b). However, for a mass striker close to that
of beads, energy is completely transferred to the chain, see
Fig. 7(c),(d). In turn, for Ms > M, the energy is totally trans-
mitted to the chain due to the generation of a train of sec-
ondary solitary waves, see Fig. 7(e),(f). This process takes
longer. Further insight about the variables that limit the en-
ergy transferred to the chain can be obtained from the analysis
of a binary collision model. In this simplified view, the binary
collision duration approximates the duration of the propagat-
ing solitary waves. Indeed, using energy conservation and
the Hertz potential, the collision duration, tc, between two
spheres [48] and maximum force at collision, Fm, read,

tc = 2.94 (5/4)2/5 (µ1,2/κ1,2
)2/5 V−1/5

1,2 , (6)

Fm = (5/4)7/5
(
µ3

1,2κ
2
1,2

)1/5
V6/5

1,2 , (7)
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FIG. 7: Energy of the chain as a function of time. (a) Striker is
lighter than a bead of the chain. Energy first increases, it reaches a
maximum corresponding to zero kinetic energy of striker and then
decreases to reach a constant value. (b) Solitary wave at contact 30
generated under the conditions of (a). (c) Mass striker is close to the
mass of chain beads. (d) Solitary wave at contact 30 generated with
the impact of (c). (e) Mass striker larger than the mass of chain beads.
Energy is totally transmitted to the chain by secondary solitary wave
generation. (f) Train of solitary waves generated in (e).

where V1,2 is the collision velocity of bead 1 on bead 2,
µ1,2 = (m−1

1 + m−1
2 )−1 is the reduced mass between masses m1

and m2, and κ1,2 is defined below Eq. (1).

From Eqs. (6) and (7) it is seen that the collision duration
weakly depends on the striker speed and on the maximum
force. By extension to the sphere-sphere collisions in the
chain, it explains the weak dependence of the solitary wave
duration (or equivalently its frequency content) on the exper-
imental parameters. The condition for maximum momentum
and energy transfer from the striker to the first chain bead is
easily found using momentum and energy conservation. Thus,
after collision, the striker speed V

′

s and the sphere speed V
′

be-
come V

′

s = Vs(Ms−M)/(Ms+M) and V
′

= 2VsMs/(Ms+M),
from which we deduce that maximum energy transmission oc-
curs for Ms = M.

However, total energy transmission also occurs for Ms >
M. Indeed, in the framework of beads’ collision, the gen-
eration of secondary waves, which occurs if Ms > M, can be
interpreted as the generation of more than one collision during
the striker impact [41]: this is consistent with the fact that the
duration of interaction between the striker and the first bead
exceeds the collision duration of the two nearest beads of the
chain. Thus, a collision of two beads of the chain ends before
the interaction of the striker with the first bead of the chain
has ended .

V. CONCLUSIONS

In conclusion, a chain of beads, barely touching one an-
other, in which one bead holds an intruder has been built as
a proof of principle of an energy absorber. Numerical solu-
tions of the set of coupled equations quantitatively account
for the main features of the absorption process observed ex-
perimentally through the tuning of the oscillator dissipation,
which allowed for the validation of the mechanical model of
the system.

A generalized systematic numerical study demonstrated
that embedded oscillators constitute an efficient manner of
pumping the energy from the solitary waves propagating in
the chain, leading to an energy absorption that is nearly expo-
nential in the number of oscillators. The analysis shows that
in order to obtain optimized energy absorption, the oscillator
resonance frequency has to be less than the typical frequency
content of the incident solitary wave. In addition, nonlinear-
ities due to Hertz’s potential allows for energy absorption in
a broad band of excitation frequencies. This property of the
chain is due to the fact that the selected solitary wave is dom-
inated by material parameters but it is a weak function of the
striker speed. Finally, when the intruder damping is small,
generation of secondary solitary waves occurs through radi-
ation. In such a case, the process of energy absorption still
holds, but its duration increases with the typical dissipation
time.

In this study, we have thus probed the concept of an effi-
cient dissipation in a given frequency band, stemming from
the nonlinear conversion of any mechanical excitation. Prac-
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tically, our laboratory prototype, an alignment of noncohe-
sive spheres including resonant dampers, has two limitations:
it has no restoring lateral force preventing the alignments to
buckle, and no tensile strength. Therefore, a more concrete
implementation requires a rigid guide to align the spheres
(e.g. a cylindrical tube) and a compression force to main-
tain the cohesion (e.g. an internal spring or the own weight of
the device to be protected), as proposed in a patented gran-
ular chain-based vibration filter [49]. For instance, such a
device is considered as a payload vibration isolation system
at NASA’s Jet Propulsion Laboratory, in the form of an ar-
rangement of six single-axis alignments into a hexapod [50].
Further potential applications refer to vehicle shock absorbers
and earthquake protection systems [49, 50]. Here, implement-
ing our concept in such devices is likely to provide strong dis-
sipation rate in compact systems, extending their capabilities
to harsh mechanical shocks. Furthermore, our proof of con-
cept is not limited to granular-based systems. For instance,
metadampers, such as MIM scatterers embedded in an elastic
matrix [30], are also likely to benefit from a nonlinear wave
conversion during propagation, prior to resonant dissipation.
As another example of concrete implementation, our concept
is also transposable to acoustic waves in fluids. Solitary waves
being observable in waveguides branched to an array of non-
linear resonators [51], a nonlinear frequency conversion pre-
ceding a tuned absorption of the sound is therefore also con-
ceivable.

ACKNOWLEDGMENTS

F.M. acknowledges ANID-Chile through Fondecyt Project
No. 1201013 and Fondequip No. 130149. Support from LIA-
MSD France-Chile (Laboratoire International Associé CNRS,
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APPENDIX

A1. Frequency response of intruder

In order to further characterize the experimental system,
and as a check of consistency, the frequency response of the
intruder has been measured by exciting a bead embedding an
intruder by means of an electromagnetic shaker. An addi-
tional accelerometer, glued on the bead, allows for the mea-
surement of the instantaneous displacement U(t) imposed by
the shaker to the embedding sphere. As in all other exper-
iments the intruder is a miniature acceleration glued on the
polymer layer, which measures its own acceleration, from
which one gets its displacement u. Experimental results in
Fig. A1 demonstrate an intruder resonant frequency that is

fres =
√

k/m/2π ≈1600 Hz. In addition, the damping co-
efficient is found close to c ≈ 12 N s/m. Both values are
obtained through a fitting procedure to the experimental data,
using the theoretical frequency response of the experimental
system, that is,

h̃(ω) =
ũ(ω)
Ũ(ω)

=
k + jωc

k + jωc − mω2 , (A1)

where ũ(ω) stands for the Fourier transform of u(t) and m =
3.7 g is the known mass of the inner accelerometer. Both the
resonant frequency and the damping coefficient are consistent
with the value obtained in-situ, from the fit of a wave experi-
ment (see the main paper).

A2. Energy reflection and energy transmission at a bead with
intruder

The effect of the oscillator mass on the reflected and trans-
mitted energy solitary waves is presented in Fig. A2. The
force generated by the main transmitted solitary wave together
with all secondary waves generated are considered as a func-
tion of time, for three distinct values of intruder mass. The
absorbed energy at the bead holding the intruder as well as
the amplitude of all secondary waves increases with intruder
mass, [Fig. A2(a)]. The effect on the position of chain beads
[Fig. A2(b), beads 9-10, and Fig. A2(c), beads 24-25] due to
the passage of the solitary wave is to introduce a small dis-
placement in the direction of wave propagation, which is seen
as positive steps in sphere positions in both figures. Moreover,
small jumps in bead position can be seen as the results of pas-
sage of secondary waves [Fig. A2(b) and A2(c)]. Negative
jumps in bead position indicating the existence of reflected
secondary waves [Fig. A2(b)]. These observations are sum-
marized by plotting the reflected energy [Fig. A2(d)] and the
transmitted energy [Fig. A2(e)] as a function of the intruder
mass. Thus, energy transmission is reduced with increasing
intruder mass. This increase in mass leads also to the increase
of amplitude of secondary waves, but these remain small com-
pared to the main incident solitary wave.

The effect of the dissipation of the intruder oscillator on
the amplitude of transmitted and reflected waves is also in-
vestigated (Fig. A3). First, the force generated by the main
transmitted solitary and all secondary waves generated during
interaction with intruder are considered as a function of time,
for three distinct values of viscous coupling, c, [Fig. A3(a)].
Jumps in bead position are seen as the results of the passage of
secondary waves, [Fig. A3(b) and A3(c)]. It is corroborated
that generation of secondary waves, reflected and transmit-
ted, depends on the rate of dissipation energy of the intruder
[Figs. A3(d) and A3(e)].

A3. Effect on the solitary wave propagation due to passage
through successive heavy intruders

In the paper, the case of a light intruder has been inves-
tigated. In this Appendix, we explore how transmitted and
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reflected solitary wave are influenced by a heavy intruder. For
all cases investigated, the total mass of all beads is kept at a
constant value, i.e. if the intruder mass is increased the re-
spective holding sphere mass is decreased in order to keep
the sum of both masses equal to the experimental value. The
time evolution of solitary wave propagating through an array
of 46 spheres, where nine successive spheres contain equal
intruders, starting at sphere number 15 is shown in Fig. A4.
If the intruder mass is small, it is observed that the ampli-
tude of transmitted solitary wave slowly decreases as it passes
through the beads with intruders. As the mass increases, a sec-
ondary wave is clearly generated at the first bead with the in-
truder. The main solitary wave amplitude gradually decreases,
while the secondary wave is proportionally amplified by pas-
sage through intruders’ beads.

For sake of completeness, a detailed variation of solitary
wave transmission and reflection with intruder mass is shown
in an animation, see [52], whose snapshot is given in Fig. A5.

To provide experimental proof of the energy absorption fea-
tures of our system and further consistency with numerical
simulation, we build a chain of 16 Bakelite spheres in which
a segment, of four consecutive beads holding each of them an
intruder of mass and stiffness equal to that of intruder sensor,
is included. Figure A6 summarizes these experimental results
(a), (c), and (e) and compares with numerical simulations (b),
(d), and (f), respectively. Using the experimental values of
parameters, a satisfactory agreement is provided through nu-

merical simulations.

A4. Frequency content of chain excitation

To experimentally explore how the chain without intrud-
ers distributes the input energy, we impact the chain with
distinct impacters and investigate how solitary waves of a
characteristic frequency distribution develop. For stiff im-
pacters, a nearly single solitary wave is injected into the chain,
Figs. A7(a), A7(c), and A7(e). The respective frequency con-
tents, Figs. A7(b), A7(d), and A7(f), does not vary signifi-
cantly with impacter radius as predicted by numerical simu-
lations. Interestingly, when the mass of impacter is increased
and the stiffness is decreased, the collision time increases sig-
nificantly and, as predicted by numerical calculations, the gen-
eration of a train of solitary occurs. The separation of the
pulses composing the train is more evident as the excitation
propagates along the chain, Fig. A7g. Once the pulses are
separated, each pulse has a width, which has not varied signif-
icantly with respect to the previous cases [Figs. A7(a), A7(c),
and A7(e)], despite that Young’s modulus has been decreased
by 4 orders of magnitude. Comparing the Fourier transform
of solitary waves, Figs. A7(b), A7(d), A7(f), and A7(h), it is
corroborated that their frequency content is nearly insensitive
to changes in Young’s modulus.
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FIG. A1: Experimental frequency response of intruder obtained by sweeping the excitation frequency. The fit corresponds to the model given
by Eq. A1. The fitted resonant frequency is fres ≈ 1600 Hz and the damping coefficient is c ≈ 12 N s/m.
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FIG. A2: (a) Time evolution of forces at contacts 10 and 25, in a chain composed of 46 spheres, illustrating the main and secondary waves after
interaction with the oscillator, which is located at sphere 15, for three values of m. Left inset: reflected secondary waves, contact 10. Right
inset: transmitted secondary waves, contact 25. (b) Time evolution of positions of beads 9 and 10, illustrating the position shift of beads after
interaction, for m = 7.8 g. (c) Time evolution of positions of beads 24 and 25, illustrating position shift of beads after solitary wave passage,
for m = 7.8 g. (d) Mechanical energy associated with reflected secondary waves as a function of oscillator mass, m. (e) Mechanical energy
associated with transmitted secondary waves as a function of oscillator mass m. For all cases, c = 12 N s/m and k = 105 N/m.
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