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Abstract

Methane (CH4) emissions estimates from top-down studies over oil and gas basins

have revealed systematic under-estimation of CH4 emissions in current national in-

ventories. Sparse but extremely large amounts of CH4 from oil and gas production

activities have been detected across the globe, resulting in a significant increase of the

overall O&G contribution. However, attribution to specific facilities remains a major

challenge unless high-resolution images provide the sufficient granularity within O&G
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basin. In this paper, we monitor known oil-and-gas infrastructures across the globe us-

ing recurrent Sentinel-2 imagery to detect and quantify more than 800 CH4 emissions.

In combination with emissions estimates from airborne and Sentinel-5P measurements,

we demonstrate the robustness of the fit to a power law from 0.1 tCH4/hr to 600 tCH4/hr.

We conclude here that the prevalence of ultra-emitters (> 25tCH4/hr) detected globally

by Sentinel-5P directly relates to emission occurrences below its detection threshold.

Similar power law coefficients arise from several major oil and gas producers but no-

ticeable differences in emissions magnitudes suggest large differences in maintenance

practices and infrastructures across countries.

Introduction

The detection of large and frequent methane (CH4) emissions linked to oil and gas production

has raised concerns in the ability of natural gas to effectively reduce greenhouse gas (GHG)

emissions as a substitute to coal.1–8 Over a 20-year horizon, a CH4 molecule has a global

warming potential close to 90 times larger than carbon dioxide (CO2).
9 A large part of the

CH4 emissions could be controlled or avoided, as they come primarily from maintenance

operations at oil rigs, pipelines, or well pads, and from equipment failures.10

In order to detect and quantify GHG fossil fuel emissions produced by human activities,

several satellites have been placed in orbit over the past ten years (e.g. GOSAT, OCO-

2, TROPOMI), allowing a persistent monitoring of carbon dioxide and methane emissions.

The Sentinel-5P (TROPOMI) satellite mission11 provides hyper-spectral images in the short-

wave infrared (SWIR) spectrum for which CH4 has a significant absorption coefficient. It

provides daily CH4 column mole fractions over the whole globe at moderate resolutions (5-7

km) revealing multiple individual cases of unintended very large emissions (e.g. Pandey et

al .12) and regional basin-wide anomalies.13,14 However, due to its relatively low spatial reso-

lution and moderate instrument precision, this mission remains inadequate to observe small

emissions (< 25 tCH4/hr) or to attribute emissions to specific facilities in densely-equipped
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oil and gas basins Lauvaux et al ..15

High resolution hyper-spectral satellite imagery from PRISMA16 and GHGSat17 offers

much lower emission detection thresholds (0.1 to 0.2 tCH4/hr) and the capacity to attribute

precisely an emission to a specific oil and gas asset. However, the tasking nature and rel-

atively small fields of view of these products limit their viability for persistent monitoring

at a global scale. Airborne campaigns,18 while having an even higher spatial resolution and

lower detection limits (about 0.01 tCH4/h), suffer from the same limited spatial coverage.

The Sentinel-2 mission provides persistent multi-spectral imagery in the SWIR range and

with a relatively low revisit time. Although these instruments are not designed with methane

detection in mind, it turns out that some of the bands are sensitive to its presence, thus

enabling detection and quantification of moderate CH4 emissions. It was shown by Varon et

al .19 that combining adequately multiple SWIR bands increases the contrast of the plumes,

and that having access to a reference image (at another date) without a CH4 anomaly still

improves this contrast.

In this work, we applied our detection framework for large scale detection, quantification

and uncertainty estimation of methane plumes using imagery coming from existing SWIR

instruments onboard the Sentinel-2 and Landsat-8 satellites. The methodology (presented in

Appendix A and B) was used to monitor oil and gas infrastructure in four countries. This led

us to detect about 800 events, a dataset that we are making publicly available. We combined

our measurements with data from other instruments, presented by Lauvaux et al .,15 more

adapted to detect larger emissions (Sentinel-5P), as well as smaller events detected with

airborne campaigns. Using this combination of observed emissions, we were able to construct

a robust emission power law model that has been recently proposed, which shows that global

observations of ultra-emitters (> 25 tCH4/hr) serves as an indicator for the magnitude of

many more unobserved events. We also clustered the emissions based on their location, i.e.

by country, or by date to have a better understanding of local behaviors and derive trends.
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Results

We monitored about 7000 geographical sites of interest linked to oil and gas facilities during

a period of 43 months, from November 2017 to June 2021. Every site is associated to a

10x10km tile. For every tile, a time series of at least six months was extracted. In total for

this study, more than 1248621 (potentially cloudy) tiles were processed over 562652 km2.

The proposed dataset comprised all the manually annotated masks (see Appendix B for a

complete description of the practical pipeline that was used) corresponding to the detected

methane plumes at each of these locations. Each detected plume in the dataset is quantified

using the IME method (See Appendix B). Fig. 1 shows a selection of methane plumes from

the proposed dataset. We also associate to each plume the corresponding wind data from

ECMWF-ERA520 that is used to quantify the emission. Table 1 recapitulates the data

available for each emission in the database. As of May 2021, 792 plumes were detected

using Sentinel-2 images from 86 different sites of interest, mostly located in three countries:

Algeria, the United States and Turkmenistan (see Fig. 3). Table 2 shows the number of

detected events per country.

We then classified these emissions into two main categories: recurrent and unique. An

event is said to be recurrent when at least two methane plumes have been detected in the

time series of a given AOI. The rest of the emission are characterized as unique i.e. only

one plume was detected in the considered AOI in the entire time series. We found that 58%

of these plumes could be attributed to recurrent events. This means that these events are

likely not due to an unexpected major incident, and could probably be avoided with a better

monitoring and maintenance of oil and gas facilities. We present a more detailed histogram

of recurrence of emissions in Fig. 2.
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Figure 1: Examples of detected plumes over oil and gas facilities. The plume is shown as a
white and purple mask (not scaled here) over the corresponding Sentinel-2 satellite images.

Power law fitting

In a recent paper, Lauvaux et al .15 postulated that the emission events follow a power

law distribution. This was observed using emission rates estimated from Sentinel-5P and

airborne hyperspectral measurements. In this work, we merged the events from our Sentinel-

2 based dataset into the previously proposed power law plot15 to complete the picture. The

power law that we obtained is shown in Fig. 4. Note that we rescaled counts for Sentinel-2

and airborne campaigns so that counts match for all sources for emissions rates where events

can be detected by multiple sources. In practice, this means that Sentinel-2 counts are

scaled to match Sentinel-5P counts at 50 tCH4/hr (i.e so the regression lines intersect), while
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Figure 2: Histogram of recurrence of emissions.

Table 1: Data available for each emission in the plume database

Attribute Description

long, lat Longitude and Latitude of the source of the plume
date Date of the event
plume shape Contour of the binary mask of the plume in WSG84 coordinates
u,v Wind direction along the U and V components (in ms1)
ws Wind speed retained for the IME (the norm of (u,v))
Q Emission rate

California2 and Permian8 counts are scaled to match S2 counts at 5 tCH4/hr. The rationale

behind this scaling is that, everything else being equal, detection counts should match for

all sources for which emission rates are above the detection limit. The scaling is thus meant

to compensate for differences in spatial coverage, revisit frequency, weather impact, etc. We

define the detection limit as the threshold that represents the regime in which, excepted

in the most adversarial conditions, sources should be detected. In practice, it corresponds

to the point below which the linear models isn’t valid anymore since detections are missed.

This phenomenon is visible in Fig. 4 where each curve ”tails off” on the lower end. This

also means that it is possible to detect emissions smaller than this limit when conditions are

optimal (e.g appropriate wind conditions and good surface reflectance).

Remark that Sentinel-2 observations are well aligned with the Sentinel-5P power law
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Figure 3: Illustration of the processed tiles and detected emissions. The quantified emission
rate are illustrated by the circle diameters while the black squares represent the processed
tiles. Figure best seen zoomed.

Table 2: Distribution by country of the detected emissions during the period of 43 months
going from November 2017 to June 2021.

Country Number of events

Algeria (DZA) 376
Turkmenistan (TKM) 325
United States (USA) 58
Uzbekistan (UZB) 27
Russian Federation (RUS) 5
Iraq (IRQ) 1
Kazakhstan (KAZ) 1

slope and complete the range for medium scale events, bridging the gap in emission rates

between small sources (0.1 tCH4/hr to 10 tCH4/hr) captured by airborne campaigns and

the ultra-emitters (> 25 tCH4/hr) detected by, for example, Sentinel-5P. This shows that

at a global scale large event observations seen by Sentinel-2 and Sentinel-5P might be a

good proxy indicator for smaller events unobserved by these two satellites (these events can

however be observed by airborne campaigns).
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Figure 4: Power law plot of Sentinel-5P and Sentinel-2 events, together with airborne cam-
paigns over California2 and the Permian.8 Counts are scaled to match in common detection
zones. Since data is consistent across the different sources used for the study, this shows
that at a global scale large event observation might be a good proxy indicator for smaller
but unobserved events.

Per country analysis using Sentinel-2 and Sentinel-5P

We analyzed the previous data on a per-country basis. We considered only measurements

from Sentinel-5P and Sentinel-2 and studied the detections in Algeria, Turkmenistan, and

United States. This analysis is shown in Fig. 5. Out of the three countries studied here,

Algeria shows lower magnitudes in terms of CH4 emissions while Turkmenistan is the largest.

However, we note that both countries follow a similar power law model. The United States

suggest an intermediate level of emissions and a slightly different power law model. This

country-based analysis confirms the coherence of Sentinel-2 and Sentinel-5P data. Indeed,

the slopes for both Algeria and Turkmenistan agree for both satellites despite spatially

disconnected sampling and different emission rates. The case of the US is slightly more

complicated to analyze. In practice, the regions studied by both satellites are different. The

Sentinel-2 measurements cover primarily the Permian basin while the Sentinel-5P ones cover

the rest of the US. In both cases, the US is located in between Algeria and Turkmenistan.
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Figure 5: Power law by country from Sentinel-2 (left) and Sentinel-5P (right) measurements.
Out of the three countries studied, Algeria is doing the best in terms of CH4 emissions while
Turkmenistan is doing the worst, with the US in between.

The September 2020 Permian incident

We also applied the same methodology to estimate emission rates during an incident in the

Permian basin. This incident occurred during the summer of 20201 and lasted about two

months. Several observations from Sentinel-2, Landsat-8, Sentinel-5P and from an airborne

hyperspectral campaign were collected.

While we used the principle presented in Appendix A for Landsat-8 and Sentinel-2 im-

agery, Sentinel-5P measurements were derived from the methane concentrations provided by

the L2 methane product. Nevertheless, we estimated a background methane concentration,

by computing the median methane concentration neighboring a plume, that we then removed

so that only the excess methane was measured. The airborne hyperspectral measurements

were obtained in September 2020 (towards the end of the event) with Scientific Aviation

flights and are provided by the PermianMap project (Operator Performance Dashboard2).

Fig. 6 shows the estimated emission rates from the mentioned sources. As we can see, the

emission measurements of the airborne campaign and all those obtained after September 15th

2020 are all close and consistent with each other up until the last two EDF measurements.

1Estimated latitude and longitude of the source: (31.7335, -102.0421).
2Data from U. Arizona, NASA-JPL, and EDF provided via the PermianMap project by EDF (https:

//data.permianmap.org/pages/operators). Users are bound by the Terms of Use of this data.
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Figure 6: Emission rates measured during an incident in the Permian basin occurred dur-
ing the summer of 2020 (estimated latitude and longitude: 31.7335, -102.0421). The plot
combines estimates obtained from Sentinel-2, Landsat-8, Sentinel-5P and from Scientific
Aviation flights. All of these estimates are consistent across sources and show that the
emission started more than two months earlier than it was initially reported by the EDF
campaign.

Yet, the analysis of the time series leads to conclude that the event had started two months

prior to the aircraft campaign, thus increasing significantly the total amount of CH4 released.

Note that the measurements as well as the estimated confidence intervals are consistent. In

Fig. 7 we show the plumes observed at the 12 dates where Sentinel-2 and Landsat-8 images

were available. Since no emissions were detected before July 9th 2020, these measurements

enable a full description of the event from start to end and lead to estimate (by extrapolating

each detected plume) a grand total of 16,537±7,146 tons of methane emitted during this

event.

Conclusions

Using our detection and quantification framework with Sentinel-2 imagery, we were able to

detect and monitor about 7,000 geographical sites with oil and gas infrastructure over many

different countries. We detected and quantified more than 800 methane plumes across a

period of 43 months.

We then used this data to complete the power law presented by Lauvauxet al ..15 This
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Figure 7: Illustration of the plumes (in ppb) observed using Sentinel-2 and Landsat-8 im-
agery during the incident in the Permian basin occurred during the summer of 2020 (es-
timated latitude and longitude: 31.7335, -102.0421) studied in Fig. 6. The source of the
emission is located at the center of the images.

power law was initially made using only Sentinel-5P, only good for ultra-emitters (> 25

tCH4/hr), and airborne campaigns, with limited spatial and temporal coverage. By involving

Sentinel-2, we completed the picture by adding a large number of mid-scale detections. Since

data are coherent across data sources, our study shows that global-scale ultra-emitters might

be a good proxy indicator for smaller but unobserved events. We also looked at the behavior

for different countries and across time. We were able to show that Algeria shows lower

emission rates compared to Turkmenistan, with the US in between.

Finally, we verified the methodology on a specific incident in the Permian in September

2020. We combined observations from Sentinel-2, Sentinel-5P and Landsat-8 and compared

them to the results of an airborne campaign. Once again, the observations from the different

data sources are coherent and show that the emission started more than two months prior

to the airborne campaign. The estimated confidence intervals, between 1 tCH4/hr and 6

tCH4/hr, are also consistent between Sentinel-2 and Landsat-8.

The next step is to make the entire framework completely automatic. Indeed, because

we are currently relying on manual annotation to achieve the performance presented in this

paper, we are limited to monitoring specific sites such as oil and gas infrastructures. Having

a completely automatic pipeline would enable a global monitoring at high spatial resolution,
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including attribution to specific facilities and activities in agricultural and waste sectors.
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Appendix A: Principles for methane detection and quan-

tification with multi-spectral satellite imagery

When light traverses a gas, its intensity can be attenuated on certain wavelengths. Using

this property, it is possible to detect the presence of a specific gas when its attenuation

properties are known, and to derive a quantification of the concentration of this gas. In this

paper, we apply this concept to methane detection using multi-spectral satellite imagery.

We focus on the detection and quantification of isolated excess concentrations of methane in

the atmosphere, also referred as anomalies. These phenomena are often due to emissions in

oil and gas infrastructures. Since methane absorbs light in the SWIR part of the spectrum,

it is possible to use satellites such as Sentinel-2 (see Fig. 8) or Landsat-8 (see Fig. 9) that
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Figure 8: Methane transmittance spectrum and Sentinel-2 A spectral sensitivity for all its
bands. Ignoring the cirrus band B10 that is not suitable for monitoring applications, only
bands B11 (1568-1659 nm) and B12 (2114-2289 nm) are impacted by the presence of methane
in the atmosphere. The other bands are not impacted.

provide a good spatial resolution, a low revisit time and a low acquisition cost.

We use a simple absorption model to characterize the attenuation due to the presence

of methane. The Beer-Lambert law states that for a light source with intensity I0 and a

wavelength λ

I = I0e
−

∑N
i=0 Ai(λ)li , (1)

where the light goes through N gases defined by their absorption Ai(λ) and equivalent optical

path length li defined as the product of the actual optical path and the concentration of the

ith gas. In our case, the N gases correspond to the atmosphere and I0 is the sunlight in the

SWIR spectrum. We can also reasonably assume I0 to be constant for all wavelengths λ

of the SWIR spectrum. Taking into account that the sensor of a satellite integrates over a

band of wavelengths described by a sensitivity function s, the intensity of the light seen by

a space-borne sensor becomes

I = I0

∫
s(λ)α(λ)e−γ

∑N
i=0 Ai(λ)lidλ, (2)
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Figure 9: Methane transmittance spectrum and Landsat-8 spectral sensitivity for all its
bands. Similarly to Sentinel-2, the two SWIR bands SWIR1 and SWIR2 can be used for
methane detection and quantification.

where the two passes through the atmosphere are taken into account in γ (which is a function

of both the sun azimuth angle and the satellite view angle). The reflection coefficient of the

ground is represented in the formula by the surface albedo α(λ). See Fig. 10.

In the presence of a methane emission, characterized by lleak, the intensity of the light

seen by the sensors becomes

Ileak = I0

∫
s(λ)α(λ)e−γ

∑N
i=0 Ai(λ)lie−γACH4(λ)lleakdλ. (3)

Supposing that we have both the exact same observation with and without a methane emis-

sion, it becomes very easy to detect the emission. Indeed Ileak < I everywhere lleak is non

zero. The problem is that the observation without methane, also called background obser-

vation, is never available in practice. Therefore, a reference observation without methane

is needed in order to distinguish an attenuation due to the presence of methane from a

difference in the surface albedo.

When we assume that methane emissions are anomalous events, it is to be expected that

most observations in a time series should not contain excess methane. So, if we suppose

that the surface albedo is rather stable in time, the time series can be used to estimate a

14
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Figure 10: Atmosphere observation model. The on board sensor sees the light coming from
the sun after reflection on Earth. Its intensity has dimmed due to the atmosphere and the
reflection process. The dimming is also impacted by the presence of a methane plume.

methane free background model that can be compared with the current observation. Here,

we compute the background for a given date as its linear regression over the previous dates.

If we denote by It the observation at time t, then the regression computes the optimal weights

wi that solve

min
{wi}

∥∥∥∥∥It −
t−1∑
i=0

wiIi

∥∥∥∥∥
2

. (4)

Then the background is obtained as the linear combination
∑t−1

i=0 wiIi. To further improve

the background subtraction we combine this estimation with a band ratio that exploits the

correlation between SWIR bands, similarly to the multiple-band single-pass (MBSP) from

Varon et al ..19

Quantifying a emission is also an important part of monitoring. While the previous

processing was presented for methane emission detection, it can also be used to quantify it.

Supposing that both the signal with the emission Ileak and without emission Ibg are available

(using for example the process presented previously), then

Ileak
Ibg
≈
∫
B12

s(λ)e−γ
∑N

i=0 Ai(λ)lie−γACH4(λ)lleakdλ∫
B12

s(λ)e−γ
∑N

i=0 Ai(λ)lidλ
. (5)
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Since γ is known for each acquisition, this ratio only depends on the atmosphere composition.

Therefore, for a fixed atmosphere composition, it is possible to estimate the value of lleak as

the solution of a simple optimization problem

arg min
lleak

∥∥∥∥∥IleakIbg
−
∫
B12

s(λ)e−γ
∑N

i=0 Ai(λ)lie−γACH4(λ)lleakdλ∫
B12

s(λ)e−γ
∑N

i=0 Ai(λ)lidλ

∥∥∥∥∥
2

2

. (6)

In practice, the atmosphere model can be well approximated with a simple “pure methane

atmosphere”, i.e. an atmosphere that’s purely made of methane, instead of considering a

complete atmosphere model. This quantification scheme can also be adapted when using

band ratio.

Appendix B: Practical methane emission tracking

We present in this Appendix the practical implementation of the detection and quantification

principles mentioned in Appendix A. Namely, we first present the different preprocessing

steps necessary for the pipeline to function. We provide more details about the background

reconstruction process, the detection validation process and the quantification process. This

practical pipeline is the one used to perform all the experiments presented in this paper.

Fig. 11 illustrates the different steps of the proposed methodology for Sentinel-2 ; Fig. 12

illustrates the same steps but for Landsat-8.

Preprocessing

From now on, we consider areas of interest (AOIs) of size approximately 10x10 km2. We

found out that this size is well adapted to capture methane plumes created by emissions,

while being large enough so that the reconstruction is not impacted too much by the presence

of methane in the reference images. We collect L1C Sentinel-2 timeseries corresponding to

the AOIs, preferably considering timeseries longer than six months. We first co-register

16
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Figure 11: Visualization of each step of the detection and quantification pipeline. From left
to right, top to bottom: the Sentinel-2 image of the location (only the RGB channels are
shown), the log band ratio corresponding to the image, the predicted background model,
the residual showing the plume, the mask corresponding to the detected plume and the
associated quantification in ppb.

all the images of a timeserie using the method by Hessel et al ..21 We also apply a cloud

detection algorithm, such as the one proposed by Dagobert et al .,22 to estimate the cloud

cover. All images with a cloud coverage of more than 15% of the pixels from the image

are discarded. Sentinel-2 images comprise 12 bands with spatial resolutions from 10m per

pixel to 60m per pixel. The two bands of interest, namely band 11 and band 12, are both

sampled at 20m per pixel therefore there is no need for resampling them. However, we have

observed that these two bands are aliased. This is particularly important because we are

computing ratios of these two bands and therefore this aliasing can create large artifacts

during the processing (see Fig. 13). In order to avoid this problem we apply an anti-aliasing

filter, namely a Gaussian filter, prior to any other processing. We also apply a log on the

ratio. This limits the impact on the reconstruction of abnormal high values present in the

SWIR bands, for example due to flaring, which are frequently found in the vicinity of oil

17



0.06

0.04

0.02

0.00

0.02

0.04

0.06

0

500

1000

1500

2000

2500

3000

Figure 12: Visualization of each step of the detection and quantification pipeline. From left
to right, top to bottom: the Landsat-8 image of the location (only the RGB channels are
shown), the log band ratio corresponding to the image, the predicted background model,
the residual showing the plume, the mask corresponding to the detected plume and the
associated quantification in ppb.

and gas facilities. As it will be seen in Detection validation, the other bands are still useful

to validate a plume detection. This is why we resample all these bands to 20m per pixel so

that comparison is easier.

Background estimation

The core of the detection pipeline is the background estimation process. For that we split

each time-series of log band ratios computed above in a sliding window of size T = 30 dates.

For each date in the window, we compute its linear projection on the past T − 1 images.

Using the estimated background, we define a residual that corresponds to the difference

between the input data and the prediction. Fig. 14 illustrates the impact of the size of the

sliding window T on the background estimation. A longer time series improves the SNR of

the extracted plume, thus fostering its detection. Note that by projecting on a time series
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Figure 13: From left to right: Band 12, ratio between B12 and B11 without filtering and
ratio between B12 and B11 with filtering. Sentinel-2 images are aliased and therefore should
be preprocessed before computing the ratio. The artifacts due to aliasing would impact the
processing otherwise. Figure best seen zoomed.

Projection on 0 images 

 SNR 1.28

Projection on 1 image 

 SNR 7.28

Projection on 5 images 

 SNR 12.49

Projection on 10 images 

 SNR 17.85

Projection on 20 images 

 SNR 58.18

Figure 14: Impact of the size of the sliding window T on the background estimation. A
longer time series improves the SNR of the extracted plume thus helps its detection.

there is no need to manually choose a reference date as background.19

Similarly to how flaring could impact the background estimation, new (or disappearing)

large structure can also lead to errors in the quantification. To limit the impact of outliers,

robust estimation methods such as Huber regression23 or the iteratively reweighted least

square algorithm24 can be used. We found out that in our case such robust regression

methods are quite slow. For this reason, we use an approximate two-steps estimation method

that is good enough for this application. A first estimation is done using a linear projection

as presented previously. Then the 5% of pixels with the worst estimation are discarded. The

remaining pixels are then used to perform a second linear projection, this time without the

outliers. The coefficients estimated with the second linear projection are used to perform

the final estimation. We argue that even if pixels containing methane are initially discarded,
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RGB Projection on 20 images wo two steps projection 

 Residuals MSE 0.00466

Projection on 20 images w two steps projection 

  Residuals MSE 0.00277

Figure 15: Improvement of background estimation when using a two-steps estimation. Left
to right: The RGB image of the scene, the background estimated using a single step, the
background estimated using two steps. Using two steps allows to have a much smaller MSE
than a single step estimation (with the outliers set to zero). The MSE has been estimated
on the same pixels (i.e. without the outliers) for both images.

this is not a problem because methane should, by definition, not impact the background

prediction. Fig. 15 shows a case in which this procedure allows to refine the background

reconstruction. The reconstruction error of the background is almost twice as small when

using a two step estimation.

Despite removing outliers, the two-stage approach cannot deal with time series containing

large zones with changing albedo. This is the case for the crop fields seen in Fig. 16, for which

a spatially adaptive processing must be adopted. The objective is to bring non linearity to

the projection by performing one projection for each zone of similar albedo. An albedo map

is computed by clustering the pixels of our images with four different features: the temporal

standard deviation and mean of the band absorbing median, the x and y position of the

pixel in the image. The clustering is done using a Gaussian mixture model, and the optimal

number of clusters is fixed with the post analysis of the Bayesian information criterion of

the clustering. This methodology being more computationally intensive is performed only

on regions with a high albedo variance.
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 SNR 5.09
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Figure 16: Improvement of background estimation when using clustering. Left to right: The
RGB image of the scene, the different clusters estimated from the albedo, the background
estimated without the clusters, the background estimated with the clusters. Using a clus-
tering step during the background estimation increases the SNR of the methane plume with
respect to the background.

Detection validation

While we would like to have a completely automatic detection process, directly detecting on

the residuals computed in Background estimation yielded too many false detections. This is

why we added an extra step where all detections are done and verified manually. In particular,

a mask corresponding to the shape of the potential plume is first manually annotated. We

then compare the content of the annotated region to the content of the same region but in

the other bands. If the potential plume is indeed a true methane plume, then it should not

be correlated to the content of the bands that are not impacted by the presence of methane.

In particular, a similar shape should not be found in these other bands. Some surfaces, for

example snow, have a higher reflectance in B11 than B12. This causes a contrast inversion

and a dimming-like phenomenon when looking at the band ratio. Because of that, it is

possible that potential plumes appear in the band ratio even though they do not correspond

to an actual dimming in B12. The last validation step checks that the detection corresponds

indeed to a dimming in B12.
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Source quantification

Once the mask of the plume is available, we quantify the emission rate corresponding to

the source of the plume. The first step is to quantify the equivalent amount of methane

lCH4 per pixel that corresponds to the extra methane attributed to the source. For that, we

adapt the quantification model presented in Eq. 6 so as to take into account the extra log

preprocessing as well as the band ratio. This leads to an extra methane ∆Ω(p) for the pixel

p corresponding to

∆Ω(p) = arg min
lleak

∥∥∥∥∥R(p)− log

(∫
B12

s(λ)e−γACH4(λ)(latm+lleak)dλ∫
B12

s(λ)e−γACH4(λ)latm)dλ

∫
B11

s(λ)e−γACH4(λ)latm)dλ∫
B11

s(λ)e−γACH4(λ)(latm+lleak)dλ

)∥∥∥∥∥
2

2

,

(7)

with R(p) the estimated residual at pixel p and latm the amount of methane naturally present

in the atmosphere. We define latm such that it corresponds to a residual background of

1800ppb of methane. To estimate ACH4, we use the HITRAN database.25 We also use the

sensitivity s of Sentinel-2 A, respectively Sentinel-2 B, calibrated in laboratory provided by

ESA3. The optimization is done using the downhill simplex algorithm.

Once each pixel of the plume has been quantified, we estimate the source emission rate

using the integrated mass enhancement (IME) method.26 The IME method relates the source

rate Q to the total detected plume mass by

Q = A
Ueff
L

∑
pinM

∆Ω(p), (8)

where Ueff corresponds to the effective wind speed, L the plume length,M the mask of the

plume, A the area covered by a pixel (in this case A = 400m2). We use wind data collected

from the ECMWF-ERA5 reanalysis product from the Copernicus Climate Change Service.20

Varon et al .26 showed that Ueff can be related to the local wind speed at 10m U10 therefore

we select the wind product at 10m above ground level and at the closest time before the

sensing time for each estimation. The source origin is selected manually using jointly the

3https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/

performance
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Figure 17: The uncertainty of the plume on the left is estimated by simulating the same
plume in other images of the timeseries. Each estimated plume (in ppb) as well as their
predicted emission rate are shown on the right.

wind data and the plume shape.

Quantification uncertainty estimation

Different factors can contribute to quantification errors in the proposed method. We focus

here on the uncertainty induced by the proposed background estimation method by providing

a per-scene uncertainty estimation.

Fluctuations in the albedo and atmospheric conditions might be wrongly quantified as

excess of methane. The idea is to estimate the quantification errors due to these fluctuations

by simulating the same methane plume in other images of the time series: From each new

simulated image the quantification pipeline is run again and a new emission rate is estimated.

The uncertainty is then obtained as the standard deviation of the emission rates estimated

with the simulated images. Fig. 17 illustrates the concentrations obtained by applying this

procedure on different images of the time series.
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