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Analytic expressions for some Mellin transforms with their application to prime counting function and interpolation formulas for the zeta function

The aim of our present work here is to present few results in the theory of Mellin transforms using the method that S. Ramanujan used in proving his Master Theorem. Further applications of our results for some numbertheoretic functions such as the prime counting function and the zeta function are established.

Introduction

1.1. This is a technical paper which is an application based extension of Ramanujan's Master Theorem which is a powerful tool for evaluating Mellin type integrals [1129, pg. [START_REF]Table of Integrals, Series, and Products[END_REF]]. It states that if f has expansion of the form

f (x) = ∞ n=0 (-1) n φ (n) n! x n (1.1)
where φ(n) has a natural and continuous extension such that φ(0) = 0, then for s > 0, we have

∞ 0 x s-1 ∞ n=0 (-1) n φ (n) n! x n dx = Γ (s) φ (-s) . (1.2)
where s is any positive integer. Eqn. (1.2) was communicated by Ramanujan in his Quarterly Reports [ [START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF], p.298] [START_REF] Berndt | The quarterly reports of S. Ramanujan[END_REF] and was used by him in computing the values * Khandesh College Education Society's Moolji Jaitha College Jalgaon-425001, Maharashtra,

India. E-mail: atale.om@outlook.com 1 of certain definite integrals [START_REF] Hardy | Twelve Lectures on subjects suggested by his life and work[END_REF]. We kindly request readers to make themselves familiar with the derivation of Ramanujan's Master Theorem from [ [START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF], p.298] [START_REF] Berndt | The quarterly reports of S. Ramanujan[END_REF] whose method of proof is frequently used throughout the paper. Now, for the purpose of application, consider the following binomial expansion for a, v > 0 2 On certain Mellin transforms and their analytic expressions 2.1. In this section, few theorems are established that are motivated by Ramanujan's method of deriving Eqn. (1.2). Furthermore, certain applications of respective theorems are studied and applied in calculating the Mellin transform of certain infinite series. Throughout this section, it is assumed that φ(n) has a natural and continuous extension such that φ(0) = 0.

(1 + ax) -v = ∞ n=0 a n Γ (v + n) Γ (v) (-x) n n! . (1.6) Employing Eqn. (1.2) yields ∞ 0 x n-1 (1 + ax) -v dx = Γ (n) Γ (v -n) a n Γ (v) . ( 1 
Theorem 2.1.

If (s) > 0, then (i) ∞ 0 x s-1 ∞ n=0 φ (2n + 1) (-1) n (2n + 1)! x 2n+1 dx = φ (-s) Γ (s) sin πs 2 , (2.1) 
(ii) ∞ 0 x s-1 ∞ n=0 φ (2n) (-1) n (2n)! x 2n dx = φ (-s) Γ (s) cos πs 2 , (2.2) 
Proof. Consider the following Mellin transform of sin(ax) [ [START_REF] Berndt | Ramanujan's Notebooks, Part IV[END_REF], pg. 332] ∞ 0

x s-1 sin(ax)dx = a -s Γ (s) sin πs 2 .

(2.3)

Substituting a = r k with r > 0 in the above equation and expand sin(ax) in its Maclaurin series to get

∞ 0 x s-1 ∞ n=0 (-1) n (2n + 1)! r k x 2n+1 dx = Γ (s) r -sk sin πs 2 .
Multiply both sides by

f (k) (a)h k k!
where f shall be specified later and sum on k,

0 ≤ k < ∞ to get ∞ k=0 f (k) (a) h k k! ∞ 0 x s-1 ∞ n=0 (-1) n (2n + 1)! r k x 2n+1 dx = ∞ k=0 f (k) (a) (hr -s ) k k! Γ (s) sin πs 2 , ∞ 0 x s-1 ∞ n=0 ∞ k=0 f (k) (a) hr 2n+1 k (-1) n k! (2n + 1)! x 2n+1 dx = ∞ k=0 f (k) (a) (hr -s ) k k! Γ (s) sin πs 2 . Now, let φ (-s) = f hr -s + a = ∞ k=0 f (k) (a) (hr -s ) k k! .
Therefore, after further simplification we get

∞ 0 x s-1 ∞ n=0 φ (2n + 1) (-1) n (2n + 1)! x 2n+1 dx = φ (-s) Γ (s) sin πs 2 .
Proof of (ii) can be obtained by a similar method using [ [START_REF] Andrews | Ramanujan's Lost Notebook -Part IV[END_REF], pg. 332] 

∞ 0 x s-1 cos(ax)dx = Γ (s) a -s cos πs 2 . (2.4) Corollary 2.1.1. For s > 0 and s = 1 2 , 1 4 we have (i) ∞ 0 x s-1 ζ (4) x -ζ (8) 1 3! x 3 + ζ (12) 1 5! x 5 + ... dx = ζ (2 -2s) Γ (s) sin πs 2 , (2.5) (ii) ∞ 0 x s-1 ζ (2) -ζ (6) 1 2! x 2 + ζ (10) 1 4! x 4 + ... dx = ζ (2 -2s) Γ (s)
∞ 0 ζ (4) -ζ (8) 1 3! x 2 + ζ (12) 1 5! x 4 + ...dx = π 3 12 , (2.8) 
(ii) ∞ 0 log x x ζ (2) -ζ (6) 1 2! x 2 + ζ (10) 1 4! x 4 + ... dx = π 4 24 , (2.9) 
where ζ(s) is the zeta function.

Proof. We have mentioned earlier that s > 0, but their is a particular case where we can apply Theorem 2.1 at s = 0. This can be done as follows. Using reflection formula for the gamma function of the right hand side of Eqn. (2.5) and taking the limit on s the both sides to zero, we get

∞ 0 ζ (4) -ζ (8) 1 3! x 2 + ζ (12) 1 5! x 4 + ...dx = π 2 6 lim s→0 π sin πs 2 Γ (1 -s) sin (πs) .
Using L'Hospital's rule, we get

∞ 0 ζ (4) -ζ (8) 1 3! x 2 + ζ (12) 1 5! x 4 + ...dx = π 3 12 .
Similarly, after calculating the value of integral (2.6), Eqn. (2.9) readily follows.

A detailed proof can be found in Appendix A.1.

Corollary 2.1.3. for |t| < |a| and s, c > 0 We have

1 2 ∞ 0 x s-1 [ζ (c, a + x) -ζ (c, a -x)] dx = (-1) -s Γ (s) Γ (c -s)ζ (c -s, a) Γ (c) sin πs 2 .
(2.10)

Proof. From [[9], pg. 412] we have ∞ k=o (c) 2k+1 (2k + 1)! ζ (c + 2k + 1, a) t 2k+1 = 1 2 [ζ (c, a -t) -ζ (c, a + t)] (2.11) 
where (c) 2k+1 = Γ (c + 2k + 1) Γ (c) .

Letting t = x and applying Eqn. (2.1) yields the desire result.

Theorem 2.2. We have

∞ 0 log x x ∞ n=0 c n x 2n dπ (x) = ∞ n=0 c n A n (2.12)
where that is

c n = ζ (4n + 2) (-1) n (2n)! , (2.13) 
A n = ∞ k=1 µ (k) (1 -2n) k -1 + f (1 -2n), ( 2 
∞ 0 log x x ∞ n=0 ζ (4n + 2) (-1) n (2n)! x 2n dπ (x)
where π(x) is the prime counting function. Therefore, we get

∞ 0 log x x ∞ n=0 ζ (4n + 2) (-1) n (2n)! x 2n dπ (x) = p log p p ∞ n=0 ζ (4n + 2) (-1) n (2n)! p 2n .

Now, let

c n = ζ (4n + 2) (-1) n (2n)!
then substitute the value of c n and inverting the order of summation, we get

∞ 0 log x x ∞ n=0 c n x 2n dπ (x) = ∞ n=0 c n p log p p p 2n = ∞ n=0 c n p log p p 1-2n . (2.15)
Now, using Eqn. (6.1) from [ [START_REF] Berndt | Ramanujan's Notebooks, Part IV[END_REF], pg. 116], for (s) > 1, we have

p log p p s = ∞ k=1 µ (k) sk -1 + f (s)
where µ(k) is the Mobius function, f (k) is analytic and is given by

f (s) = - ∞ k=1 µ (k) ζ (ks) ζ (ks) + 1 ks -1 .
Therefore, we get

p log p p 1-2n = ∞ k=1 µ (k) (1 -2n) k -1 + f (1 -2n) and f (1 -2n) = - ∞ k=1 µ (k) ζ (k (1 -2n)) ζ (k (1 -2n)) + 1 k (1 -2n) -1 .
Substituting the above values in Eqn. (2.15) yields the following result

∞ 0 log x x ∞ n=0 c n x 2n dπ (x) = ∞ n=0 c n A n where A n = ∞ k=1 µ (k) (1 -2n) k -1 + f (1 -2n). Theorem 2.3. If p, k, s > 0, then (i) ∞ 0 x s-1 ∞ n=0 φ (2n + 1) (-1) n (2n + 1)!p 2n+1 x (2n+1)k dx = φ -s k p Γ k (s) sin πs 2k , (2.16) (ii) ∞ 0 x s-1 ∞ n=0 φ (2n + 1) (-1) n (2n + 1)!k 2n+1 x (2n+1)k dx = φ -s k Γ k (s) sin πs 2k , (2.17) (iii) 
∞ 0 x s-1 ∞ n=0 φ (2n) (-1) n (2n)!p 2n x (2n)k dx = φ -s k p Γ k (s) cos πs 2k , (2.19) 
(iv) ∞ 0 x s-1 ∞ n=0 φ (2n) (-1) n (2n)!k 2n x (2n)k dx = φ -s k Γ k (s) cos πs 2k , (2.20) 
where p Γ k (s) is the p-k gamma function [START_REF] Singh | Two Parameter Gamma Function and it's Properties[END_REF] and Γ k (s) is the k gamma function [START_REF] Diaz | On hypergeometric functions and Pochhammer k-symbol[END_REF] 1 defined as follows

p Γ k (s) = p k s k Γ k (s) = p ( s k ) k Γ s k .
Proof. Replace x with x k /p in Eqn. (2.16) to get

∞ 0 x sk-k p s-1 ∞ n=0 φ (2n + 1) (-1) n (2n + 1)!p 2n+1 x (2n+1)k kx k-1 p dx = φ (-s) Γ (s) sin πs 2 , 1 pΓk (x) ⇒ k Γ k (x) = Γ k (x) as p = k and pΓk (x) ⇒ 1 Γ 1 (x) = Γ(x) as p, k → 1. ∞ 0 x sk-1 p s ∞ n=0 φ (2n + 1) (-1) n (2n + 1)!p 2n+1 x (2n+1)k kdx = φ (-s) Γ (s) sin πs 2 . Now, replacing s with s/k yields ∞ 0 x s-1 ∞ n=0 φ (2n + 1) (-1) n (2n + 1)!p 2n+1 x (2n+1)k dx = φ -s k p s k k Γ s k sin πs 2k .
By further simplification, the desired result readily follows. (iii) can be derived in a similar manner. (ii) and (iv) are special cases of (i) and (iii) when p = k respectively.

Appendix

A.1. Take the derivatives both the sides of Eqn. (2.6) with respect to s and then multiply and divide right hand side of the equation with Γ(s) to get 

∞ 0 x s-1 log x ζ (2) -ζ (6) 1 2! x 2 + ζ (10) 1 4! x 4 ... dx = ζ (2 -2s) Γ (s) cos πs 2 1 Γ (s) ζ ( 

  Now, taking limit both the sides of s from s → 0, and applying L' Hospital's rule, we get

									= 0 +	π 2 2	ζ (2) =	π 4 24	.
	Therefore,					
					∞	log x x	ζ (2) -ζ (6)	1 2!	x 2 + ζ (10)	1 4!	x 4 ... dx =	π 4 24	.
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