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THE RENORMALIZED VOLUME OF A
4-DIMENSIONAL RICCI-FLAT ALE SPACE

Olivier Biquard & Hans-Joachim Hein

Abstract

We introduce a natural definition of the renormalized volume
of a 4-dimensional Ricci-flat ALE space. We then prove that the
renormalized volume is always less or equal than zero, with equal-
ity if and only if the ALE space is isometric to its asymptotic
cone. Currently the only known examples of 4-dimensional Ricci-
flat ALE spaces are Kronheimer’s gravitational instantons and
their quotients, which are also known to be the only possible ex-
amples of special holonomy. We calculate the renormalized volume
of these spaces in terms of Kronheimer’s period map.

1. Introduction

This article grew out of an attempt to understand 4-dimensional
Ricci-flat asymptotically locally Euclidean (ALE) manifolds. The stan-
dard example of such a space is the Eguchi-Hanson metric on T ∗S2

[12]. The Eguchi-Hanson metric is actually hyper-Kähler (see Calabi
[6]), and a classification of hyper-Kähler ALE 4-manifolds was given
by Kronheimer [18, 19]. Finite free quotients of Kronheimer spaces as
classified by Şuvaina [25] and Wright [27] are also examples of Ricci-flat
ALE 4-manifolds. A fundamental open question due to Bando-Kasue-
Nakajima [4] asks whether there exist any other examples. Using Wit-
ten’s proof of the positive mass theorem [26], Nakajima [21] showed
that such examples can never be spin. See Lock-Viaclovsky [20] for
some additional restrictions based on the Hitchin-Thorpe inequality of
[21]. We did not solve this problem but we have found an interesting
new volume property of 4-dimensional Ricci-flat ALE spaces, which we
will now explain.

Let (M, g) be a 4-dimensional Ricci-flat ALE manifold, or a 4-dimen-
sional Ricci-flat ALE orbifold with at worst finitely many isolated sin-
gularities (we shall call such an orbifold an ALE space). By [4], this
means that there exist a finite subgroup Γ of SO(4) acting freely on S3

and a diffeomorphism Φ : (R4 \ B1(0))/Γ → M \K for some compact
subset K ⊂M such that for all k ∈ N0,

(1.1) |∇kg0(Φ∗g − g0)|g0 = O(r−4−k) as r →∞,
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where g0 denotes the Euclidean metric on R4 or on R4/Γ. By [7, 8], this
behavior already follows from the much weaker assumption that (M, g)
is a 4-dimensional complete Ricci-flat manifold (or a complete Ricci-flat
orbifold with finite singular set) of maximal volume growth at infinity.

Assume that Γ 6= {1}. By [11] there exist K ⊂ M compact and a
number ρ0 > 0 such that M \K is uniquely foliated by hypersurfaces
Σρ (ρ > ρ0) of constant mean curvature 3/ρ such that Σρ is a normal
graph of height O(ρ−3) over Φ(∂Bρ(0)/Γ) for any diffeomorphism Φ as
in (1.1).

Given these preliminaries, our first main result may be stated as
follows.

Theorem A. Let (M, g) be a 4-dimensional Ricci-flat ALE space
with Γ 6= {1}.

(1) Let Ωρ ⊂M denote the domain interior to Σρ. Then the quantity

Volg(Ωρ)−Volg0(Bρ(0)/Γ)

has a finite limit as ρ→∞. We refer to this limit as the renormalized
volume V of (M, g).

(2) The renormalized volume satisfies V 6 0, with equality if and only
if (M, g) ∼= (R4/Γ, g0).

Ozuch [22, Thm 0.7] has recently used this result to prove that
spherical or hyperbolic 4-orbifolds cannot be Gromov-Hausdorff limits
of smooth Einstein 4-manifolds under certain conditions.

There is a vast literature on renormalized volumes of open mani-
folds. Our motivation was not so much to extend these ideas to a new
setting but to interpret some of our computations for Ricci-flat ALE
spaces geometrically. However, as it turns out, the statement of Theo-
rem A is formally similar to several known results. The examples we are
aware of are Anderson’s comparison theorem [1] for the classical renor-
malized volume [14] of asymptotically hyperbolic Einstein 4-manifolds,
Hu-Ji-Shi’s comparison theorem [15] for the Brendle-Chodosh relative
volume [5] of asymptotically hyperbolic n-manifolds with sharp lower
scalar curvature bounds, and the identification [10, 13, 17] of Huisken’s
isoperimetric mass [16] of asymptotically flat 3-manifolds of nonnegative
scalar curvature with the ADM mass [2], combined with the statement
of the positive mass theorem [24, 26].

To prove Theorem A, we will first construct a special ALE diffeomor-
phism Φ as in (1.1) such that Φ∗g− g0 admits an asymptotic expansion
whose leading term has vanishing trace, divergence, and contraction
with ∂r. Due to these properties, the coordinate spheres Φ(∂Bρ(0)/Γ)
are CMC to one higher order than expected. Thus, Σρ is a normal graph
of height O(ρ−4) rather than O(ρ−3) over Φ(∂Bρ(0)/Γ), so by changing
Φ very slightly we are able to create a CMC gauge without changing
the leading term of the metric. The precise statement is as follows.
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Theorem B. Let (M, g) be a 4-dimensional Ricci-flat ALE space
with Γ 6= {1}. Let {Σρ}ρ>ρ0 be the canonical CMC foliation of the
end of M constructed in [11]. Then for any k0 ∈ N there exists a
diffeomorphism Φ : (R4 \ B1(0))/Γ → M \ K of class at least Ck0+1

such that Φ(∂Bρ(0)/Γ) = Σρ for all ρ > ρ0 and such that there exists a
decomposition

(1.2) Φ∗g − g0 = h0 + h′,

where h0 is either zero or comparable above and below to r−4 in g0-norm
and satisfies

Lr∂rh0 = −2h0,

∂r yh0 = 0, trg0h0 = 0, divg0h0 = 0,

∆g0h0 = 0,

(1.3)

and where the remainder h′ can be estimated by

(1.4)

k0∑
k=0

rk|∇kg0h
′|g0 = Ok0(r−5) as r →∞.

The space of all symmetric 2-tensors h0 satisfying (1.3) on R4 \{0} is
isomorphic to S4

+ ⊕ S4
− as a representation of SO(4), where S`± denotes

the two (` + 1)-dimensional fundamental representations of Spin(4).
Each element of S4

+ arises as the leading term h0 of a suitable Kron-
heimer gravitational instanton. All of this will be explained in Section
2. Here we only note that the property trg0h0 = 0 allows us to conclude
that the renormalized volume V exists, which proves Theorem A(1).

The second key step is to construct a function u on M with ∆u =
8 and Φ∗u = r2 + o(1), and to integrate by parts in the formula
div(Hess0u) = Ric du = 0. Theorem A(2) follows from an analysis
of the boundary terms, relying on the properties ∂r yh0 = 0, trg0h0 = 0,
and divg0h0 = 0.

It is worth pointing out that the proof of Theorem A goes through on
every 4-dimensional ALE space with Γ 6= {1} and Ric > 0 that satisfies
the conclusion of Theorem B. The property ∆g0h0 = 0 is actually not
needed for this, although in the Ricci-flat case this property is automatic
and allows us to prove the crucial properties ∂r yh0 = 0, trg0h0 = 0, and
divg0h0 = 0 because harmonic tensors on R4 \ {0} are easy to classify.
Thus, Theorem A certainly still holds under the weaker assumption that
Ric > 0 globally and Ric = O(r−6−ε) at infinity. However, it could be
that these two conditions together imply that Ric = 0 globally. Using
[21], one can show that this is true if M is spin.

Let us also point out that, in the Ricci-flat case, the leading term
h0 of Theorem B can actually be zero even if (M, g) is not isometric to
(R4/Γ, g0). Indeed, using a computation of Auvray [3], we will see in
Sections 2.2.2–2.3 that h0 vanishes on a Kronheimer space if and only
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if the preimages in H2
c (M) of the three Kähler classes in H2(M) are

orthonormal with respect to the intersection form. Thanks to Kron-
heimer’s Torelli theorem [19], this is possible if and only if b2(M) > 3.

In the same spirit, our last main result computes the renormalized vol-
ume of a Kronheimer space. Kronheimer’s Torelli theorem [19], which
we just mentioned, provides a bijection between the set of all ALE
hyper-Kähler metrics up to the obvious action of Diff0(M) on a fixed
smooth manifold M , where M is determined by Γ ⊂ SU(2), and ele-
ments of H2

c (M) ⊗ R3 up to the obvious SO(3)-action. The bijection,
which is also known as the period map, sends a hyper-Kähler metric to
the preimages in H2

c (M) of the three Kähler classes in H2(M). The vec-
tors in the image of the period map satisfy a nondegeneracy condition,
which is an open dense condition, but this condition can be dropped if
we allow for degenerations of smooth ALE hyper-Kähler metrics on M
with at worst isolated orbifold singularities. There is a further natural
identification of H2

c (M) together with the intersection form with a Car-
tan subalgebra of a certain simple Lie algebra together with the Killing
form.

Theorem C. Let Γ be a finite subgroup of SU(2) acting freely on S3.
Let h be a Cartan subalgebra of the Lie algebra associated with Γ via the
McKay correspondence. Choose any element ζ ∈ h⊗ R3. Let (M, g) be
the unique Kronheimer gravitational instanton with period point ζ up to
the obvious action of SO(3) on h ⊗ R3. Then in terms of the Killing
form inner product on h,

(1.5) V(M, g) = −1

6
|ζ|2.

The basic idea behind Theorem A is to determine when the scaling
vector field r∂r on R4/Γ can be extended to a conformal Killing field
on (M, g). We conclude this paper with some remarks on the analogous
question for Killing fields instead of conformal Killing fields.

Acknowledgments. OB received support from the “Investissements
d’Avenir” program ANR-10-IDEX-0001-02 PSL. HJH was partially sup-
ported by NSF grant DMS-1745517. We are grateful to the referees for
useful comments, and to Michael Anderson for pointing out the sim-
ilarity between our renormalized volume and Huisken’s isoperimetric
mass.

2. Asymptotics of Ricci-flat ALE metrics in dimension 4

Recall that the Bianchi operator of a Riemannian manifold (M, g) is
defined by

Bg : Γ(Sym2T ∗M)→ Γ(T ∗M), h 7→ divg(h−
1

2
(trgh)g).



Olivier Biquard and Hans-Joachim Hein 5

Unless stated otherwise, let (M, g) be a 4-dimensional Ricci-flat ALE
space with Γ 6= {1}.

2.1. Preparation of an asymptotic expansion. Fix an arbitrary
diffeomorphism Φ as in (1.1). By standard Fredholm theory arguments
in weighted Hölder spaces, it is possible to modify Φ to satisfy the
Bianchi gauge condition relative to g and g0, meaning that the tensor

h := Φ∗g − g0

satisfies Bg0h = 0, although a priori Φ will then only be of class Ck0+1

for some k0 ∈ N, (1.1) will only hold up to k0 derivatives, and we may
need to relax the decay rate in (1.1) slightly. However, we do have the
freedom of prescribing an arbitrarily high cutoff k0. Moreover, since the
Ricci-flat equation is elliptic in any Bianchi gauge, h actually admits an
asymptotic expansion.

One can be completely precise about the shape of this expansion [9]
but for us the first term will be sufficient. By a standard iteration, the
first term is a Γ-equivariant harmonic function

h0 : R4 \B1(0)→ Sym2R4

that decays at infinity. As explained in [8, Thm 5.103], thanks to the
Bianchi gauge condition and because Γ 6= {1}, we can assume that
each component function of h0 is homogeneous of degree −4. This then
justifies the rate −4 chosen in (1.1). We also learn that the nonlinear
terms of the Ricci curvature are at worst O(r−10), so we immediately
get

(2.1) h = h0 + h1 + h2 + h3 + h′,

where the first four terms h0, h1, h2, h3 are homogeneous,

Lr∂rhk = (−2− k)hk, |hk|g0 ∼ r−4−k,(2.2)

and satisfy the pair of equations

Bg0hk = 0, ∆g0hk = 0.(2.3)

Moreover, we are free to assume that the remainder h′ satisfies

k0∑
k=0

rk|∇kg0h
′|g0 6 C(k0, ε)r

−8+ε(2.4)

for any given k0 ∈ N and ε ∈ (0, 1). For simplicity, we will from now on
absorb h1, h2, h3 into h′, so that (2.1) reads h = h0 + h′ and (2.4) holds
with C(k0, ε)r

−8+ε replaced by C(k0)r−5.

2.2. Two examples of possible leading terms. The remainder of
Section 2 is dedicated to a classification of the possible leading terms
h0. We begin by describing two types of examples.
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2.2.1. Harmonic gauge terms. Somewhat surprisingly, the Bianchi
gauge condition allows for some residual gauge freedom to leading order.
Indeed, recall that for any arbitrary Riemannian manifold (M, g) and
any vector field X on M we have the Bochner type formula

(2.5) Bg(LXg) = −∇∗∇X + RicX.

Therefore, if g is Ricci-flat and if X is harmonic, then h := LXg is in
Bianchi gauge (Bgh = 0) and satisfies the linearized Ricci-flat equation.
So if X on (R4 \ {0})/Γ satisfies

1) X is harmonic: ∆g0X = 0,
2) Lr∂rX = −4X, so in particular |X|g0 ∼ r−3,

then h0 := LXg0 will solve equations (2.2) and (2.3) for k = 0, as
desired.

On R4 \ {0} the vector fields satisfying (1)–(2) are exactly the ones
of the form

(2.6) X =
1

r4
`ijx

j ∂

∂xi

for an arbitrary matrix L = (`ij) ∈ R4×4. So the Γ-invariant matrices
L ∈ (R4×4)Γ give rise to such a harmonic vector field X on (R4 \{0})/Γ
and hence to a possible term h0 = LXg0.

For reference, let us note that thanks to the Bianchi condition, h0

is trace-free if and only if it is divergence-free, but h0 may not satisfy
either of these conditions. In fact,

(2.7) trg0h0 = trg0(LXg0) = 2divg0X =
2

r4
(δij − 4

xixj

r2
)`ij ,

which vanishes if and only if L is either a multiple of the identity or
skew-symmetric. A special case is L = L0 = −2Id, so that X = X0 =
∇g0( 1

r2
), which is harmonic because 1

r2
is. We then have

(2.8) h0 = LX0g0 = 2Hessg0(
1

r2
) = 2∇g0(− 2

r3
∂r) = − 4

r4
(g0 − 4dr2),

which is trace-free by inspection or because X0 is divergence-free be-
cause 1

r2
is harmonic.

More abstractly, let U denote the space of all harmonic gauge terms
h0 = LXg0 on R4 \{0} with X as in (2.6). As a representation of SO(4)
this obviously decomposes into irreducibles as

U = U1 ⊕U2 ⊕U3,

where U1 = R is spanned by the Hessian of the Green’s function in (2.8),
U2 = Λ2R4 corresponds to taking L to be skew-symmetric in (2.6), and
U3 = Sym2

0R4 corresponds to taking L to be trace-free symmetric in
(2.6). If h0 ∈ U3, then trg0h0 = q0/r

6 for the harmonic polynomial
q0(x) := −8`ijx

ixj (see (2.7)), so the trace defines an equivariant pro-
jection U→ Sym2

0R4 = U3.
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2.2.2. Kronheimer terms. Let Γ be a finite subgroup of SU(2) that
acts freely on S3. Kronheimer’s period map [19] is a bijection between
hyper-Kähler ALE metrics asymptotic to R4/Γ and triples

(ζ1, ζ2, ζ3) ∈ h⊗ R3

up to the obvious SO(3)-action, where h is a Cartan subalgebra of the Lie
algebra associated with Γ via the McKay correspondence. As explained
in [3, Thm 2.1], Kronheimer constructed a special gauge with respect
to which the tensor −(2π2/|Γ|)r6h0 takes the form

|ζ1|2((rdr)2 + α2
1 − α2

2 − α2
3) + |ζ2|2((rdr)2 + α2

2 − α2
3 − α2

1)

+ |ζ3|2((rdr)2 + α2
3 − α2

1 − α2
2)

+ 2〈ζ1, ζ2〉(α1 · α2 − rdr · α3) + 2〈ζ1, ζ3〉(α1 · α3 − rdr · α2)

+ 2〈ζ2, ζ3〉(α2 · α3 − rdr · α1).

(2.9)

Here αj = Ij(rdr), and (I1, I2, I3) is the standard triple of complex
structures on R4 given by

I1(x1, x2, x3, x4) = (−x2, x1,−x4, x3),

I2(x1, x2, x3, x4) = (−x3, x4, x1,−x2),

I3 = I1I2.

(2.10)

Then obviously (2.2) is satisfied, and, by computation,

(2.11) trg0h0 = 0, divg0h0 = 0, ∆g0h0 = 0,

so (2.3) is satisfied as well.
Let SU(2)± denote the two canonical subgroups of SO(4), with su(2)+ =

〈I1, I2, I3〉. Then every Kronheimer tensor h0 as in (2.9) is invariant un-
der SU(2)−. Notice that Γ ⊂ SU(2)−.

The following lemma clarifies the structure of the tensors (2.9) using
representation theory. Let S`± be the (` + 1)-dimensional irreducible
representation of SU(2)±. The irreducible representations of Spin(4)
are given by S`+ ⊗ Sm− (`,m ∈ N0). This descends to SO(4) if and only
if `+m is even.

Lemma 2.1. Let V denote the space of all symmetric 2-tensors
on R4 \ {0} satisfying (2.11) whose component functions are (−4)-
homogeneous. Recall the SO(4)-invariant subspaces U1,U2 ⊂ V from
Section 2.2.1 and let W ⊂ V be the invariant complement of U1 ⊕U2.
Let

F : Sym2R3 → V

be the linear map that sends (〈ζi, ζj〉) ∈ Sym2R3 to the Kronheimer
tensor h0 ∈ V with −r6h0 given by (2.9). Then prW ◦ F is a linear
isomorphism onto a subrepresentation S4

+ ⊂W.
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Proof. Even though this is not logically necessary, we begin by con-
straining the possible irreducible representations contained in V. By
construction, if h0 ∈ V, then all components of h0 take the form q0/r

6,
where q0 is a harmonic quadratic polynomial. Thus, V is an invariant
subspace of

(2.12) (Sym2
0R4)⊗2 = (S2

+⊗S2
−)⊗2 = (S4

+⊕S2
+⊕R)⊗ (S4

−⊕S2
−⊕R).

The subspace U1 ⊂ V corresponds to the R-component in (2.12) and is
spanned by

(2.13)
1

r6
(3(rdr)2 − α2

1 − α2
2 − α2

3)

according to (2.8). The subspace U2 ⊂ V corresponds to the (S2
+⊕S2

−)-
component in (2.12). It is clear that the three tensors LXg0, where
X = I(∇g0( 1

r2
)) for I = I1, I2, I3, generate the S2

+-part of this space.

Calculating these tensors, we obtain that the S2
+-part of U2 is spanned

by

(2.14)
1

r6
(rdr) · α1,

1

r6
(rdr) · α2,

1

r6
(rdr) · α3.

By the definition of F we have for all ζ ∈ Sym2R3 that

−r6F(ζ) = ζ11((rdr)2 + α2
1 − α2

2 − α2
3) + ζ22((rdr)2 + α2

2 − α2
3 − α2

1)

+ ζ33((rdr)2 + α2
3 − α2

1 − α2
2)

+ 2ζ12(α1 · α2 − rdr · α3) + 2ζ13(α1 · α3 − rdr · α2)

+ 2ζ23(α2 · α3 − rdr · α1).

Define a new linear map G on Sym2R3 by

−r6G(ζ) :=
2

3
(ζ11(2α2

1 − α2
2 − α2

3) + ζ22(2α2
2 − α2

3 − α2
1)

+ ζ33(2α2
3 − α2

1 − α2
2))

+ 2ζ12α1 · α2 + 2ζ13α1 · α3 + 2ζ23α2 · α3.

(2.15)

It is easy to check using (2.13), (2.14) that F−G takes values in U1⊕U2.
Because (α1, α2, α3) is a basis of S2

+ and because S4
+ = Sym2

0S
2
+, it is

clear from (2.15) that G defines an isomorphism onto the S4
+-component

in (2.12), so that necessarily G = prW ◦ F. q.e.d.

Remark 2.2. We can transport the given SU(2)+-action on S4
+ ⊂ V

to Sym2R3 by using the linear isomorphism prW ◦F of Lemma 2.1. We
obtain an irreducible representation of SU(2)+ on Sym2R3 with kernel
equal to {±IdR4}, and hence an irreducible representation of SO(3) on
Sym2R3. This is not equal to the canonical SO(3)-action on Sym2R3

although it is of course conjugate to it.
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Remark 2.3. From (2.14) and (2.15), if some element h0 ∈ V be-
longs to one of the two invariant subspaces S2

+ or S4
+, then h0(∂r, ∂r) =

0. Since im F ⊂ U1 ⊕ S2
+ ⊕ S4

+, it follows that

(prU1
◦ F)(ζ) = F(ζ)(∂r, ∂r) ·

r4

6
Hessg0(

1

r2
) = −1

6
tr(ζ) ·Hessg0(

1

r2
)

for all ζ ∈ Sym2R3. Thus, if ζ = (〈ζi, ζj〉) with (ζ1, ζ2, ζ3) ∈ h ⊗ R3,
then the coefficient has a sign and vanishes if and only if the associated
Kronheimer space is isometric to R4/Γ. This observation led us to our
main theorem and is in fact equivalent to it in the case of a Kronheimer
space.

2.3. Classification of the possible leading terms. Lemma 2.1 mo-
tivates the following:

Definition 2.4. A reduced Kronheimer term is an element of S4
+ =

im(prW◦F) ⊂ V. Explicitly, a reduced Kronheimer term is a symmetric
2-tensor h+

0 on R4 \ {0} of the form

−3

2
r6h+

0 = ζ11(2α2
1 − α2

2 − α2
3) + ζ22(2α2

2 − α2
3 − α2

1)

+ ζ33(2α2
3 − α2

1 − α2
2)

+3ζ12(α1 · α2) + 3ζ13(α1 · α3) + 3ζ23(α2 · α3),

(2.16)

where αj = Ij(rdr) for I1, I2, I3 as in (2.10) and where (ζij) is any
symmetric 3× 3 matrix.

A reduced Kronheimer term for the opposite orientation is a symmet-
ric 2-tensor h−0 on R4 \ {0} of the form h−0 = R∗h+

0 for some reduced
Kronheimer term h+

0 and some R ∈ O(4) \ SO(4).

Remark 2.5. Using this language, the discussion of Section 2.2.2
implies that for Γ ⊂ SU(2) and h a Cartan subalgebra of the simple
Lie algebra associated with Γ via the McKay correspondence, for ζ ∈
h ⊗ R3, and for (M, g) the unique Kronheimer gravitational instanton
with period point ζ, there exist ALE coordinates for (M, g) such that
the leading term h0 satisfies h0 = (|Γ|/2π2)h+

0 , where h+
0 is the reduced

Kronheimer term given by (2.16) for ζij = 〈ζi, ζj〉. In particular, h0 = 0
if and only if 〈ζi, ζj〉 = δij . However, we should also recall from Remark
2.3 that in Kronheimer’s original ALE coordinates, the leading term of
the metric vanishes if and only if (M, g) ∼= (R4/Γ, g0).

We are now in position to classify the possible leading terms of Ricci-
flat ALE metrics.

Proposition 2.6. Let h0 be a symmetric 2-tensor on R4 \ {0} that
satisfies

Lr∂rh0 = −2h0, Bg0h0 = 0, ∆g0h0 = 0.(2.17)
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(1) There exists a unique decomposition

h0 = h+
0 + h−0 + LX1g0 + LX2g0 + LX3g0,(2.18)

where h±0 are reduced Kronheimer terms for the two orientations and
where

Xk(x) =
1

r4
Lkx, Lk ∈ R4×4,(2.19)

with L1 a multiple of the identity, L2 skew-symmetric, and L3 trace-free
symmetric. All terms of the decomposition (2.18) again satisfy all the
conditions of (2.17).

(2) We have the following characterizations:

trg0h0 = 0⇐⇒ divg0h0 = 0⇐⇒ X3 = 0,(2.20)

∂r yh0 = 0⇐⇒ X1 = X2 = X3 = 0.(2.21)

(3) Let G be any subgroup of SO(4). If h0 is G-invariant, then so are
h+

0 , h−0 , L1, L2, L3.

Proof. Define an equivariant linear map

H : Sym2R4 ⊗ Sym2
0R4 → R4 ⊗ Sym3R4,

h⊗ q 7→ r8Bg0(
q(x)

r6
h),

(2.22)

where q(x) = qijx
ixj denotes the harmonic quadratic polynomial asso-

ciated with q ∈ Sym2
0R4. The kernel of H is naturally and equivariantly

isomorphic to the space of all tensors h0 satisfying (2.17). By Section
2.2.1, ker H contains a 16-dimensional invariant subspace R ⊕ (S2

+ ⊕
S2
−)⊕(S2

+⊗S2
−) consisting of tensors of the form LX1g0 +LX2g0 +LX3g0

as above. By Lemma 2.1 in Section 2.2.2, ker H also contains a 10-
dimensional invariant subspace S4

+ ⊕ S4
− consisting of reduced Kron-

heimer terms for the two orientations. Thus, to prove item (1) it suffices
to compute dim ker H = 26, which can be done on a computer. (See the
arXiv version of this paper, arXiv:1901.03647, for a Maxima script.)

To prove item (2), first observe that (2.20) follows from the fact that
Bg0h0 = 0, (2.7), and (2.16). To prove (2.21), notice that the map
h0 7→ ∂r yh0 is equivariant, so by Schur’s lemma and (2.16) it suffices to
show that it has trivial kernel on tensors of the form LX1g0, LX2g0, and
LX3g0. For the first two types this is obvious from (2.13) and (2.14),
respectively. For the remaining type, we write X3(x) = 1

r4
Lx for all

x ∈ R4 \ {0} with L = (`ij) ∈ R4×4 trace-free symmetric. Then

(∂r yLX3g0)(∂k) = − 2

r7
(r2Lx+ 2q(x)x)k,

where q(x) = `ijx
ixj is the quadratic polynomial associated with L. If

this vanishes for all k, then every v ∈ R4 \ {0} is an eigenvector of L
with eigenvalue −2q( v

|v|), so that L = 0.
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For item (3), note that the projections from ker H onto its SO(4)-
invariant subspaces are SO(4)-equivariant, so if h0 is G-invariant, then
so are h+

0 , h−0 , and LXkg0 (k = 1, 2, 3). It remains to prove that the
vector fields Xk, or equivalently the matrices Lk, are G-invariant. But
this is clear because the map X 7→ LXg0 for X of the form (2.6) is
SO(4)-equivariant and injective. q.e.d.

Remark 2.7. It follows from (2.20) that W = S4
+ ⊕ S4

− in Lemma
2.1 is as small as it can be.

3. The volume inequality

3.1. Proof of Theorem B. Let (M, g) be a 4-dimensional Ricci-flat
ALE space with Γ 6= {1}. Let k0 ∈ N. By Section 2.1 there exists a
diffeomorphism

Φ : (R4 \B1(0))/Γ→M \K

of class at least Ck0+1 such that

Φ∗g − g0 = h0 + h′,

where the leading term h0 satisfies

Lr∂rh0 = −2h0, Bg0h0 = 0, ∆g0h0 = 0,

and where the remainder h′ can be estimated by

k0∑
k=0

rk|∇kg0h
′|g0 6 C(k0)r−5.

Then Proposition 2.6 tells us that after lifting through Γ,

h0 = h+
0 + h−0 + LX1g0 + LX2g0 + LX3g0,

where h±0 are Γ-invariant reduced Kronheimer terms for the two orien-
tations and X1, X2, X3 are Γ-invariant harmonic vector fields of the
appropriate types. If we compose Φ with the time-1 flows of these vec-
tor fields, the metric changes by the corresponding Lie derivatives of g0

to leading order. By Taylor expansion, since |∇jg0Xk|g0 = O(r−3−j) for
k = 1, 2, 3 and all j ∈ N0, all other changes to the metric are certainly
O(r−5) as r → ∞, with as many derivatives as the regularity of h′ al-
lows. Thus, we are free to assume without loss that X1 = X2 = X3 = 0,
and hence that

∂r yh0 = 0, trg0h0 = 0, divg0h0 = 0,(3.1)

where the latter two properties are equivalent thanks to the Bianchi
gauge condition.

We now modify Φ to become a CMC gauge, preserving all of its other
properties except for the number of derivatives of h′ that we control,
which will drop by a bounded amount. Since this does not affect the
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statement of Theorem B, we will from now on treat k0 as a generic
constant.

Let us recall how the canonical CMC foliation {Σρ}ρ>ρ0 was con-
structed in [11]. For all ρ > 0 we consider the homothety hρ(x) = ρx
in R4/Γ. Then on any compact set K ⊂ (R4 \ {0})/Γ,

(3.2) h∗ρΦ
∗g − g0 = OK(ρ−4) as ρ→∞

including all derivatives up to order k0. The unit sphere S3/Γ has
constant mean curvature 3, and the linearization of the CMC equation
on normal deformations of S3/Γ is the Jacobi operator J = ∆S3/Γ + 3.

On S3 the kernel of ∆S3 +3 is given by the restriction to S3 of the linear
functions on R4 and corresponds to translations of S3 inside R4. As
Γ 6= {1}, this flexibility disappears in R4/Γ, so that J is invertible. It

follows that for ρ � 1 we can deform S3/Γ into a hypersurface Σ̃ρ of
constant mean curvature 3 with respect to h∗ρΦ

∗g. More precisely, we

can write Σ̃ρ as a radial graph

Σ̃ρ = {(1 + fρ(x))x ∈ R4/Γ : x ∈ S3/Γ},

and (3.2) implies that for all 0 6 k 6 k0 we have

(3.3) ∇kfρ = O(ρ−4) as ρ→∞.

Pushing Σ̃ρ forward by Φ ◦ hρ now gives the required CMC hypersur-
faces Σρ. The same argument applied to the obvious family of CMC

hypersurfaces around Σ̃ρ with mean curvature between 3
2 and 6 tells us

that the family {Σρ}ρ>ρ0 is actually a foliation.
The key point is that in our setting we are able to improve (3.3) by one

order by using (3.1). To see this, we will compute the mean curvature H
of the unit sphere S3/Γ with respect to h∗ρΦ

∗g. It is clear from (3.2) that

H = 3 +O(ρ−4) up to k0 derivatives, which leads to (3.3). However, we
can improve this to H = 3+O(ρ−5), with a corresponding improvement
in (3.3), by viewing S3/Γ as a level set of the function u = r2 and using
(3.1) to exhibit cancellations in the formula

(3.4) H =
1

|∇u|
(∆u− 1

|∇u|2
(Hessu)(∇u,∇u)).

The details are as follows. First note that the background metric in
(3.4) is

h∗ρΦ
∗g = g0 + h0ρ

−4 +O(ρ−5).

The Christoffel symbols of this metric are given by

(3.5) Γkij =
1

2
(∂ih0,jk + ∂jh0,ik − ∂kh0,ij)ρ

−4 +O(ρ−5)
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in the standard Euclidean coordinates of R4 in a tubular neighborhood
of S3. Then

∇iu = 2xi − 2h0,ijx
jρ−4 +O(ρ−5) = 2xi +O(ρ−5),

Hessiju = 2δij − (∂ih0,jk + ∂jh0,ik − ∂kh0,ij)x
kρ−4 +O(ρ−5),

where in the first line we have used the property ∂r yh0 = 0 from (3.1).
Thus,

|∇u|2 = 4r2 + 4h0,ijx
ixjρ−4 +O(ρ−5) = 4r2 +O(ρ−5),

∆u = 8− 2(trg0h0 + (Bg0h0)kx
k)ρ−4 +O(ρ−5) = 8 +O(ρ−5),

(Hessu)(∇u,∇u) = 8r2 − 4xixjxk(∂ih0,jk + ∂jh0,ik − ∂kh0,ij)ρ
−4

+O(ρ−5) = 8r2 +O(ρ−5),

thanks to all three of the properties of (3.1) and by applying Euler’s
homogeneity relation to h0 in the last line. Evaluating (3.4) at u = 1,
it is then clear that H = 3 +O(ρ−5), as desired.

The upshot of all of this is that if we replace Φ by the diffeomorphism

ρx 7→ Φ((1 + fρ(x))ρx) (ρ� 1, x ∈ S3/Γ),

then the leading term h0 of the metric remains unchanged, and the
remainder h′ satisfies the same estimates as before, but it now holds by
construction that Φ(∂Bρ(0)/Γ) = Σρ. �

3.2. Proof of Theorem A. We now use the ALE diffeomorphism Φ
provided by Theorem B. One consequence of the property trg0h0 = 0 is
that

(3.6) Φ∗(dVolg) = dVolΦ∗g = dVolg0(1 +O(r−5)).

This immediately implies that the function

g(ρ) := Volg(Ωρ)−Volg0(Bρ(0)/Γ)

satisfies for all ρ2 > ρ1 � 1 that

g(ρ2)− g(ρ1) =

∫ ρ2

ρ1

Φ∗(dVolg)− dVolg0 = O(ρ−1
1 ).

Thus, g(ρ) has a finite limit as ρ → ∞, which proves Theorem A(1),
i.e., the existence of V.

For Theorem A(2), we first prove that there exists a function u on M
such that ∆gu = 8 and

(3.7) Φ∗u = r2 + br−2 +Oε(r
−3+ε)

for some b ∈ R and all ε ∈ (0, 1). For this we require the precise
expansion

∆Φ∗gr
2 = 8− 2(trg0h0 + (Bg0h0)(r∂r)) +O(r−5) = 8 +O(r−5),

which follows from the work in Section 3.1 by pushing forward by the
homotheties hρ. Following a standard pattern, we now extend Φ∗r

2 to
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a smooth function u0 on M and let f = 8 − ∆gu0. Note that Φ∗f =
O(r−5). It suffices to find a function ū on M such that ∆gū = f and

Φ∗ū = br−2 +Oε(r
−3+ε)

because then u = u0 + ū solves the original problem. The existence
of ū is a standard fact and can be proved in many ways. For ex-
ample, by solving Dirichlet problems on larger and larger balls and
using Moser iteration and weighted Sobolev inequalities, one first con-
structs a solution ū such that Φ∗ū = Oε(r

−2+ε). Then it is clear that
∆g0(Φ∗ū) = O(r−5), so standard properties of the Green’s function on
R4 imply that Φ∗ū = br−2 +Oε(r

−3+ε), as desired.
Let ν be the exterior unit normal to the domain Ωρ with respect to

g. Integrating the equation ∆gu = 8 over Ωρ, integrating by parts, and
using (3.6) we get

8Volg(Ωρ) =

∫
∂Ωρ

du(ν)(ν y dVolg)

=

∫
∂Ωρ

du(ν)(ν yΦ∗dVolg0) +O(ρ−1).

From now on we will ignore the map Φ for convenience. Then, using
(3.7) in the first line,

du(ν)|∂Ωρ = 2ρ− 2bρ−3 + 2ρ(dr(ν)− 1) +Oε(ρ
−4+ε),

ν y dVolg0 = dr(ν)(∂r y dVolg0).

A priori the error dr(ν) − 1 is O(ρ−4) but expanding the equation
g(ν, ν) = 1 yields

dr(ν)− 1 = −1

2
h0(∂r, ∂r) +O(ρ−5) = O(ρ−5)

thanks to (3.1). Combining these computations, we get

8Volg(Ωρ) = 8Volg0(Bρ(0)/Γ)− 2b|S3/Γ|+Oε(ρ
−1+ε),

which obviously implies that b|S3/Γ| = −4V.
We now reinterpret b as the obstruction to ∇u being a conformal

Killing field, and the proof will show that b > 0. Recall that ∇u being
conformally Killing means that the trace-free Hessian Hess0u vanishes,
and this is equivalent to ∇u generating a 1-parameter group of con-
formal diffeomorphisms of (M, g). In this case, the conformal factor
is constant because ∆u = 8, so ∇u actually generates a 1-parameter
group of homotheties, and by considering the sup norm of the curvature
tensor one easily checks that this is equivalent to (M, g) being isometric
to (R4/Γ, g0) with u = r2.

Using the general identity

∆∇u−∇∆u = Ric∇u,
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together with the fact that u has constant Laplacian, we obtain that

div(Hess0u) = Ric du = 0.(3.8)

Integrating this against du over Ωρ, we get∫
∂Ωρ

(Hess0u)(ν,∇u)(ν y dVol) =

∫
Ωρ

|Hess0u|2 + Ric(∇u,∇u) dVol > 0.

The desired inequality b > 0, with equality if and only if Hess0u = 0, will
come out of an expansion of the boundary term. We begin by expanding
Hess0u. This will turn out to be O(ρ−4) to leading order, so there is no
need to also expand ν, ∇u, ν y dVol, and we can simply replace these
by their Euclidean approximations. For Hess0u, using (3.5) and (3.7)
we have

Hess0,iju = ∂i∂ju− Γkij∂ku− 2gij

= −2b

r4
(δij − 4

xixj

r2
)− (∂ih0,jk + ∂jh0,ik − ∂kh0,ij)x

k − 2h0,ij

+ Oε(r
−5+ε).

This then tells us that, as 3-forms on ∂Ωρ,

(Hess0u)(ν,∇u)(ν y dVol)

= (12bρ−3 − 2xixjxk(∂ih0,jk + ∂jh0,ik − ∂kh0,ij)ρ
−1 − 4h0(∂r, ∂r)ρ

+ Oε(ρ
−4+ε))(∂r y dVolg0)

= (12bρ−3 +Oε(ρ
−4+ε))(∂r y dVolg0),

after applying Euler’s relation to h0 and using (3.1) as in Section 3.1.
Combining this with the preceding discussion, we obtain that b > 0,

or equivalently that V 6 0, with equality if and only if (M, g) is isometric
to (R4/Γ, g0) with u = r2. �

Remark 3.1. The last part of the above proof can be interpreted as
a reverse Bishop-Gromov type inequality. In fact, similar computations
show that if Ω is a bounded domain in an n-manifold with Ric > 0, with
boundary mean curvature > n−1

ρ for some ρ > 0, then |Ω| 6 ρ
n |∂Ω|,

with equality if and only if Ω is isometric to a ball of radius ρ in Rn.
After completing our work on this paper, we discovered that this result
already follows from Ros [23, Thm 1], who used a very similar method.
Our computation replaces the use of Reilly’s formula in [23] by (3.8)
and (3.4).

3.3. Proof of Theorem C. We now assume that (M, g) is a Kron-
heimer gravitational instanton with period point ζ ∈ h ⊗ R3. As men-
tioned in Section 2.2.2, Kronheimer constructed a particular ALE dif-
feomorphism Φ : (R4 \ B1(0))/Γ → M \ K with respect to which
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−(2π2/|Γ|)r6h0 takes the form (2.9). Details can be found in [3, Section
2], including the remarkable property that

(3.9) Volg(Uτ ) = Volg0(Bτ (0)/Γ) for all τ � 1,

where Uτ ⊂ M denotes the domain interior to Sτ := Φ(∂Bτ (0)/Γ).
(See [3, Lemma 2.5] for this. Note that the map Fζ of [3] is a global
diffeomorphism from M \ Z to (R4 \ {0})/Γ, where Z ⊂ M is a finite
union of compact 2-dimensional surfaces.) By Lemma 2.1 and its proof,
we have

h0 = h+
0 + LX1g0 + LX2g0,

where, first of all, h+
0 is a reduced Kronheimer term, so that

(3.10) ∂r yh
+
0 = 0, trg0h

+
0 = 0, divg0h

+
0 = 0;

second, the harmonic vector field X1 is a scalar multiple of∇g0( 1
r2

); and,

third, the harmonic vector field X2 is a linear combination of Ij(∇g0( 1
r2

))
for j = 1, 2, 3. In fact, Remark 2.3 tells us that

(3.11) X1 = −|ζ̃|
2

12
∇g0(

1

r2
), where ζ̃ :=

(
|Γ|
2π2

) 1
2

ζ.

We now replace Kronheimer’s gauge Φ by Φ′ = Φ ◦ Φ2 ◦ Φ1, where
Φk denotes the time-1 flow of −Xk for k = 1, 2. In this new gauge,
the leading term of the metric is h+

0 . By Section 3.1, because of (3.10),
the canonical CMC hypersurface Σρ is a normal graph of height O(ρ−4)
(rather than the expected O(ρ−3)) over the coordinate sphere S′ρ :=
Φ′(∂Bρ(0)/Γ). Let U ′ρ ⊂ M denote the domain interior to S′ρ. Then it
is easy to see that

Volg(Ωρ) = Volg(U
′
ρ) +O(ρ−1)

= Volg(Uτ ) +O(ρ−1) for τ4 = ρ4 − 2

3
|ζ̃|2.

(3.12)

Indeed, S′ρ = Φ(Φ2(Φ1(∂Bρ(0)/Γ))) by definition, Φ1(∂Bρ(0)/Γ) =
∂Bτ (0)/Γ with τ in terms of ρ as in (3.12) by solving a simple ODE
(using (3.11)), and Φ2 obviously preserves each sphere in R4/Γ. The
desired formula for V(M, g) now follows from (3.12) and (3.9). �

4. Killing fields on 4-dimensional Ricci-flat ALE spaces

The idea of the proof of Theorem A is to search for a conformal Killing
vector field asymptotic to 2r∂r. This is done by first producing the
harmonic vector field ∇u, where u is asymptotic to r2 with ∆u = 8, and
then integrating by parts in the Bochner type formula div(Hess0u) =
Ric du = 0. Using a similar approach, one can give a criterion for the
existence of a Killing field asymptotic to a given so(4) symmetry. The
necessary computations are very long, and there does not seem to be
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an application in the spirit of Theorem A, so we will only briefly sketch
this result.

Let (M, g) be a 4-dimensional Ricci-flat ALE space asymptotic to
R4/Γ. Fix an arbitrary ALE diffeomorphism Φ as in (1.1). Then for all
X0 ∈ so(4)Γ there exists a unique harmonic vector field X on M such
that (Φ−1)∗X = X0 + Y0 +Oε(r

−4+ε) for all ε ∈ (0, 1), where

Lr∂rY0 = −4Y0, |Y0|g0 ∼ r−3.

An asymptotic expansion shows that

∆g0Y0 = 0.

The next observation is that the divergence of a harmonic vector field
on a Ricci-flat manifold is a harmonic function, and it is clear that divX
goes to zero at infinity, so divX = 0 by the maximum principle. If the
leading term h0 of the metric with respect to Φ satisfies trg0h0 = 0, then
one can deduce from this by asymptotic expansion that

divg0Y0 = 0.

Since Y0 has to be of the form (2.6), it follows that for some a ∈ R and
Z0 ∈ so(4),

Y0 =
1

r4
(ar∂r + Z0).

If u is the unique solution to ∆u = 8 with u = r2 + o(1) on M ,
and if the precise expansion (3.7) holds for u (which we know is true if
trg0h0 = 0 and Bg0h0 = 0), then an integration by parts in the identity
0 = 〈∆X,∇u〉 − 〈X,∆∇u〉 shows after a long computation that a = 0.

IfX0, X
′
0 are in so(4)Γ with harmonic extensionsX,X ′, and if ∂r yh0 =

0, then another lengthy integration by parts in the identity 0 = 〈∆X,X ′〉−
〈X,∆X ′〉 shows that 〈X0, Z

′
0〉 = 〈Z0, X

′
0〉 with respect to the Killing

form on so(4). Thus, the endomorphism X0 7→ Z0 of so(4)Γ is selfad-
joint.

Integration by parts in the Bochner type formula (2.5) shows that the
selfadjoint endomorphism X0 7→ Z0 of so(4)Γ is nonpositive, and that
Z0 = 0 if and only if X is a Killing field. In this case, an asymptotic
expansion of the equation LXg = 0 immediately tells us that LX0h0 = 0.
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[6] E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm.
Sup. 12 (1979), 269–294, MR0543218, Zbl 0431.53056.

[7] J. Cheeger and A. Naber, Regularity of Einstein manifolds and the codimension 4
conjecture, Ann. of Math. 182 (2015), 1093–1165, MR3418535, Zbl 1335.53057.

[8] J. Cheeger and G. Tian, On the cone structure at infinity of Ricci-flat manifolds
with Euclidean volume growth and quadratic curvature decay, Invent. Math. 118
(1994), 493–571, MR1296356, Zbl 0814.53034.

[9] Y. Chen, On expansions of Ricci flat ALE metrics in harmonic coordinates about
the infinity, Comm. Math. Stat. 8 (2020), 63–90, MR4071856, Zbl 1436.32085.

[10] O. Chodosh, M. Eichmair, Y. Shi, and H. Yu, Isoperimetry, scalar curvature,
and mass in asymptotically flat Riemannian 3-manifolds, Comm. Pure Appl.
Math. 74 (2021), 865–905, MR4221936, Zbl not yet listed.

[11] O. Chodosh, M. Eichmair, and A. Volkmann, Isoperimetric structure of asymp-
totically conical manifolds, J. Differ. Geom. 105 (2017), 1–19, MR3592692, Zbl
1364.53035.

[12] T. Eguchi and A.J. Hanson, Self-dual solutions to Euclidean gravity, Ann.
Physics 120 (1979), 82–106, MR0540896, Zbl 0409.53020.

[13] X.-Q. Fan, Y. Shi, and L.-F. Tam, Large-sphere and small-sphere limits of the
Brown-York mass, Comm. Anal. Geom. 17 (2009), 37–72, MR2495833, Zbl
1175.53083.

[14] C.R. Graham, Volume and area renormalizations for conformally compact Ein-
stein metrics, The Proceedings of the 19th Winter School “Geometry and
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