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Abstract
Glazed ceramics are a common material analyzed
through geochemistry, whether in the form of table-
ware collected during excavations or tiles observed as
part of architectural features. Within the framework of
these studies, measuring the thickness of the transpar-
ent glaze is one of the useful variables available for the
characterization of the ceramic, contributing to
searches for provenance as well as serialization.
However, this task often requires invasive methods
performed in the laboratory, which may not always be
possible. This paper develops a non-invasive and
portable on-site system for measuring the thickness of
ceramic glazes. Based on the depth from focus tech-
nique, this method makes use of a classical camera, a
macroscopic lens, a translation stage, and a laptop for
system control. In this article, we test this method
through the measurement of glaze for ten samples as
compared to results obtained for sections through scan-
ning electron microscopy.
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INTRODUCTION

Glazed ceramics represent a major part of the cultural heritage visible in the archaeological
record. They are relatively simple to produce and have been found throughout the world from
the Mediterranean basin, to as far as China and Japan, for millennia. Due to its widespread
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and varied use (including dishes and other utilitarian items, both interior and exterior architec-
ture, etc.) and its resistance to post-depositional degradation, it is one of the common material
cultural items found during archaeological excavations. Initially applied to simple terracotta
goods, the use of glazes first appeared in ancient Egypt. Once vitrified after firing, the glaze
coating applied to ceramic surfaces serves not only to decorate the item, but also harden it and
make it waterproof (Moorey, 1994; Tite et al., 2002). Although glazes were originally produced
from ash, vitrification methods have evolved over time to include also the use of alkaline and
lead glazes.

With a wealth of archaeometric approaches at our fingertips, ceramics are now widely stud-
ied with a variety of methods to answer an array of historical and prehistorical questions, such
as questions of provenance, dating, method of manufacture, and trade, to name a few. In this
regard, physiochemical techniques such as scanning electron microscopy (SEM) (Froh, 2004;
Tite et al., 1982), X-ray diffraction (XRD), and particle-induced X-ray emission (PIXE) (Leon
et al., 2012) are commonly used for determining numerous characteristics of glazed ceramics.
One ceramic attribute that can be particularly informative is the determination of the thickness
of a glaze. Traditionally, this measurement has been obtained by SEM examination of polished
thick sections. As well as being time-consuming, this method requires the partial destruction of
an object, to be able to take it to the laboratory and produce the required analytical sample.
Furthermore, in the case of intact objects or architectural ceramics in place, it is inconceivable,
if not impossible, to extract a sample. In this context, the prospect of a mobile, portable, rapid
and, above all, non-invasive method has become an especially appealing alternative. Overall,
however, measurement of the thickness for ceramic glazes has been sparsely exploited. As a
notable exception, in some works (Gal�an & Bard, 2020; Tite, 2009) it was possible to observe
an evolution of the thickness in relation to the chronology. In other ways, the thickness of the
glaze can be used as an additional factor for characterization (Molera et al., 2001), or to dis-
criminate between glazed ceramic production processes (Lahlil et al., 2015). Namely, it can
reflect not only the chemical composition of the glaze, but also the method of application and
firing protocol. The variation in the thickness of the glaze also plays an important role in the
perception of the color of the glazed ceramic, as increased thickness results in greater absorp-
tion of light by the glaze. With so much information produced through the measurement of
glaze thickness, and the aforementioned limitations of various methods for its measurement,
the growing influence of 3D analytical techniques in archaeology provides a particularly inter-
esting opportunity for researchers.

Recently, the techniques of computational photography and 3D acquisition have played an
increasingly important role during excavations and historical research. For example, photo-
grammetry (Guidi et al., 2002) and 3D lasers (Boehler et al., 2002) can increase the possibilities
of post-excavation observations. Quick to install and portable, only requiring a camera and
associated equipment, these methods have the advantage of providing valuable information
relatively easily. Consequently, the development of techniques based on computational photog-
raphy is a particularly compelling approach for the study of glazed ceramics. Further suggesting
the potential of this method, the advanced state of the art in this field also makes it possible to
obtain depth information (i.e., thickness) from photographs. Specifically, an acquisition method
such as depth from focus (DfF; Grossmann, 1987) strives to recover 2.5D depth information
from an image stack by estimating, for each pixel, the depth of the focus plane for each pixel.
In this regard, DfF is particularly appealing due to its ability to recover discrete depth
information with high accuracy (Blayvas et al., 2007). Consequently, this simple and global
measurement of the average thickness of the transparent glaze can then be easily associated
with physicochemical techniques, and may therefore be an excellent option for the on-site study
of ceramics.

The aim of the following research is twofold: (1) We develop a non-destructive and non-
invasive method for the on-site analysis of glazed ceramic tiles. This is achieved by measuring
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in a simple, fast, and inexpensive way the thickness of the glaze while generating a clear surface
image at the macroscopic scale (based on DfF). (2) We compare the results of measurements
from different types of ceramics to assess the reliability of the method and to determine any lim-
itations and drawbacks. For this second goal, fragments of various origins have been chosen.

METHOD

As mentioned above, the technique used is based on the DfF algorithm. This technique uses
only a single camera with a lens system, a ring light, and a tripod to obtain 2.5D profiles of
scenes in the form of a depth map in a monoscopic way (Grossmann, 1987). Particularly inter-
esting on a macroscopic and microscopic scale, this system makes it possible to obtain profiles
with better depth precision than even photogrammetry, at less than 10 μm (Blayvas
et al., 2007). For this depth blur reconstruction, a focal stack (a sequence of images taken for
different focal planes) is taken by moving the camera along a translation unit. Each point of the
scene is in focus only on its focal plan, which means it is sharp in only one slice. As a result, an
all-in-focus image and discrete depth map can be reconstructed by knowing the sharpest pixel
for each direction in the scene and its respective focal plane. By working on focus measures
(Sun et al., 2004) and depth estimations, it is therefore possible to increase the precision to a
scale much smaller than the distance between two consecutive focal planes (Sakurikar &
Narayanan, 2017).

This technique has certain limitations, however. Focus measures are based upon variations
in the grey level of the image. It is therefore necessary to have details present on the image. It is
indeed necessary to obtain sharp areas on the image so that texture may allow a clearly recog-
nizable depth for each area. In addition, transparent materials cannot be accurately modeled in
3D. It is simply not possible to focus on a perfectly transparent surface without adding remov-
able paint on the whole surface of the glaze. However, depth measurement is done on the focal
plane. Consequently, the depth detection can take place on top of a transparent surface if it has
defects that generate a slight local opacity, or the bottom if it is fully transparent in the given
direction.

Glazed ceramics present one germane example of the impossibility of precision for 3D
acquisition because they have a transparent glazed thickness on the surface. In the case of old
ceramics in particular, these glazes are often scratched, chipped, etc. These effects generate a
surface that is almost transparent but with roughness. The depth map obtained by DfF is
therefore heavily altered in these cases. The clear zones will sometimes appear on the surface of
the glaze and at other times below, directly on the bottom. In our case, we have used the
defaults of this method to get results. Obtaining depths over and under the glaze in such a way
can nevertheless allow for non-invasive glaze thickness measurements. Specifically, two levels
of depth were obtained by taking the measurement above opaque areas (stripes, lines made
with a felt tip marker, etc.), which can then be extracted and processed to obtain a thickness of
the glaze.

Acquisition set-up

The analytical protocol requires a level of precision to just a few micrometers to enable precise
measurements of thickness of the glaze. To accomplish this, it is necessary to reduce the depth
of field as much as possible to optimize the precision. The full apparatus set-up can be seen in
Figure 1. Specifically, we have used a Canon EOS 5D II camera (Figure 1a). The camera has a
body sensor of 20 megapixels (pixel size, 6 � 6 μm) and was mounted on a motorized rail on a
macroscopic scale which can be controlled either by computer or by hand (Figure 1b). This
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allows for an incremental movement of 10 cm with steps that can go as small as 2 μm, so that
images can easily be stacked at the desired scales. The optical capacity has a great influence on
the precision of the acquisition of data (Blayvas et al., 2007). As we require a set of lenses all-
owing �2 magnification and reduced depth of field, we used a 100 mm lens and an inverted
50 mm lens for close-ups (Figure 1c). Both were fully opened (respectively 1:2.8 and 1:1.4). A
light-ring was attached to the end of the lens as a light source, allowing diffuse and grazing illu-
mination at a working distance of <1 cm, while not occluding the lens (Figure 1d). The focal
stack was acquired by connecting the motorized rail to a Helicon Remote for automating the
method. Finally, we precisely aligned the photos using Enfuse software for a precise alignment,
while limiting the degradation of the image.

Determining the thickness

After aligning the stacked images, the region of interest (Figure 2a) was clipped out, (i.e., the
area containing texture and stripes or felt on the surface), followed by application of the DfF
algorithm (the only treatment made on MATLAB). We first made an initial very coarse depth
map for measuring the tilt of the ceramic with respect to our device (fitting with a polynomial
surface of degree 1). If the sample was not flat, we could then further determine its shape (fitting
with a polynomial surface of degree 2). We then produced a second depth map. High levels of
precision are necessary for this second map so that information on both sides of the glaze may
be detected. Using the surface shape established with the coarse depth map (untilting for a flat
ceramic, correction of the volume otherwise), we then transformed our depth map and obtained
the planes above and under the glaze at constant depth (Figure 2b). Although the depth map
obtained is often quite noisy, the two levels of detection are in fact visible.

By displaying the histogram of the values of depths of the map, two distinct peaks are evi-
dent (Figure 2c). These peaks correspond to the two depth levels above and below the glaze.
The peaks are wide for two reasons: the variability of the measurement and the fact that the
ancient ceramics are hand-made and therefore have variations in depth (which can be seen in
Figure 2f). By subtracting the two peak values, one can obtain a thickness value d0,
corresponding to the advance of the camera. However, this value does not by itself reflect the
thickness of the glaze. Rather, as shown in Figure 3, it is necessary to consider the refractive

F I GURE 1 Acquisition device: (a) Canon EOS 5D II camera; (b) motorized rail; (c) optical system using a 100 mm
lens and an inverted 50 mm lens; (d) light ring with diffuse filter
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index of the glaze to obtain the thickness d = d0n0. Given this, the method therefore requires
having an a priori knowledge of the refractive index. An example will be given in Section 3.

Using these values, we can obtain an absolute value of the thickness of the glaze in a
non-invasive way and determine the overall uncertainty from the uncertainties Δn0 and Δd 0

(respectively the uncertainty on the refractive index n0 and the uncertainty on the depth values
d0 at the top of the peaks) according to the following formula:

Δd ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δn0

n0

� �2

þ Δd 0

d 0

� �2

:

s

F I GURE 2 (a) Macroscopic photo of the surface reconstructed after DfF on the Iznik tile Bdx 6502; (b) obtained
depth map and (c) its depth histogram for the detection of the two levels: depth underlined in red on the depth map
(d) at �601 μm and (e) at �467 μm; part (f) is a section backscattered electron image made by SEM for comparing the
method.
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In the following, we present the result as

d�Δd μmð Þ:

The result is therefore the thickness with approximation of the transparent glaze. However, this
thickness is not a localized measurement but a global measurement for the region of interest
studied. It is an average measurement on a sample that can reach more than 1 cm2.

Finally, Python is used to code all the presented processing. For the entire process, the time
required for thickness measurement is very short. Once the equipment is installed, it takes no
more than 5 min to create the image stack. The processing of the DfF on MATLAB and subse-
quent Python coding (Cou & Guennebaud, 2022) can then be done within 15 min after setting
the parameters using our non-optimized implementation.

SAMPLES

These measurements were carried out on several ceramics reflecting differing cultural origins,
uses, and eras to highlight the precision and the limits of the method. Commonalities between
all samples studied include a Mediterranean basin origin and the presence of a transparent glaze
allowing for thickness measurement by DfF. All the glazes of the samples studied are transpar-
ent lead glaze with PbO between 23 and 57 wt% (Ben Amara, 2002; Ben Amara et al., 2005,
2006, 2001; Bauer et al., 2019; Beauvoit et al., 2021), the predominant method of the 2nd mil-
lennium CE around the Mediterranean Sea. While conventional glass tends to have a refractive
index of approximately 1.5, the inclusion of lead in glass tends to significantly increase the
refractive index of glass (Newton & Davison, 1989). As a result, we estimated that the refractive
index at 1.75 � 0.25 (Newton & Davison, 1989) for all the samples was due to their common
high lead component. The different glazed ceramics are presented in Table 1.

Each sample has specificities making it possible to observe the use of DfF in various cases.
First, Iznik ceramic presents a simple case: the glaze is flat and transparent and has sharp cracks
that easily allow two levels of depth to be achieved. Like the Iznik ceramics, the Maiolica sam-
ple (Bdx 2591) is flat, but the white color of the ceramic on which the red-brown and yellow
decorations have been applied (before being completely covered by a colorless transparent

F I GURE 3 Optical diagram of the camera on the glaze, showing that the advancement of a distance d does not
correspond to the measurement of a thickness d of the glaze, and the need to take into account the refractive index n0.
Advancing the camera between (a) and (b) by the distance d does not provide a clear image of the bottom of the glaze.
While advancing the camera the distance d0 between (a) and (c) allows focusing at the two desired levels
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glaze) exhibits little detail and texture, making depth harder to detect by DfF. The house stove
tiles in our sample are all engobed and covered with a green glaze of varying tones. Like the
other studied samples, transparent glazes found on these tiles are strongly lead-bearing (47–66%
in PbO) (Bauer et al., 2019) and have many cracks on the surface. Nonetheless, we focused on a
flat area for our measurement. The Zellijes samples, on the other hand, have no surface defects
and are a good example to assess the methodological limitations in cases where fragments are
without surface defects. For our purposes, the Raqqada fragment features yet another advan-
tage when compared to the others, in that it is not perfectly flat. Specifically, these are pieces of
curved ceramic (probably dishes). This fact makes the measurement of the thickness of the glaze
more complex and sheds light on possible additional limits of the DfF. To round out our sam-
ple, the study of white earthenware by DfF is by far the most complicated case presented here.
Indeed, earthenware has three limiting characteristics for our method: a very specific body due
to its whiteness, which makes it very difficult to detect texture; a relatively thin glaze thickness;
and a non-planar shape as in the case of the sample Bdx 5502.

RESULTS AND DISCUSSION

To assess the reliability of our method, we tested the DfF on fragments of glazed ceramics in
the laboratory. We then observed these sections by SEM (JEOL JSM-6460) and compared the
values obtained. On each section, we realized a minimum of 15 depth measurements to obtain
an average glaze thickness.

Depth from focus

For the DfF methodology, we first measured the thickness of the different tiles using our set-
up; we then made sections for the SEM observation for the aforementioned reliability

TABLE 1 Description of different glazed ceramics studied

Style and
object type

Inventory
number

Glaze
color Decorationb Provenance

Date
(century CE) References

Iznik tile Bdx 6493 Blue-green B, Bl, G, RB Tunis, Tunisia 17th Ben Mami (2000),
Ben Amara
et al. (2006)

Bdx 6501

Bdx 6502

House stove
tile

Bdx 16621 Green Berg Armo,
France

16th Bauer et al. (2019)

Maiolica dish Bdx 2591 Colorlessa B, G, RB,
Y, Be

Ravello, Italy 16th Peduto (1996),
Ben Amara
et al. (2005)

Zellij (ceramic
mosaic)

Bdx 6522 Green Meknes,
Morocco

14th Ben Amara (2002)

Bdx 6524 Blue

“Green and
brown
decoration”
dish

Bdx 5502 Honey Br, G Raqqada,
Tunisia

9th - 10th Daoulatli (1980),
Ben Amara
et al. (2001)

Earthenware Bdx 21066 Colorless Bl Bordeaux,
France

19th Beauvoit et al.
(2020)Bdx 22625 R

aThis glaze covers the decorations and a white glaze opacified with tin oxide.
b, blue; Be, beige; Bl, black; Br, brown; G, green; R, red; RB, red-brown; Y, yellow.
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assessment. Iznik’s tile samples present the ideal case for this test. In addition to presenting very
clear scratches on the surface and details in depth, the thickness of the glaze is important. As
detailed in Section 2, we measured 233 � 55 μm for Bdx 6502, 199 � 49 μm for Bdx 6493 and
156 � 27 μm for Bdx 6501 (the results are visible in Figure 4). Regarding these samples, the
depth histogram is clear in this case (see Figure 2c): the two peaks are readily identifiable.

F I GURE 4 Image of the fragments measured by DfF as part of the method validation (top). Analyzed areas are
represented on the samples by red lines (sections made for SEM) and red rectangles (measured areas by DfF).
Numerical results (bottom left) and visual comparison (bottom right) of measured depth by SEM and by DfF on
samples illustrated in the image. In numerical results are the distance between the exterior surface of the glaze and the
surface of the body, except when we define “glaze to red.” In this context, we measure the distance between the exterior
surface of the glaze and the upper surface of the red pigment.
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The study becomes more complicated for the Berg Armo house stove, however. This case is
illustrated in Figure 5. The scratches are in fact clear and easy to identify on the depth map
(Figure 5b). But the thickness is much thinner than in the case of Iznik ceramics. Consequently,
the two peaks on the histogram mix to form a single, larger peak (Figure 5c). It is necessary to
develop a visualization highlighting in red on the depth map the pixels for a chosen depth
(Figure 5d,e). By combining the depth histogram and the visualization, we may then obtain an
exploitable depth of 58 � 26 μm for the sample Bdx 16621. We estimate that for less than
approximately 150 μm it becomes harder to measure the glaze thickness from the histogram.
The Raqqada ceramics present a similar situation. With these, a complicating factor for per-
forming the measurements is that the samples are not flat. Using the volume correction
(Section 2) we measured a glaze of 102 � 38 μm for this sample.

To determine the thickness of the yellow pigment of Ravello maiolica Bdx 2591, we made
measurements at two points: the glaze-yellow and glaze-white thicknesses. As with the Berg
Armo ceramic, the glaze thickness is quite thin, and is observable with the histogram coupled
with the visualization. Specifically, the measurement for the glaze-yellow thickness is just
29 � 10 μm. However, the absence of scratches or degradation on the surface above the white
part creates difficulties for measurement. To combat this, we drew a red dot on the surface with
an erasable marker. The contours of this red point on the surface of the glaze were then mea-
sured as being on the surface of the glaze. Using the above visualization, we achieved a thick-
ness value of 86 � 21 μm.

Zellijes from Meknes features the same disadvantage as the maiolica because the surface
does not include any defects. For this sample, we again employed the red dot technique. In this
case, measurements revealed a very thick glaze and, as such, the histogram is sufficient without
further visualization, despite the fact that the Zellij glaze includes many bubbles and unmelted
crystals. Due to these imperfections, the main peak of the bottom is very wide, and a lot of
noise is visible on the histogram. We nonetheless measured a thickness of 267 � 48 μm for Bdx
6522 and 306 � 49 μm for Bdx 6524.

Finally, the Bordeaux earthenware is the most complicated case yet, given that it features
the complicating factors of all the previous fragments: very fine glaze, no alterations on the sur-
face of the glaze, no details on the white background (only the patterns can be measured) and a
non-planar volume. Using our methods, however, we were able to overcome these difficulties
and yet measure a thickness value by using the red mark on the surface and by coupling the his-
togram and the visualization after correcting for volume. The glaze was thus estimated to be
57 � 18 μm for Bdx 21066 and at 69 � 15 μm for Bdx 22625.

Comparison with SEM

The values measured by SEM are visible in Figure 4. Overall, the results are very consistent
with those obtained through the DfF method. Ten of the 11 values measured by SEM are
within the thickness uncertainty interval obtained by DfF. Only the measurement results for
one Zellij does not match. For this sample, Bdx 6522, we suspect that the large presence of
unmelted inclusions and bubbles in the glaze may be reducing the value of the measurement.
On the other hand, it is also possible that the assumptions about the refractive index are incor-
rect. However, the orders of magnitude of the Zellijes nevertheless give a thickness scale of 200–
400 μm.

Notably, we obtained similar estimations of thickness, as indicated by the overlapping inter-
vals (Figure 4), by reducing the thickness to 30 μm despite the difficulty in reading the histo-
gram and the need for visualization. In the end, the resulting interval of thickness is quite
broad, which can be explained by the large uncertainty in the refractive index, but also by wide
thickness variation within the sample we observed through SEM.
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CONCLUSIONS

Through comparison of our measurements to those acquired through SEM, we have demon-
strated that an acquisition of a focal stack using a simple camera is an effective and accurate
method for measuring the thickness of a transparent ceramic glaze. Furthermore, the advan-
tages of this method are numerous. First, there are the non-invasive and ultra-portable aspects

F I GURE 5 (a) Macroscopic photo of the surface reconstructed after DfF on the house stove tile from Berg Armo
Bdx 16621; (b) depth map and (c) its depth histogram for the detection. As we can see, the two peaks blend. It is
therefore necessary to use visualization by depth to obtain the depth (d) under the glaze at �925 μm and (e) over the
glaze at �892 μm. Part (f) is one of the SEM backscattered electron images made for comparison.

10 COU ET AL.



of the DfF method and the possibility of measuring directly on site without any contact with
the ceramic. Moreover, the method is also comparatively fast to complete and does not require
significant equipment. Our analyses using different types of ceramic also demonstrate that it is
possible to adapt the method according to sample-specific factors, including the shape of the
sample, the tint of the transparent glaze, the state of preservation of the glaze (i.e., presence or
absence of deterioration), and the sample’s thickness. This is all critical, as the variability in the
thickness of the glaze effectively influences the perception of the color of the transparent glaze.
Finally, the DfF has the advantage of giving an average measurement over a larger area than
that observed by SEM (which is constrained in terms of analysis area).

The DfF glaze measurement method nonetheless has certain limitations. It requires strong a
priori assumptions, such as those regarding the type of glaze. As such, it is most useful as a
complement to the overall study of the sample, rather than a wholesale replacement of the
SEM. The DfF, for its part, offers a different visualization from the microscopy, with a frontal
view (and not in section). This does not allow for as clear a view of the state of the glaze itself.
In addition, unlike SEM, the DfF cannot provide information regarding the components of
ceramic materials. Finally, although methods for correction are available as discussed above,
measurements regarding the thickness and state of the glaze can yet be difficult to obtain,
regarding the thickness and the state of the glaze. In the ideal case (as on the Iznik tiles), the
measurement can be quite simple, and apparent through the histogram. But below 150 μm it
requires a more intensive analysis to locate the depth of the two planes. In certain cases, such as
when the glaze is not completely transparent (i.e., in the case of the Zellijes), it can become
downright impossible to obtain a perfect result. Yet, despite any difficulties or limitations, the
use of the DfF method for measuring glaze thickness remains encouraging.
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