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SL(∞,R), HIGGS BUNDLES, AND QUANTIZATION

OLIVIER BIQUARD

Abstract. Nigel Hitchin recently proposed a theory of SL(∞,R)-
Higgs bundles which should parametrize a Hitchin component of
representations of surface groups intoSL(∞,R). We discuss some
properties and propose a formal approximation of SL(∞,R) rep-
resentations by SL(n,R) representations when n goes to infinity.

In 1992 Hitchin defined the ‘Hitchin component’ of the moduli
space of representations of a surface group into SL(n,R). That was
the beginning of ‘higher Teichmüller theory’, which studies higher
dimensional analogues of Teichmüller space.

Recently, Hitchin [6] proposed an interpretation of theHitchin com-
ponent for SL(∞,R), following the same kind of ideas: since the
Hitchin component is defined by Higgs bundles, the idea is to un-
derstand what a SL(∞,R)-Higgs bundle is. It turns out that there is
a natural geometric interpretation in terms of the group of Hamilto-
nian diffeomorphisms of the 2-sphere S2, and this leads to interpret
points in the Hitchin component for SL(∞,R) as geometric struc-
tures on a symplectic 2-sphere bundleM4 over the Riemann surface
Σ, namely ‘folded hyperKähler structures’, that is hyperKähler met-
rics with singularities on a circle bundle X3 ⊂M4.
In [2] I showed that, as expected, this Hitchin component is locally

parametrized by

⊕i≥2H
0(Σ, Ki)

(some topology has to be taken in account here), which is natural
from the point of view of the limit SL(n,R) → SL(∞,R), since the
Hitchin component for SL(n,R) is parametrized by

⊕ni≥2H
0(Σ, Ki).

The aim of this article is to study how one can approximate a point
in the Hitchin component for SL(∞,R) by a sequence in the Hitchin
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2 OLIVIER BIQUARD

components for SL(n,R) when n → ∞. We prove that there ex-
ists a formal solution to this problem. This is the first step to pro-
duce a genuine approximation—a problem that we will study else-
where. Our quantization technique has some similarities with Don-
aldson’s quantization for constant scalar curvature Kähler metrics
[3], but here the quantization is done fibrewise, and the result is a
solution of a geometric PDE rather than a solution of algebraic equa-
tions.

In § 1–2, we recall some basis on theHitchin component and on the
setting for n = ∞. In § 3 we describe our quantization procedure,
and the formal solution is produced in § 4, but we avoid the most
technical details coming from the machinery developed in [2].

1. Hitchin’s component for SL(n,R)

Let Σ be a surface of genus g ≥ 2. The Teichmüller space of Σ can
be seen in several equivalent ways:

• the space of complex structures on Σ;
• the space of hyperbolic metrics on Σ;
• the space of discrete faithful representations π1(Σ)→ PSL(2,R)

modulo conjugations.

It is well-known that Teichmüller space is homeomorphic to R6g−6.
One construction of this isomorphism is the following. Suppose one
fixes a reference hyperbolic metric g0 on Σ (hence a complex struc-
ture), and g is another hyperbolic metric, then it follows from the
Eells-Sampson theorem that there exists a unique harmonic diffeo-
morphism φ : (Σ, g0) → (Σ, g) which minimizes the energy among
maps which are homotopic to the identity. Then (φ∗g)2,0 =: q is a
quadratic differential: q ∈ H0(Σ, K2). The map

g 7−→ q

gives an identification of Teichmüller space with the vector space
H0(Σ, K2), whose complex dimension is 3g−3. Starting from a holo-
morphic quadratic differential q, one can construct a corresponding
g by solving some geometric PDE, which is a special case of Hitchin
selfduality equations [4].

These equations enabled Hitchin [5] to prove a correspondence
between:
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• the component (now called Hitchin component) of the space
of representations π1(Σ) → SL(n,R) consisting of deforma-
tions of the representation

π1(Σ)→ SL(2,R) ↪→ SL(n,R),

where the monodromy representation of a hyperbolic metric
on Σ is followed by the irreducible representation of SL(2,R)

in Rn;
• amoduli space ofSL(n,R)-Higgs bundles, whichwewill now
describe.

Let us define G-Higgs bundles for a real semisimple group G. Let
H ⊂ G be a maximal compact subgroup, and g = h ⊕ m the Cartan
decomposition, with Cartan involution θ. Then aG-Higgs bundle on
the Riemann surface Σ is a pair (E,Φ), where E is a principal holo-
morphic HC bundle and Φ ∈ H0(Σ, E(mC)⊗K). The Higgs bundles
occurring in the Hitchin component have the following form:

• the holomorphic bundle is fixed,

E = K
n−1

2 ⊕K
n−3

2 ⊕ · · · ⊕K−
n−1

2 ;

this has a canonical quadratic form and is therefore a SO(n,C)

bundle;
• the Higgs field has the form

Φ =


0 q2 · · · qn

1 0
. . . ...

. . . . . . q2

1 0

 , qi ∈ H0(Σ, Ki).

This formula defines a holomorphic 1-formwith values inE(mC),
the bundle of symmetric endomorphisms of E.

In particular, the Hitchin component is parametrized by the space

(1) ⊕ni=2H
0(Σ, Ki),

and the qi is calculated from the Higgs bundle by qi = Tr(Φi).
Finally let us recall how such Higgs bundles parametrize repres-

entations of fundamental groups. A metric h on E (that is, a re-
duction of the structural group of E to H) enables to define a G-
connection on E by

Dh = Ah + Φ− θh(Φ),
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where Ah is the Chern connection of (E, h). One wants to solve the
equation

F (Ah) = [Φ, θh(Φ)],

which together with ∂̄Φ = 0, implies that Dh is flat, hence provides
the representation π1(Σ) → G. The selfduality equations of Hitchin
alluded to above are therefore the set of equations

∂̄Φ = 0,

F (Ah) = [Φ, θh(Φ)].

2. SL(∞,R)-Higgs bundles and hyperKähler metrics

Let us see what one can do with G = SL(∞,R). To define a G-
Higgs bundle, we actually need only an interpretation of the sum-
mands of the Cartan decomposition, that is an interpretation ofH =

SO(∞,R) and mC.
There is a well-known interpretation of SU(∞) as the group of

Hamiltonian diffeomorphisms of the 2-sphere S2. We will see in § 3
that in a precise sense SU(∞) is indeed a limit of the groups SU(n)

when n→∞. Therefore we can consider su(∞) as the space of func-
tions on S2 with zero integral. Then consider the equatorial sym-
metry ι on S2: this reverses the symplectic form on S2, so we can
define a symmetric decomposition

su(∞) = so(∞,R)⊕m,

with

so(∞,R) = {f ∈ su(∞), ι∗f = −f},
m = {f ∈ su(∞), ι∗f = f}.

In standard coordinates x0, x1, x2 on S2, we have

ι(x0, x1, x2) = (−x0, x1, x2),

and their Poisson brackets satisfy the standard relations {x0, x1} =

x2, etc. so we have a copy of su(2,R) ↪→ su(∞,R), with x0 generating
a so(2,R) ↪→ su(∞,R).

Now, to define what a solution of the selfduality equations for the
group SL(∞,R) is, we need:

• aH-bundle: this can be realized as a symplectic 2-sphere bundle

S2 →M4 → Σ,

with an involution ι of X which acts as the equatorial sym-
metry in each fibre;
• a H-connection: this is a symplectic connection onM → Σ;
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• a Higgs field: this is a (1,0)-form on Σ, with values in E(mC),
that is ι-invariant complex functions on the fibre S2.

We write down the equations in a local trivialization C × S2 of the
bundleX , where the 2-sphere has the standard symplectic form ωS2 :
let z = x+iy be a holomorphic coordinate onC, then theH-connection
and the Higgs field are given by

A = a0dx+ a1dy, Φ =
1

2
(a2 + ia3)dz,

where a0, a1 ∈ so(∞,R) and a2, a3 ∈ m. The selfduality equations are
now:

∂xa1 − ∂ya0 + {a0, a1}+ {a2, a3} = 0,

∂z̄(a2 + ia3) +
1

2
{a0 + ia1, a2 + ia3} = 0,

(2)

where the bracket is the fibrewise Poisson bracket of functions. Hitchin
observed [6] that ifwe consider the ai as functions defined on the total
space C× S2 and define

ω1 = ωS2 − da0 ∧ dx− da1 ∧ dy,
ωc = ω2 + iω3 = d(a2 + ia3) ∧ dz,

(3)

then the system (2) is equivalent to the fact that (ω1, ω2, ω3) is a hy-
perKähler triple: the three 2-forms ωi automatically satisfy dωi = 0,
and also the orthogonality relations

(4) ωi ∧ ωj = δij{a2, a3}ωS2 ∧ idz ∧ dz̄.

This gives a hyperKähler metric on the locus where the volume form
ω2
i does not degenerate, that is on the locus {a2, a3} 6= 0.
Herewehavewritten the equations in local coordinates, but everything

makes sense globally on the S2 bundle M → Σ, so we obtain a hy-
perKähler metric on the total space M , nondegenerate on the locus
{a2, a3} 6= 0. Observe that {a2, a3} takes values in m, and therefore
satisfies ι∗{a2, a3} = −{a2, a3}, so {a2, a3}must vanish at least on the
fixed point set of ι, which is a circle bundle S1 → X3 → Σ inside the
S2 bundle M4 → Σ (the equator in each sphere). The hyperKähler
metric g degenerates alongX in a special way and satisfies ι∗g = −g,
it is therefore positive on one side ofX and negative on the other side.
If we choose a defining function x of X , then for a certain coframe
(θ1, θ2, θ3) on X one has the behaviour near X :

g ∼ x(dx2 + (θ2)2 + (θ3)2) + x−1(θ1)2.

This kind of metric is called a folded hyperKähler metric, see [6] for
details.
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One important fact is that one can think of a folded hyperKähler
metric in two equivalent ways:

• a ι-anti-invariant hyperKähler metric onM ;
• a hyperKähler metric only on one side of X inM , say the do-
main D ⊂M where g is positive.

The domain D may be compactified in a different way. Actually, the
formula ωc = (a2 + ia3)dz = 2dΦ expresses ωc as the symplectic form
of the cotangent bundle T ∗Σ, with 2Φ = (a2 + ia3)dz as the Liouville
form. Therefore D can be seen as a domain in the holomorphic co-
tangent bundle T ∗Σ.

Example. A SL(2,R)-bundle leads to a SL(∞,R)-bundle, thanks to
the embedding su(2) ↪→ su(∞). In particular, the standard solution
for the hyperbolicmetric g0 leads to awell-known S1-invariant folded
hyperKähler metric on the disc bundle of T ∗Σ. This metric can be
seen as the noncompact dual of the Eguchi-Hanson metric, and we
will refer to it as the ‘standard model’.

We can now define the Hitchin component for the group SL(∞,R)

as the space of triples (D,ω1, ωc), where

• (D,ωc) is a holomorphic symplectic domain of T ∗Σ,
• ω1 is a folded hyperKähler metric on (D,ωc), with fixed co-
homology class in H2(D, ∂D).

In [2]we constructed theHitchin component near the standardmodel:

Theorem 1. Near the standardmodel, theHitchin’s component forSL(∞,R)

is parametrized by ⊕n≥2H
0(Σ, Kn).

This indeed corresponds to the limit n → ∞ in (1). The statement
in [2] is more precise, and the sum is to take with respect to some
topology.

There is a nice infinitesimal description of the cotangent domains
which occur in the Hitchin component, near the standard model D0

(the disc bundle). The infinitesimal deformations ofD are of the form
fu∂u, where f is a real function on ∂D0 and u∂u is the homothety
vector field in the fibres. It turns out that the functions which occur
for the domains D in theorem 1 are the real parts of the CR holo-
morphic functions on ∂D0, and the decomposition into Fourier series
on ∂D0 gives the sum in the theorem (the functions corresponding to
H0(Σ,C) = C do not preserve the cohomology class of ω1, and those
corresponding to H1(Σ, K) actually give trivial deformations).
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3. Quantization

We now explain how one can say that the group SU(∞) is the limit
of the groupsSU(n)whenn goes to infinity. This relies on the Berezin
quantization [1], see for example [7, Chapter 7]. We need an auxiliary
complex structure on the symplectic 2-sphere, that is we consider S2

as CP 1. Then
En = H0(CP 1,O(n)) ' Cn+1.

For f ∈ C∞(CP 1,R) define the Toeplitz operator Tf,n ∈ iu(En) by

Tf,ns = πEn(fs) for s ∈ Vn,

where πEn is the orthogonal projection onEn. Then, for smooth func-
tions f , g, there is an infinite development

(5) [iTf,n, iTg,n] ∼ 1

n
iT{f,g},n +

1

n2
TP2(f,g),n +

1

n3
TP3(f,g),n + · · ·

where thePk(f, g) are bi-differential operators (andP1(f, g) = i{f, g}).
The development means that for every j one has, with respect to the
operator norm,

∥∥[iTf,n, iTg,n]−
j∑

k=1

1

nk
TPk(f,g),n

∥∥ = O
( 1

nj+1

)
.

The meaning of (5) is clear: the map f 7→ inTf,n is asymptotically
a Lie algebra morphism from su(∞) to su(n + 1). We will see in § 4
that an asymptotic inverse of this map can be constructed, making
precise the statement that su(∞) = limn→∞ su(n).

Now come back to the Hitchin component for the group SL(∞,R).
A point in the Hitchin component is described by a solution of the
SL(∞,R)-selfduality equations on the symplectic bundle

S2 −→ M4

↓ p
Σ

In order to approximate the Hitchin component for SL(∞,R) by the
Hitchin components for SL(n,R), we want to relate such a solution
with a solution of the SL(n,R)-selfduality equations. The idea is to
apply the above described quantization fibrewise onM . As for usual
quantization, we need an auxiliary complex structure: we describe
M as the complex ruled surface

M = P (K
1
2 ⊕K−

1
2 ),
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and we denote by Σ0,Σ∞ ⊂ M the zero and infinity sections. We
introduce the holomorphic line bundle L→M defined by

L|fibre = O(1), L|Σ0 = K−
1
2 , L|Σ∞ = K

1
2 .

The vector space En now becomes a Cn+1-holomorphic bundle over
Σ defined by

(6) En = p∗L
n = K−

n
2 ⊕K−

n
2

+1 ⊕ · · · ⊕K
n
2 .

The equatorial symmetry ι(z) = 1/z̄ onCP 1 lifts to an anti-holomorphic
involution ι1 of the total space of the bundle O(1). This gives a real
structure τ onH0(CP 1,O(n)) defined by τ(s) = ι1 ◦ s ◦ ι. Combining
with the natural Hermitian metric h onH0(CP 1,O(n)), we obtain on
this space a complex quadratic form

q(s) = h(τs, s).

All these algebraic considerations make sense fibrewise on M , and
we obtain on En a holomorphic quadratic form, making En a SO(n+

1,C)-bundle. Of course, this is the standard quadratic form that one
can write on En from the explicit form (6), but it is useful to derive q
from the involution ι. In particular, if a complex function f onM sat-
isfies ι∗f = ±f , then Tf,n is symmetric (resp. antisymmetric). Indeed,
for any s, t ∈ En,

q(Tf,ns, t) = h(τfs, t)

= ±h(f̄ τs, t)

= ±h(τs, ft)

= ±q(s, ft) = ±q(s, Tf,nt).

Now let us add in the picture a solution (ω1, ωc = 2dΦ) of the
SL(∞,R)-selfduality equations. Given a vector field X on Σ, we
define a horizontal lift X̃ of X onM by asking that

p∗X̃ = X, X̃ ⊥ω1 fibres.

We also choose a Hermitian connection∇ onL such that iF (∇) = ω1.
We will require the following normalization:

(1) along each fibre S2, the ∂̄-operator ∇0,1 coincides with the
holomorphic structure of L along the fibre;

(2) ∇ is compatible with the real structure τ , that is, for any sec-
tion of L,

∇(τs) = τ∇s.
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Supposewehave another connectionwith the same curvature,∇+iα,
with α a closed 1-form on M , then the two above conditions imply
respectively:

(1) α vanishes on the fibres; therefore α = p∗α0, where α0 ∈
Ω1(Σ,R) is closed;

(2) for any section s, one should have iατs = τiαs, but since α =

p∗α0 one has τiαs = −iα0τs so one must have α0 = 0.
Our normalization therefore defines ∇ canonically. The existence is
obvious in a local trivialization of (M,L) over a disk ∆ ⊂ Σ, such
that all fibres (S2, ωS2 , L) are identified (this cannot be done in natural
holomorphic cotangent coordinates, since the metric on Σ is curved):
in such a trivialization, if ω1 is given by the formula (3), then

∇ = ∇S2 + i(a0dx+ a1dy).

We can now proceed with the quantization: we define
• a connection ∇n on En by ∇X,ns = πEn(∇X̃s); the above com-
patibility ∇τ = 0 implies that the coefficients of ∇n are an-
tisymmetric, so ∇n is a SO(n + 1,R)-connection; this can be
seen simply in a local trivialization of M as above, since we
then obtain

(7) ∇n = d+ inT
a0+

∆a0
2n

,n
dx+ inT

a1+
∆a1
2n

,n
dy;

the lower order terms ∆a0

2n
come from the fact that the hori-

zontal lifting of the vector field ∂x is ∂̃x = ∂x − ξa0 , where ξf is
the vertical Hamiltonian vector field associated to a function
f ; and from the application of Tuynman’s formula

πEn(∇ξf s) = −iT∆f
2
,ns

for any s ∈ En (the proof is a simple integration by parts);
• a Higgs field Φn on En by Φn = nTΦ,n; since Φ is a section
of p∗K, it follows that Φn is a section of K ⊗ Sym(En), given
locally by the formula n

2
Ta2+ia3,ndz.

Theorem 2. The triple (En,∇n,Φn) is an asymptotic solution of theSL(n+

1,R)-selfduality equations.

Themeaning of ‘asymptotic’ ismadeprecise by the following lemma,
which implies the theorem.

Lemma 1. Suppose given (∇,Φ) on (M,L), not necessarily satisfying the
selfduality equations. Then there is a full asymptotic expansion of the fol-
lowing quantities in powers of 1

n
when n → ∞, with leading terms given
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by:
1

n
∇∂z̄ ,nΦn ∼ T∂̃z̄Φ,n + · · · ,

1

n

(
F (∇n)− [Φn, θ(Φn)]

)
∂x,∂y

∼ iT∂xa1−∂ya0+{a0,a1}+{a2,a3},n + · · · .

Since ∂̃z̄ = ∂z̄ − 1
2
ξa0+ia1 , one has

∂̃z̄Φ = ∂z̄Φ +
1

2
{a0 + ia1,Φ}

so the two leading terms of the expansions in the lemma cancel ex-
actly when (∇,Φ) is a solution of the selfduality equations. This
shows how the lemma implies the theorem.
The lemma is a consequence of the following formulas, which are

contained in a forthcoming article of XiaonanMaandWeipingZhang:

Lemma 2. One has the full asymptotic expansions in powers of 1
n
:

∇X,nTf,n ∼ TX̃·f,n + · · ·
1

n
F (∇n)X,Y ∼ TF (L)X̃,Ỹ ,n

+ · · ·

In our case the formula for F (∇n) is immediate from the formula
(7) and the expansion (5). The first formula is more difficult and we
refer the reader to Ma-Zhang.

Let us come back to lemma 1: the first formula of the lemma now
follows. For the second formula, we write

F (L)∂̃x,∂̃y = −iω1(∂̃x, ∂̃y)

= −iω1(∂x − ξa0 , ∂y − ξa1)

= i(∂xa1 − ∂ya0 + {a0, a1}).

On the other hand from (5) one has

−[Φn, θ(Φn)]∂x,∂y = −n2[TΦ,n, TΦ,n] = −inT{Φ,Φ},n + · · ·

and

{Φ,Φ} = {a2 + ia3, a2 − ia3}
1

4
dz ∧ dz̄ = −{a2, a3}dx ∧ dy.

The second formula in the lemma follows.

4. Formal approximation

We have seen that, as a consequence of the existence of the asymp-
totic Lie algebra morphism su(∞) → su(n + 1), a point (∇,Φ) in
the SL(∞,R)-Hitchin component gives rise to an asymptotic solu-
tion (∇n,Φn) of the SL(n+ 1,R) selfduality equations.
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We would like to refine this to an exact solution of the selfdual-
ity equations. Here we need another ingredient from quantization
which shows that su(n+1) actually approximates su(∞). The Berezin
symbol σn : isu(n+ 1)→ su(∞) is the adjoint of the map

(8) T·,n : su(∞)→ su(n+ 1).

It can be defined for x ∈ S2 by

σn(A)(x) = Tr(πin(x) ◦ A),

where in is the natural embedding in : CP 1 ↪→ CP n and πin(x) is the
orthogonal projection on the line in(x) ⊂ Cn+1. The important fact is
that σn gives an asymptotic inverse of the Toeplitz map (8): for any
f ∈ C∞(S2),

(9) σn(Tf,n) ∼ f +
∑
k≥1

1

nk
Sk(f),

where the Sk are differential operators (in particular S1 = ∆).
Now let us emphasize the dependence of (∇ = d+a0dx+a1dy,Φ =

1
2
(a2 + ia3)dz) to a by writing (∇n(a),Φn(a)), and note (∇n(a),Φn(a))

the resulting quantized SL(n+ 1,R)-Higgs bundle.
The Berezin symbol is injective (equivalently, the Toeplitz map is

surjective). Therefore the selfduality equations for (∇n(a),Φn(a)) can
be written

P1(n, a) :=
1

n
σn
(
F (∇n(a))− [Φn(a), θ(Φn(a))]

)
= 0,

Pc(n, a) :=
1

n
σn
(
∇n(a)0,1Φn(a)

)
= 0.

(10)

From lemma1 and the expansion (9), it follows that there is an asymp-
totic development of P (n, a) = (P1(n, a), Pc(n, a)) given by

P1(n, a) ∼ i
(
∂xa1 − ∂ya0 + {a0, a1}+ {a2, a3}

)
dx ∧ dy + · · ·

Pc(n, a) ∼
(
∂z̄(a2 + ia3) +

1

2
{a0 + ia1, a2 + ia3}

)
dz̄ + · · ·

(11)

For convenience, we have written in a local trivialization, but the
leading terms in the two equations can be more intrinsically inter-
preted as ω1(a)2− 1

2
ωc(a)∧ ω̄c(a) and ω1(a)∧ωc(a) respectively, which

together form the hyperKähler equations.

Theorem 3. Given a(0) any solution to theSL(∞,R) selfduality equations,
there is a formal solution a =

∑
k≥0

a(k)

nk to the equations (10).

Let us sketch the proof of the theorem: consider the variable ~ = 1
n
,

we can then consider P as a function of ~ and a, with ~ = 0 corres-
ponding to n→∞. Then:
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• if a is a solution of the SL(∞,R)-selfduality equations, then
P (0, a) = 0;
• the differential ∂P

∂a
(0, a) is the linearisation of the hyperKähler

equations, which is surjective by [2].
The existence of formal developments of P (~, a) in powers of ~ then
ensures that one can apply formally the implicit function theorem to
the equation P (~, a) = 0 to find solutions for nonzero ~.
We do not give more details on the proof of theorem 3, since the

technical details require the machinery developed in [2] to analyse
the folded hyperKähler cotangent domains.

Conjectural considerations. The next step is to pass from a formal solu-
tion to a genuine solution of the equations. One way to do that is to
truncate the formal solution at some order, and then deform to a true
solution—the model of such a method being Donaldson’s quantiza-
tion for the problem of constant scalar curvature Kähler metrics [3].
We will deal with this problem in another article.

There are some conjectural considerations that one may deduce
from such an approximationmap. Let us callHn theSL(n,R)Hitchin
component, and H∞ that for SL(∞,R). We know that Hn is para-
metrized by Bn = ⊕ni=2H

0(Σ, Ki), and the ‘Hitchin map’Hn → Bn is
given by

(E,Φ) 7→ (pi(Φ) = Tr(Φi))i=2,...,n.

On the other hand, the Hitchin map forH∞ is given by

(∇,Φ) 7−→
(
qi(Φ) =

∫
M/Σ

Φiω1

)
i≥2
.

Hitchin [6] showed that this defines an element ofB∞ = ⊕i≥2H
0(Σ, Ki).

Here we do not give any precise topology on the sum.
It is almost obvious from the definitions that one has, for any func-

tion f on S2,
1

n+ 1
Tr(Tf,n) =

∫
S2

fωS2 .

There is also a full asymptotic expansion

Tf,n ◦ Tg,n ∼ Tfg,n + · · ·

It follows that
1

n+ 1
Tr
(
(
Φn

n
)i
)

=
1

n+ 1
TrT iΦ,n

∼ 1

n+ 1
TrTΦi,n −→

∫
M/Σ

Φiω1,
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that is,

(12) 1

ni+1
pi(Φn) −→ qi(Φ).

Now suppose that wewere able to define a genuine approximation
map an : H∞ → Hn. Then it should follow that, with the normaliza-
tion (12), we also have a convergence of the Hitchin maps:

H∞
an−→ Hn

↓ ↓
B∞ ⊃ Bn

Because the Hitchin maps on Hn are injective, it should follow that
the Hitchin map on H∞ is also injective, that is, an element in H∞
is determined by its polynomials qi. Another way to state the same
thing is to say that a cotangent domain of Σ carrying a folded hyper-
Kähler metric is determined by its qi’s. This would be the first step
in proving that H∞ is parametrized by B∞ (with the sum equipped
with a suitable topology).
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