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components for SL(n, R) when n → ∞. We prove that there exists a formal solution to this problem. This is the first step to produce a genuine approximation-a problem that we will study elsewhere. Our quantization technique has some similarities with Donaldson's quantization for constant scalar curvature Kähler metrics [START_REF] Donaldson | Scalar curvature and projective embeddings[END_REF], but here the quantization is done fibrewise, and the result is a solution of a geometric PDE rather than a solution of algebraic equations.

In § 1-2, we recall some basis on the Hitchin component and on the setting for n = ∞. In § 3 we describe our quantization procedure, and the formal solution is produced in § 4, but we avoid the most technical details coming from the machinery developed in [START_REF] Biquard | Métriques hyperkählériennes pliées[END_REF].

H ' SL(n, R)

Let Σ be a surface of genus g ≥ 2. The Teichmüller space of Σ can be seen in several equivalent ways:

• the space of complex structures on Σ;

• the space of hyperbolic metrics on Σ;

• the space of discrete faithful representations π 1 (Σ) → P SL(2, R) modulo conjugations.

It is well-known that Teichmüller space is homeomorphic to R 6g-6 . One construction of this isomorphism is the following. Suppose one fixes a reference hyperbolic metric g 0 on Σ (hence a complex structure), and g is another hyperbolic metric, then it follows from the Eells-Sampson theorem that there exists a unique harmonic diffeomorphism φ : (Σ, g 0 ) → (Σ, g) which minimizes the energy among maps which are homotopic to the identity. Then (φ * g) 2,0 =: q is a quadratic differential: q ∈ H 0 (Σ, K 2 ). The map g -→ q gives an identification of Teichmüller space with the vector space H 0 (Σ, K 2 ), whose complex dimension is 3g -3. Starting from a holomorphic quadratic differential q, one can construct a corresponding g by solving some geometric PDE, which is a special case of Hitchin selfduality equations [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF].

These equations enabled Hitchin [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF] to prove a correspondence between:

• the component (now called Hitchin component) of the space of representations π 1 (Σ) → SL(n, R) consisting of deformations of the representation

π 1 (Σ) → SL(2, R) → SL(n, R),
where the monodromy representation of a hyperbolic metric on Σ is followed by the irreducible representation of SL(2, R) in R n ; • a moduli space of SL(n, R)-Higgs bundles, which we will now describe.

Let us define G-Higgs bundles for a real semisimple group G. Let H ⊂ G be a maximal compact subgroup, and g = h ⊕ m the Cartan decomposition, with Cartan involution θ. Then a G-Higgs bundle on the Riemann surface Σ is a pair (E, Φ), where E is a principal holomorphic H C bundle and Φ ∈ H 0 (Σ, E(m C ) ⊗ K). The Higgs bundles occurring in the Hitchin component have the following form:

• the holomorphic bundle is fixed,

E = K n-1 2 ⊕ K n-3 2 ⊕ • • • ⊕ K -n-1 2 ;
this has a canonical quadratic form and is therefore a SO(n, C) bundle; • the Higgs field has the form

Φ =       0 q 2 • • • q n 1 0 . . . . . . . . . . . . q 2 1 0       , q i ∈ H 0 (Σ, K i ).
This formula defines a holomorphic 1-form with values in E(m C ), the bundle of symmetric endomorphisms of E.

In particular, the Hitchin component is parametrized by the space

(1) ⊕ n i=2 H 0 (Σ, K i ),
and the q i is calculated from the Higgs bundle by q i = Tr(Φ i ).

Finally let us recall how such Higgs bundles parametrize representations of fundamental groups. A metric h on E (that is, a reduction of the structural group of E to H) enables to define a Gconnection on E by

D h = A h + Φ -θ h (Φ),
where A h is the Chern connection of (E, h). One wants to solve the equation

F (A h ) = [Φ, θ h (Φ)],
which together with ∂Φ = 0, implies that D h is flat, hence provides the representation π 1 (Σ) → G. The selfduality equations of Hitchin alluded to above are therefore the set of equations ∂Φ = 0,

F (A h ) = [Φ, θ h (Φ)].

SL(∞, R)-H K

Let us see what one can do with G = SL(∞, R). To define a G-Higgs bundle, we actually need only an interpretation of the summands of the Cartan decomposition, that is an interpretation of H = SO(∞, R) and m C .

There is a well-known interpretation of SU (∞) as the group of Hamiltonian diffeomorphisms of the 2-sphere S 2 . We will see in § 3 that in a precise sense SU (∞) is indeed a limit of the groups SU (n) when n → ∞. Therefore we can consider su(∞) as the space of functions on S 2 with zero integral. Then consider the equatorial symmetry ι on S 2 : this reverses the symplectic form on S 2 , so we can define a symmetric decomposition

su(∞) = so(∞, R) ⊕ m, with so(∞, R) = {f ∈ su(∞), ι * f = -f }, m = {f ∈ su(∞), ι * f = f }.
In standard coordinates x 0 , x 1 , x 2 on S 2 , we have

ι(x 0 , x 1 , x 2 ) = (-x 0 , x 1 , x 2 ),
and their Poisson brackets satisfy the standard relations {x 0 , x 1 } = x 2 , etc. so we have a copy of su(2, R) → su(∞, R), with x 0 generating a so(2, R) → su(∞, R). Now, to define what a solution of the selfduality equations for the group SL(∞, R) is, we need:

• a H-bundle: this can be realized as a symplectic 2-sphere bundle

S 2 → M 4 → Σ,
with an involution ι of X which acts as the equatorial symmetry in each fibre; • a H-connection: this is a symplectic connection on M → Σ;

• a Higgs field: this is a (1,0)-form on Σ, with values in E(m C ), that is ι-invariant complex functions on the fibre S 2 .

We write down the equations in a local trivialization C × S 2 of the bundle X, where the 2-sphere has the standard symplectic form ω S 2 : let z = x+iy be a holomorphic coordinate on C, then the H-connection and the Higgs field are given by

A = a 0 dx + a 1 dy, Φ = 1 2 (a 2 + ia 3 )dz,
where a 0 , a 1 ∈ so(∞, R) and a 2 , a 3 ∈ m. The selfduality equations are now:

∂ x a 1 -∂ y a 0 + {a 0 , a 1 } + {a 2 , a 3 } = 0, ∂ z (a 2 + ia 3 ) + 1 2 {a 0 + ia 1 , a 2 + ia 3 } = 0, (2) 
where the bracket is the fibrewise Poisson bracket of functions. Hitchin observed [START_REF] Hitchin | Higgs bundles and diffeomorphism groups[END_REF] that if we consider the a i as functions defined on the total space C × S 2 and define

ω 1 = ω S 2 -da 0 ∧ dx -da 1 ∧ dy, ω c = ω 2 + iω 3 = d(a 2 + ia 3 ) ∧ dz, (3) 
then the system (2) is equivalent to the fact that (ω 1 , ω 2 , ω 3 ) is a hy-perKähler triple: the three 2-forms ω i automatically satisfy dω i = 0, and also the orthogonality relations ( 4)

ω i ∧ ω j = δ ij {a 2 , a 3 }ω S 2 ∧ idz ∧ dz.
This gives a hyperKähler metric on the locus where the volume form ω 2 i does not degenerate, that is on the locus {a 2 , a 3 } = 0.

Here we have written the equations in local coordinates, but everything makes sense globally on the S 2 bundle M → Σ, so we obtain a hy-perKähler metric on the total space M , nondegenerate on the locus {a 2 , a 3 } = 0. Observe that {a 2 , a 3 } takes values in m, and therefore satisfies ι * {a 2 , a 3 } = -{a 2 , a 3 }, so {a 2 , a 3 } must vanish at least on the fixed point set of ι, which is a circle bundle S 1 → X 3 → Σ inside the S 2 bundle M 4 → Σ (the equator in each sphere). The hyperKähler metric g degenerates along X in a special way and satisfies ι * g = -g, it is therefore positive on one side of X and negative on the other side. If we choose a defining function x of X, then for a certain coframe (θ 1 , θ 2 , θ 3 ) on X one has the behaviour near X:

g ∼ x(dx 2 + (θ 2 ) 2 + (θ 3 ) 2 ) + x -1 (θ 1 ) 2 .
This kind of metric is called a folded hyperKähler metric, see [START_REF] Hitchin | Higgs bundles and diffeomorphism groups[END_REF] for details.

One important fact is that one can think of a folded hyperKähler metric in two equivalent ways:

• a ι-anti-invariant hyperKähler metric on M ; • a hyperKähler metric only on one side of X in M , say the domain D ⊂ M where g is positive.

The domain D may be compactified in a different way. Actually, the formula ω c = (a 2 + ia 3 )dz = 2dΦ expresses ω c as the symplectic form of the cotangent bundle T * Σ, with 2Φ = (a 2 + ia 3 )dz as the Liouville form. Therefore D can be seen as a domain in the holomorphic cotangent bundle T * Σ.

Example. A SL(2, R)-bundle leads to a SL(∞, R)-bundle, thanks to the embedding su(2) → su(∞). In particular, the standard solution for the hyperbolic metric g 0 leads to a well-known S 1 -invariant folded hyperKähler metric on the disc bundle of T * Σ. This metric can be seen as the noncompact dual of the Eguchi-Hanson metric, and we will refer to it as the 'standard model'.

We can now define the Hitchin component for the group SL(∞, R) as the space of triples (D, ω 1 , ω c ), where

• (D, ω c ) is a holomorphic symplectic domain of T * Σ,
• ω 1 is a folded hyperKähler metric on (D, ω c ), with fixed cohomology class in H 2 (D, ∂D).

In [START_REF] Biquard | Métriques hyperkählériennes pliées[END_REF] we constructed the Hitchin component near the standard model:

Theorem 1. Near the standard model, the Hitchin's component for SL(∞, R) is parametrized by ⊕ n≥2 H 0 (Σ, K n ).
This indeed corresponds to the limit n → ∞ in [START_REF] Berezin | General concept of quantization[END_REF]. The statement in [START_REF] Biquard | Métriques hyperkählériennes pliées[END_REF] is more precise, and the sum is to take with respect to some topology.

There is a nice infinitesimal description of the cotangent domains which occur in the Hitchin component, near the standard model D 0 (the disc bundle). The infinitesimal deformations of D are of the form f u∂ u , where f is a real function on ∂D 0 and u∂ u is the homothety vector field in the fibres. It turns out that the functions which occur for the domains D in theorem 1 are the real parts of the CR holomorphic functions on ∂D 0 , and the decomposition into Fourier series on ∂D 0 gives the sum in the theorem (the functions corresponding to H 0 (Σ, C) = C do not preserve the cohomology class of ω 1 , and those corresponding to H 1 (Σ, K) actually give trivial deformations).

Q

We now explain how one can say that the group SU (∞) is the limit of the groups SU (n) when n goes to infinity. This relies on the Berezin quantization [START_REF] Berezin | General concept of quantization[END_REF], see for example [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF]Chapter 7]. We need an auxiliary complex structure on the symplectic 2-sphere, that is we consider S 2 as CP 1 . Then

E n = H 0 (CP 1 , O(n)) C n+1 . For f ∈ C ∞ (CP 1 , R) define the Toeplitz operator T f,n ∈ iu(E n ) by T f,n s = π En (f s) for s ∈ V n ,
where π En is the orthogonal projection on E n . Then, for smooth functions f , g, there is an infinite development

(5) [iT f,n , iT g,n ] ∼ 1 n iT {f,g},n + 1 n 2 T P 2 (f,g),n + 1 n 3 T P 3 (f,g),n + • • •
where the P k (f, g) are bi-differential operators (and P 1 (f, g) = i{f, g}).

The development means that for every j one has, with respect to the operator norm,

[iT f,n , iT g,n ] - j k=1 1 n k T P k (f,g),n = O 1 n j+1 .
The meaning of ( 5) is clear: the map f → inT f,n is asymptotically a Lie algebra morphism from su(∞) to su(n + 1). We will see in § 4 that an asymptotic inverse of this map can be constructed, making precise the statement that su(∞) = lim n→∞ su(n). Now come back to the Hitchin component for the group SL(∞, R). A point in the Hitchin component is described by a solution of the SL(∞, R)-selfduality equations on the symplectic bundle

S 2 -→ M 4 ↓ p Σ
In order to approximate the Hitchin component for SL(∞, R) by the Hitchin components for SL(n, R), we want to relate such a solution with a solution of the SL(n, R)-selfduality equations. The idea is to apply the above described quantization fibrewise on M . As for usual quantization, we need an auxiliary complex structure: we describe M as the complex ruled surface

M = P (K 1 2 ⊕ K -1 2 ),
and we denote by Σ 0 , Σ ∞ ⊂ M the zero and infinity sections. We introduce the holomorphic line bundle L → M defined by

L| fibre = O(1), L| Σ 0 = K -1 2 , L| Σ∞ = K 1 2 .
The vector space E n now becomes a C n+1 -holomorphic bundle over Σ defined by ( 6)

E n = p * L n = K -n 2 ⊕ K -n 2 +1 ⊕ • • • ⊕ K n 2 .
The equatorial symmetry ι(z) = 1/z on CP 1 lifts to an anti-holomorphic involution ι 1 of the total space of the bundle O(1). This gives a real structure τ on H 0 (CP

1 , O(n)) defined by τ (s) = ι 1 • s • ι.
Combining with the natural Hermitian metric h on H 0 (CP 1 , O(n)), we obtain on this space a complex quadratic form q(s) = h(τ s, s).

All these algebraic considerations make sense fibrewise on M , and we obtain on E n a holomorphic quadratic form, making E n a SO(n + 1, C)-bundle. Of course, this is the standard quadratic form that one can write on E n from the explicit form ( 6), but it is useful to derive q from the involution ι. In particular, if a complex function f on M satisfies ι * f = ±f , then T f,n is symmetric (resp. antisymmetric). Indeed, for any s, t ∈ E n ,

q(T f,n s, t) = h(τ f s, t) = ±h( f τ s, t) = ±h(τ s, f t) = ±q(s, f t) = ±q(s, T f,n t).
Now let us add in the picture a solution (ω 1 , ω c = 2dΦ) of the SL(∞, R)-selfduality equations. Given a vector field X on Σ, we define a horizontal lift X of X on M by asking that

p * X = X, X ⊥ ω 1 fibres.
We also choose a Hermitian connection ∇ on L such that iF (∇) = ω 1 . We will require the following normalization:

(1) along each fibre S 2 , the ∂-operator ∇ 0,1 coincides with the holomorphic structure of L along the fibre; (2) ∇ is compatible with the real structure τ , that is, for any section of L, ∇(τ s) = τ ∇s.

Suppose we have another connection with the same curvature, ∇+iα, with α a closed 1-form on M , then the two above conditions imply respectively:

(1) α vanishes on the fibres; therefore α = p * α 0 , where α 0 ∈ Ω 1 (Σ, R) is closed;

(2) for any section s, one should have iατ s = τ iαs, but since α = p * α 0 one has τ iαs = -iα 0 τ s so one must have α 0 = 0.

Our normalization therefore defines ∇ canonically. The existence is obvious in a local trivialization of (M, L) over a disk ∆ ⊂ Σ, such that all fibres (S 2 , ω S 2 , L) are identified (this cannot be done in natural holomorphic cotangent coordinates, since the metric on Σ is curved): in such a trivialization, if ω 1 is given by the formula (3), then

∇ = ∇ S 2 + i(a 0 dx + a 1 dy).
We can now proceed with the quantization: we define • a connection ∇ n on E n by ∇ X,n s = π En (∇ X s); the above compatibility ∇τ = 0 implies that the coefficients of ∇ n are antisymmetric, so ∇ n is a SO(n + 1, R)-connection; this can be seen simply in a local trivialization of M as above, since we then obtain [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF] ∇ n = d + inT a 0 + ∆a 0 2n ,n dx + inT a 1 + ∆a 1 2n ,n dy; the lower order terms ∆a 0 2n come from the fact that the horizontal lifting of the vector field ∂ x is ∂ x = ∂ x -ξ a 0 , where ξ f is the vertical Hamiltonian vector field associated to a function f ; and from the application of Tuynman's formula

π En (∇ ξ f s) = -iT ∆f 2
,n s for any s ∈ E n (the proof is a simple integration by parts);

• a Higgs field Φ n on E n by Φ n = nT Φ,n ; since Φ is a section of p * K, it follows that Φ n is a section of K ⊗ Sym(E n ), given locally by the formula n 2 T a 2 +ia 3 ,n dz. Theorem 2. The triple (E n , ∇ n , Φ n ) is an asymptotic solution of the SL(n+ 1, R)-selfduality equations.
The meaning of 'asymptotic' is made precise by the following lemma, which implies the theorem. Lemma 1. Suppose given (∇, Φ) on (M, L), not necessarily satisfying the selfduality equations. Then there is a full asymptotic expansion of the following quantities in powers of 1 n when n → ∞, with leading terms given by:

1 n ∇ ∂z,n Φ n ∼ T ∂zΦ,n + • • • , 1 n F (∇ n ) -[Φ n , θ(Φ n )] ∂x,∂y ∼ iT ∂xa 1 -∂ya 0 +{a 0 ,a 1 }+{a 2 ,a 3 },n + • • • . Since ∂ z = ∂ z -1 2 ξ a 0 +ia 1 , one has ∂ z Φ = ∂ z Φ + 1 2 {a 0 + ia 1 , Φ}
so the two leading terms of the expansions in the lemma cancel exactly when (∇, Φ) is a solution of the selfduality equations. This shows how the lemma implies the theorem. The lemma is a consequence of the following formulas, which are contained in a forthcoming article of Xiaonan Ma and Weiping Zhang:

Lemma 2. One has the full asymptotic expansions in powers of

1 n : ∇ X,n T f,n ∼ T X•f,n + • • • 1 n F (∇ n ) X,Y ∼ T F (L) X, Ỹ ,n + • • •
In our case the formula for F (∇ n ) is immediate from the formula (7) and the expansion [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF]. The first formula is more difficult and we refer the reader to Ma-Zhang.

Let us come back to lemma 1: the first formula of the lemma now follows. For the second formula, we write

F (L) ∂x, ∂y = -iω 1 ( ∂ x , ∂ y ) = -iω 1 (∂ x -ξ a 0 , ∂ y -ξ a 1 ) = i(∂ x a 1 -∂ y a 0 + {a 0 , a 1 }).
On the other hand from (5) one has

-[Φ n , θ(Φ n )] ∂x,∂y = -n 2 [T Φ,n , T Φ,n ] = -inT {Φ,Φ},n + • • • and {Φ, Φ} = {a 2 + ia 3 , a 2 -ia 3 } 1 4 dz ∧ dz = -{a 2 , a 3 }dx ∧ dy.
The second formula in the lemma follows.

F

We have seen that, as a consequence of the existence of the asymptotic Lie algebra morphism su(∞) → su(n + 1), a point (∇, Φ) in the SL(∞, R)-Hitchin component gives rise to an asymptotic solution (∇ n , Φ n ) of the SL(n + 1, R) selfduality equations.

We would like to refine this to an exact solution of the selfduality equations. Here we need another ingredient from quantization which shows that su(n+1) actually approximates su(∞). The Berezin symbol σ n : isu(n + 1) → su(∞) is the adjoint of the map (8) T •,n : su(∞) → su(n + 1).

It can be defined for x ∈ S 2 by

σ n (A)(x) = Tr(π in(x) • A),
where i n is the natural embedding i n : CP 1 → CP n and π in(x) is the orthogonal projection on the line i n (x) ⊂ C n+1 . The important fact is that σ n gives an asymptotic inverse of the Toeplitz map (8): for any

f ∈ C ∞ (S 2 ), (9) σ n (T f,n ) ∼ f + k≥1 1 n k S k (f ),
where the S k are differential operators (in particular S 1 = ∆). Now let us emphasize the dependence of (∇ = d+a 0 dx+a 1 dy, Φ = 

From lemma 1 and the expansion (9), it follows that there is an asymptotic development of P (n, a) = (P 1 (n, a), P c (n, a)) given by P

1 (n, a) ∼ i ∂ x a 1 -∂ y a 0 + {a 0 , a 1 } + {a 2 , a 3 } dx ∧ dy + • • • P c (n, a) ∼ ∂ z (a 2 + ia 3 ) + 1 2 {a 0 + ia 1 , a 2 + ia 3 } dz + • • • (11)
For convenience, we have written in a local trivialization, but the leading terms in the two equations can be more intrinsically interpreted as ω 1 (a) 2 -1 2 ω c (a) ∧ ωc (a) and ω 1 (a) ∧ ω c (a) respectively, which together form the hyperKähler equations. Theorem 3. Given a (0) any solution to the SL(∞, R) selfduality equations, there is a formal solution a = k≥0 a (k) n k to the equations (10).

Let us sketch the proof of the theorem: consider the variable = 1 n , we can then consider P as a function of and a, with = 0 corresponding to n → ∞. Then:

• if a is a solution of the SL(∞, R)-selfduality equations, then P (0, a) = 0; • the differential ∂P ∂a (0, a) is the linearisation of the hyperKähler equations, which is surjective by [START_REF] Biquard | Métriques hyperkählériennes pliées[END_REF].

The existence of formal developments of P ( , a) in powers of then ensures that one can apply formally the implicit function theorem to the equation P ( , a) = 0 to find solutions for nonzero .

We do not give more details on the proof of theorem 3, since the technical details require the machinery developed in [START_REF] Biquard | Métriques hyperkählériennes pliées[END_REF] to analyse the folded hyperKähler cotangent domains.

Conjectural considerations. The next step is to pass from a formal solution to a genuine solution of the equations. One way to do that is to truncate the formal solution at some order, and then deform to a true solution-the model of such a method being Donaldson's quantization for the problem of constant scalar curvature Kähler metrics [START_REF] Donaldson | Scalar curvature and projective embeddings[END_REF]. We will deal with this problem in another article.

There are some conjectural considerations that one may deduce from such an approximation map. Let us call H n the SL(n, R) Hitchin component, and H ∞ that for SL(∞, R). We know that H n is parametrized by B n = ⊕ n i=2 H 0 (Σ, K i ), and the 'Hitchin map' H n → B n is given by (E, Φ) → (p i (Φ) = Tr(Φ i )) i=2,...,n .

On the other hand, the Hitchin map for H ∞ is given by (∇, Φ) -→ q i (Φ) = M/Σ Φ i ω 1 i≥2 .

Hitchin [START_REF] Hitchin | Higgs bundles and diffeomorphism groups[END_REF] showed that this defines an element of B ∞ = ⊕ i≥2 H 0 (Σ, K i ).

Here we do not give any precise topology on the sum. It is almost obvious from the definitions that one has, for any function f on S 2 ,

1 n + 1 Tr(T f,n ) = S 2 f ω S 2 .
There is also a full asymptotic expansion

T f,n • T g,n ∼ T f g,n + • • • It follows that 1 n + 1 Tr ( Φ n n ) i = 1 n + 1 Tr T i Φ,n ∼ 1 n + 1 Tr T Φ i ,n -→ M/Σ Φ i ω 1 ,
that is, (12) 1 n i+1 p i (Φ n ) -→ q i (Φ). Now suppose that we were able to define a genuine approximation map a n : H ∞ → H n . Then it should follow that, with the normalization (12), we also have a convergence of the Hitchin maps:

H ∞ an -→ H n ↓ ↓ B ∞ ⊃ B n
Because the Hitchin maps on H n are injective, it should follow that the Hitchin map on H ∞ is also injective, that is, an element in H ∞ is determined by its polynomials q i . Another way to state the same thing is to say that a cotangent domain of Σ carrying a folded hyper-Kähler metric is determined by its q i 's. This would be the first step in proving that H ∞ is parametrized by B ∞ (with the sum equipped with a suitable topology). R

1 2 (a 2 +

 12 ia 3 )dz) to a by writing (∇ n (a), Φ n (a)), and note (∇ n (a), Φ n (a)) the resulting quantized SL(n + 1, R)-Higgs bundle.The Berezin symbol is injective (equivalently, the Toeplitz map is surjective). Therefore the selfduality equations for (∇ n (a), Φ n (a)) can be written P 1 (n, a) := 1 n σ n F (∇ n (a)) -[Φ n (a), θ(Φ n (a))] = 0, P c (n, a) := 1 n σ n ∇ n (a) 0,1 Φ n (a) = 0.