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A dual skew symmetry for transient reflected Brownian motion in an orthant

Sandro Franceschi and Kilian Raschel

Abstract. We introduce a transient reflected Brownian motion in a multidimensional orthant,
which is either absorbed at the apex of the cone or escapes to infinity. We address the question
of computing the absorption probability, as a function of the starting point of the process.
We provide a necessary and sufficient condition for the absorption probability to admit an
exponential product form, namely, that the determinant of the reflection matrix is zero. We
call this condition a dual skew symmetry. It recalls the famous skew symmetry introduced
by Harrison [23], which characterizes the exponential stationary distributions in the recurrent
case. The duality comes from that the partial differential equation satisfied by the absorption
probability is dual to the one associated with the stationary distribution in the recurrent case.

1. Introduction and main results

Reflected Brownian motion in orthants. Reflected Brownian motion (RBM) in orthants
Rd+ is a fundamental stochastic process. Starting from the eighties, it has been studied in depth,
with focuses on its definition and semimartingale properties [42, 44, 46], its recurrence or tran-
sience [43, 30, 10, 6, 7], the possible particular (e.g., product) form of its stationary distribution
[27, 14], the asymptotics of its stationary distribution [24, 12], its Lyapunov functions [16, 38], its
links with other stochastic processes [33, 15, 34], its use to approximate large queuing networks
[23, 19, 4], numerical methods to compute the stationary distribution [11], links with complex
analysis [19, 4, 22, 8], PDEs [25], etc. The RBM is characterized by a covariance matrix Σ,
a drift vector µ and a reflection matrix R. We will provide in Section 2 a precise definition.
While Σ and µ correspond to the Brownian behavior of the process in the interior of the cone,
the matrix R describes how the process is reflected on the boundary faces of the orthant. In
the semimartingale case, RBM admits a simple description using local times on orthant faces,
see (9).

Dimensions 1 and 2. The techniques to study RBM in an orthant very heavily depend on
the dimension. In dimension 1, RBM with zero drift in the positive half-line R+ is equal, in
distribution, to the absolute value of a standard Brownian motion, via the classical Tanaka
formula; if the drift is non-zero, the RBM in R+ is connected to the so-called bang-bang process
[39]. Most of the computations can be performed explicitly, using closed-form expressions for
the transition kernel.

The case of dimension 2 is historically the one which attracted the most of attention, and is
now well understood. Thanks to a simple linear transform, RBM in a quadrant with covariance
matrix is equivalent to RBM in a wedge with covariance identity, see [22, Appendix]. The very
first question is to characterize the parameters of the RBM (opening of the cone β and reflection
angles δ, ε, see Figure 1) leading to a semimartingale RBM, as then tools from stochastic calculus
become available. The condition takes the form α < 1, see [43], with

α =
δ + ε− π

β
. (1)
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Figure 1. Wedge and angles of reflection.

As a second step, conditions for transience and recurrence were derived, see [30, 43]. Complex
analysis techniques prove to be quite efficient in dimension 2, see [4, 8]. In particular, this method
leads to explicit expressions for the Laplace transforms of quantities of interest (stationary
distribution in the recurrent case [22, 8], Green functions in the transient case [21], escape and
absorption probabilities [18, 20]).

Higher dimension. As opposed to the previous cases, the case of d > 2 is much most myste-
rious. However, necessary and sufficient conditions for the process to be a semimartingale are
known, and read as follows: denote the reflection matrix by

R =


1 r12 . . . r1d

r21 1 . . . r2d
...

...
. . .

...
rd1 rd2 . . . 1

 . (2)

The column vector

Rj =

r1j
...
rdj

 (3)

represents the reflection vector on the orthant face xi = 0. Then the RBM is a semimartingale
if and only if the matrix R is completely-S, in the following sense, see [37, 41].

By definition, a principal sub-matrix of R is any matrix of the form (rij)(i,j)∈I2 , where I is a

non-empty subset of {1, . . . , d}, possibly equal to {1, . . . , d}. If x is a vector in Rd, we will write
x > 0 (resp. x > 0) to mean that all its coordinates are positive (resp. non-negative). We define
x < 0 and x 6 0 in the same way. The definition extends to matrices.

Definition (S-matrix). A square matrix R is an S-matrix if there exists x > 0 such that
Rx > 0. Moreover, R is completely-S if all its principal sub-matrices are S-matrices.

Apart from the semimartingale property, very few is known about multidimensional RBM.
In particular, necessary and sufficient conditions for transience or recurrence are not yet fully
known in the general case, even though, under some additional hypothesis on R, some conditions
are known [28, 10], or in dimension 3 [17, 6]. For example, if R is assumed to be a non-singular
M-matrix (which means that R is an S-matrix whose off-diagonal entries are all non-positive),
then R−1µ < 0 is a necessary and sufficient condition for positive recurrence. Moreover, contrary
to the two-dimensional case, no explicit expressions are available for quantities of interest such
as the stationary distribution, in general.

The historical skew symmetry condition. The only notable and exceptional case, in which
everything is known and behaves smoothly, is the so-called skew symmetric case, as discovered
by Harrison [23] in dimension 2, and Harrison and Williams [27] in arbitrary dimension. They
prove that the RBM stationary distribution has a remarkable product form

π(x1, . . . , xd) = c1 · · · cd exp(−c1x1 − · · · − cdxd) (4)
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Figure 2. On the left, the standard skew symmetry condition in a wedge, corre-
sponding to the condition α = 0; on the right, the dual skew symmetry condition
α = 1.

if and only if the following relation between the covariance and reflection matrices holds:

2Σ = R · diag Σ + diag Σ ·R>. (5)

In the latter case, the stationary distribution admits the exponential product form given by (4),
with parameters equal to

(c1, . . . , cd)
> = −2 · (diag Σ)−1 ·R−1 · µ,

with µ denoting the drift vector. In dimension 2, if we translate this model from the quadrant
to a wedge, condition (5) is equivalent to α = 0, see [22, Sec. 5.2] and our Figure 2. Models
having this skew symmetry are very popular, as they offer the possibility of computing the
stationary distribution in closed-form. No generalization of the skew symmetry is known, except
in dimension 2, where according to [14], the stationary distribution is a sum of n > 1 exponential
terms as in (4) (with suitable normalization) if and only if α = −n, where the parameter α is as
in (1). The recent article [8] goes much further, generalizing again this result and finding new
conditions on α to have simplified expressions of the density distribution.

The concept of skew symmetry has been explored in other cases than orthants, see for example
[45, 36].

Our approach and contributions. In this paper, we will not work under the completely-S
hypothesis. More precisely, we will assume that:

Assumption 1. The reflection matrix R is not S.

Assumption 2. All principal, strict sub-matrices of R are completely-S.

Before going further, observe that the appearance of S-matrices is very natural in the present
context. Indeed, for instance, R is an S-matrix if and only if there exists a convex combination
of reflection vectors which belongs to the interior of the orthant. Such a condition would allow
us to define the process as a semimartingale after the time of hitting the origin. Similarly, the
fact that a given principal sub-matrix of R is S translates into the property that it is possible
to define the process as a semimartingale after its visits on the corresponding face.

Therefore, as we shall prove, the probabilistic counterpart of Assumptions 1 and 2 is that we
can define the process (Zt)t>0 as a semimartingale before time

T := inf{t > 0 : Zt = 0} 6∞, (6)

but not for t > T . For this reason, we will call T in (6) the absorption time: if the process hits
the apex of the cone, then T < ∞ and we will say that the process is absorbed at the origin.
Indeed, because of Assumption 1, there is no convex combination of reflection vectors belonging
to the orthant, and consequently, we cannot define the process as a semimartingale after time
T . However, our process is a semimartingale in the random time interval [0, T ]; this will be
proved in Proposition 2.

We will also assume that:

Assumption 3. The drift of the RBM is positive, that is, all coordinates of µ are positive.
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Figure 3. Two examples of paths of the process (Zt)t>0, with starting point x
marked in red. On the left, we have T <∞, meaning that the process is absorbed
in finite time at the apex of the cone. On the right, the process seems to escape
to infinity, meaning that T =∞.

Under Assumptions 1, 2 and 3, our process exhibits the following dichotomy: either it hits
the origin of the cone in finite time, i.e., T < ∞, or it goes to infinity (in the direction of the
drift) before hitting the apex, i.e., T =∞ and |Zt| → ∞ as t→∞. See Figure 3. We will prove
this dichotomy in Proposition 5.

This leads us to ask the following questions: what is the absorption probability

f(x) = Px[T <∞]? (7)

Equivalently, what is the escape probability

Px[T =∞] = 1− Px[T <∞] = P[|Zt| → ∞]?

These questions are not only of theoretical nature: they also admit natural interpretations in
population biology problems, in terms of extinction times of multitype populations [32], or in
risk theory, in terms of ruin of companies that collaborate to cover their mutual deficits [1, 5, 31].

Because of its somehow dual nature, the problem of computing the absorption (or escape)
probability is a priori as difficult as the problem of computing the stationary distribution in
the semimartingale, recurrent case. Therefore, a natural question is to find an analogue of
the skew symmetry [23, 27] in this context, which we recalled here in (4) and (5). The main
result of the article is given in Theorem 1 below. It is stated under four assumptions; while
the first three have already been introduced, the final one, Assumption 4, is of more technical
nature and will be presented in Section 3. We conjecture that Assumption 4 is always true. For
x = (x1, . . . , xn) ∈ Rd+, f(x) = Px[T <∞] denotes the absorption probability (7).

Theorem 1 (Dual skew symmetry in an orthant). Under Assumptions 1, 2, 3 and 4, the
following statements are equivalent:

(i) The absorption probability has a product form, i.e., there exist functions f1, . . . , fd such
that

f(x) = f1(x1)f2(x2) · · · fd(xd).
(ii) The absorption probability is exponential, i.e., there exists a ∈ Rd \ {0} such that

f(x) = exp(a · x).

(iii) The reflection vectors R1, . . . , Rd defined in (2) and (3) are coplanar, that is,

detR = 0.

When these properties are satisfied, the vector a = (a1, . . . , an) in (ii) has negative coordinates
and is the unique non-zero vector such that

aR = 0 and aΣ · a+ aµ = 0. (8)
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Figure 4. Condition detR = 0 in a 3-dimensional orthant: the reflection vectors
R1, R2 and R3 are coplanar.

Figure 5. In red color: the ellipsoid with equation xΣ · x + µx = 0; in blue:
kerR> (of dimension one by Lemma 8); in green: the exponential decay rate a.

We refer to Figures 2 and 4 for a geometric illustration of the condition detR = 0 appearing
in (iii). See Figure 5 for a geometric illustration of the exponential decay rate a in (8). When
the parameters satisfy the assumptions (and conclusions) of Theorem 1, we will say that the
model satisfies the dual skew symmetry condition. This terminology will be explained in more
detail in Remark 2. In the case of dimension 2, Theorem 1 is proved in [18]. Assumption 4 will
be discussed in Remark 1. Note that the proof of (iii)⇒(ii)⇒(i) does not use Assumption 4.

Structure of the paper.

• Section 2: We define properly the process and show some of its pathwise properties.
In particular, Proposition 5 shows the dichotomy behavior (absorption vs. escape at
infinity).
• Section 3: We state and prove a PDE for the density of the absorption probability

(Proposition 6). This PDE is dual to the one satisfied by the stationary distribution in
the recurrent case.
• Section 4: We provide a proof of our main Theorem 1.
• Section 5: We propose a generalization of Theorem 1 with absorption on facets, not

necessarily the origin.

2. Definition and first properties of the absorbed reflected Brownian motion

Existence and definition. Let (Wt)t>0 be a d-dimensional Brownian motion of covariance
matrix Σ. Let µ ∈ Rd be a drift, and let R be a d-dimensional square matrix (2) with coefficients
1 on the diagonal.
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Proposition 2 (Existence of an absorbed SRBM). Under Assumption 2, there exists an ab-
sorbed SRBM in the orthant, i.e., a semimartingale defined up to the absorption time T 6 ∞
as in (6) and such that for all t 6 T ,

Zt = x+Wt + µt+RLt, (9)

where Lt is a vector whose ith coordinate Lit is a continuous, non-decreasing process starting
from 0, which increases only when the ith coordinate of the process Zit = 0, and which is called
the local time on the corresponding orthant face.

Under the additional hypothesis that R is completely-S, Proposition 2 is most classical: in
this case, the RBM is well defined as the semimartingale (9), actually for any t ∈ [0,∞). Our
contribution here is to prove that if R is not an S-matrix (our Assumption 1) and is therefore
not completely-S, then it is still possible to define the RBM as a semimartingale on the time
interval [0, T ].

Proof. Although Proposition 2 is not formally proved in Taylor’s PhD thesis [40], all necessary
tools may be found there. More precisely, Taylor proves that when R is completely-S (i.e.,
our Assumption 2 plus the fact that R is S), then the RBM is an orthant Rd+ exists as a
semimartingale globally on [0,∞). The proof in [40] is then split into two parts:

• First, [40, Chap. 4] shows that the SRBM exists on [0, T ], with T defined in (6). The
fact that R is an S-matrix is nowhere used in the proof: the only needed hypotheses are
that all principal, strict sub-matrices are completely-S (our Assumption 2).
• As a second step, in [40, Chap. 5] (see in particular her Lemma 5.3), Taylor proves that

if R is an S-matrix, then it is possible for the process started at the origin to escape the
origin and to be well defined as a semimartingale.

Using only the first part of her arguments readily entails our Proposition 2. �

Absorption and escape in asymptotic regimes. We first prove two results which are
intuitively clear, namely, that the absorption probability tends to one (resp. zero) when the
starting point approaches the origin (resp. infinity), see Proposition 3 (resp. Proposition 4).
Then, we will prove in Proposition 5 the dichotomy already mentioned: either the process is
absorbed in finite time, or it escapes to infinity as time goes to infinity. By convention, we will
write x→ 0 (resp. x→∞) to mean that |x| → 0 (resp. |x| → ∞) in the cone.

Proposition 3 (Absorption starting near the origin). One has

lim
x→0

Px[T <∞] = 1.

Proposition 4 (Absorption starting near infinity). One has

lim
x→∞

Px[T <∞] = 0.

Proposition 5 (Complementarity of escape and absorption). When T =∞, then almost surely
limt→∞ |Zt| =∞, i.e.,

Px
[

lim
t→∞
|Zt| =∞

∣∣∣T =∞
]

= 1.

This implies that Px[T =∞] = Px[|Zt∧T | → ∞].

Proof of Proposition 3. Let us define τx = inf{t > 0 : x+Wt + µt < 0} (by convention inf ∅ =
∞), and consider the set

{τx <∞} = {∃t > 0 such that x+Wt + µt < 0}.
The proof consists in two steps. We first prove that {τx <∞} ⊂ {T <∞} and then show that
limx→0 P[τx <∞] = 1.

Step 1. Assume that τx <∞ and fix a t <∞ such that x+Wt + µt < 0. We are going to show
that T 6 t. We proceed by contradiction and assume that t < T . Then from (9) we get
that

RLt = Zt − x−Wt − µt > 0.
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The last inequality comes from the fact that Zt > 0 and that x + Wt + µt < 0. Re-
membering that Lt > 0, the fact that RLt > 0 implies that R is an S-matrix, which
contradicts Assumption 1. We conclude that T 6 t < ∞. We have thus shown that
{τx <∞} ⊂ {T <∞}.

Step 2. By Blumenthal’s zero–one law, we have

P[τ0 = 0] = 1,

since

{τ0 = 0} =
⋂
t>0

{
inf
s6t

(Ws + µs) < 0

}
∈ F0+ =

⋂
t>0

Ft,

where Ft = σ{Ws, s 6 t}. This implies that P[τ0 < ∞] = 1. We deduce that almost
surely, there exists t0 such that Wt0 +µt0 < 0, and then for all x < −Wt0 −µt0 we have
τx <∞. Then 1{τx<∞} −→x→0

1 a.s., and by dominated convergence we have

P[τx <∞] = E[1{τx<∞}] −→x→0
1.

Thanks to Step 1 and Step 2, we conclude that Px[T <∞] > P[τx <∞] and therefore lim
x→0

Px[T <

∞] = 1, using the above estimate. �

Proof of Proposition 4. Introduce the event

Bx = {∀t ∈ R, x+Wt + µt > 0}.
For any element belonging to Bx, then Zt = x+Wt+µt for all t ∈ R (the process never touches
the boundary of the orthant, meaning no reflection on the boundary). We deduce that Zt > 0
for all t ∈ R and then that Bx ⊂ {T =∞}. Therefore,

P[Bx] 6 Px[T =∞].

To conclude, we are going to show that limx→∞ P[Bx] = 1. It comes from the fact that a.s.
inft>0{Wt + µt} > −∞, since µ > 0 by Assumption 3. For all x > − inft>0{Wt + µt}, we have
x + Wt + µt > 0 for all t. We deduce that 1{∀t∈R,x+Wt+µt>0} −→

x→∞
1 a.s., and by dominated

convergence, we have

P[Bx] = E[1{∀t∈R,x+Wt+µt>0}] −→
x→∞

1. �

Before proving Proposition 5, we first recall some useful definitions and properties related to
recurrence and transience of Markov processes. All of them are most classical, but having them
here stated clearly will facilitate our argument. These results and their proofs may be found
in [3].

Consider a continuous, strong Feller Markov process Xt on a locally compact state space E
with countable basis. For V ⊂ E, let us define τV = inf{t > 0 : Xt ∈ V }.

• The point x ∈ E is said to be recurrent if for all neigbourhoods V of x,

P[lim sup1V (Xt) = 1] = 1.

• If a point is not recurrent, it is said to be transient. In this case, by [3, Thm. III 1],
there exists a neigbourhood V of x such that P[lim sup1V (Xt) = 1] = 0.
• The point x is said to lead to y if for all neighbourhoods V of y, we have Px[τV <∞] > 0.

The points x and y are said to communicate if x leads to y and y leads to x. This defines
an equivalence relation.
• If two states communicate, they are both transient or both recurrent [3, Prop. IV 2].
• If all points are transient, then Xt tends to ∞ as t→∞ almost surely [3, Prop. III 1].

Proof of Proposition 5. Define the process (Z̃t)t>0 as the process (Zt)t>0 conditioned never to

hit 0 in a finite time. The transition semigroup of this new Markov process Z̃t is defined, for
x ∈ Rd+ \ {0} and V ⊂ Rd+ \ {0}, by

Px[Z̃t ∈ V ] = Px[Zt ∈ V |T =∞].
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All points of Rd+ \{0} communicate, they thus constitute a unique equivalence class. We deduce
that they all are transient or all recurrent. It is thus enough to show that one of them is transient,
to show that they all are.

Let us take a point in the interior of Rd+ \ {0}, for example x = (1, . . . , 1). Since µ > 0, by
standard properties of Brownian motion we have

P[∀t ∈ R, x+Wt + µt > 0] > 0.

In dimension one, this property directly derives from [9, Eq. 1.2.4(1)] (on p. 252); it easily
generalizes to all dimensions. When this event of positive probability occurs, the process never

touches the boundary and thus Z̃t = x + Wt + µt → ∞ and lim sup1V (Z̃t) = 0, for any V
relatively compact neighbourhood of x. We have shown that there exists a neighbourhood V

of x such that Px[lim sup1V (Z̃t) = 1] < 1, which implies that x is not recurrent and is then
transient.

Using [3, Prop. III 1] allows us to conclude, since as recalled above, if all points are transient,
then the process tends to infinity almost surely. �

3. Partial differential equation for the absorption probability

In a classical way, the generator of the Brownian motion in the interior of the orthant is
defined by

Gf(x) = lim
t→0

Ex[f(Zt)]− f(x)

t
=

1

2
(∇ · Σ∇f)(x) + (µ · ∇f)(x),

where we assume that f is bounded in the first equality and that f is twice differentiable in the
second equality. In the rest of the paper, the following assumption is made.

Assumption 4. For all continuous, bounded functions g, the transition semigroup

x 7→ Ptg(x) := Ex[g(Zt∧T )]

is differentiable, and satisfies the Neumann boundary condition Ri · Ptg(x) = 0 on the ith face
of the orthant xi = 0.

Remark 1 (Plausibility of Assumption 4). Many evidences suggest that this hypothesis is true:

• By [2, Cor. 3.3], Assumption 4 is true provided we replace T by the first hitting time of
the intersection of two faces, or assuming that the process does not hit the intersection
of two faces.
• As a consequence of the above, Assumption 4 is true in dimension two.
• By [13], Assumption 4 holds true in the particular case of orthogonal reflections.
• Assumption 4 is stated as a conjecture in [25, (8.2b)]; however, the latter article does

not attempt to prove rigorously these regularity questions.
• The paper [35] shows in full generality the pathwise differentiability with respect to the

starting point x. We believe that a way to attack the proof of Assumption 4 could be to
combine the results of [35] with the computations made in the proof of [2, Cor. 3.3].

Proposition 6 (Partial differential equation). Under Assumptions 1, 2, 3 and 4, the absorption
probability (7) is the unique function f which is

• bounded and continuous in the interior of the orthant Rd+ and on its boundary,
• continuously differentiable in the interior of the orthant and on its boundary (except

perhaps at the corner),

and which further satisfies the PDE:

• Gf = 0 on the orthant (harmonicity),
• Ri · ∇f = 0 on the ith face of the orthant xi = 0 (Neumann boundary condition),
• f(0) = 1 and limx→∞ f(x) = 0 (limit values).
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Proof. The proof is similar to [18, Prop. 11]. We start with the sufficient condition. Dynkin’s
formula leads to

Ex[f(Zt∧T )] = f(x) + Ex
∫ t∧T

0
Gf(Zs)ds+

d∑
i=1

Ex
∫ t∧T

0
(R∇f)idL

i
s.

There is a technical subtlety in applying Dynkin’s formula, as the latter requires functions
having a C2-regularity, which is a priori not satisfied at the origin in our setting. However, we
may first apply this formula for Tn = inf{t > 0 : |Zt| < 1

n} < T , then f has the desired regularity

on Rd+ \ {x : |x| < 1
n}. One may conclude as Tn converges increasingly to T as n→∞.

Since f is assumed to satisfy the PDE stated in Proposition 6, the latter sum of three terms
is simply equal to f(x). We further compute

f(x) = Ex[f(Zt∧T )] = Ex[f(Zt∧T )1T6t]+Ex[f(Zt∧T )1T>t] = f(ZT )Px[T 6 t]+Ex[f(Zt∧T )1T>t].

As t→∞, the above quantity converges to

f(0)Px[T <∞] + Ex
[

lim
t→∞

f(Zt)1T=∞

]
= Px[T <∞],

where the last equality comes from the limit values limx→∞ f(x) = 0, f(0) = 1 and from
Proposition 5, which together imply that when T =∞ we have limt→∞ Zt =∞. We immediately
deduce that f(x) = Px[T <∞].

We now move to the necessary condition. We denote the absorption probability (7) by f and
show that it satisfies the PDE of Proposition 6. Consider the event {T <∞} ∈ F∞ and define

Mt = E[1{T<∞}|Ft∧T ],

which is a Ft-martingale. Observe that M0 = f(x) and, by the Markov property, Mt = f(Zt∧T ).
We deduce that Ex[f(Zt∧T )] = E[Mt|F0] = M0 = f(x). By definition of G, we obtain that for x
in the interior of the orthant,

Gf(x) = lim
t→0

Ex[f(Zt)]− f(x)

t
= 0.

The Neumann boundary condition and the differentiability follow from the fact that f(x) =
Ex[f(Zt∧T )] and from Assumption 4. The limit values follow from our Propositions 3 and 4. �

Remark 2 (Duality between absorption probability and stationary distribution). Let us define
the dual generator G∗f(x) = 1

2(∇ · Σ∇f)(x) − (µ · ∇f)(x) as well as the matrix R∗ = 2Σ −
R diag(Σ), whose columns are denoted by R∗i . In the recurrent case, the stationary distribution
satisfies the following PDE, see [25, Eq. (8.5)]:

• G∗f = 0 in the orthant,
• R∗i · ∇f − 2µif = 0 on the ith face of the orthant defined by xi = 0.

As a consequence, the absorption probability satisfies a PDE (Proposition 6), which is dual to
the one which holds for the stationary distribution.

4. Dual skew symmetry: proof of the main result

This section is devoted to the proof of Theorem 1, which establishes the dual skew symmetry
condition. We first prove two technical lemmas on the reflection matrix R in (2).

Lemma 7. If R satisfies Assumptions 1 and 2, then for all i, there exists j 6= i such that
rij 6= 0.

Proof. It is enough to prove Lemma 7 for i = 1, as we would show the other cases similarly.

Consider R̃ the principal submatrix of R obtained by removing the first line and the first column.

This matrix is completely S by Assumption 2, so that there exists X̃ = (x2, . . . , xd)
> > 0 such

that R̃X̃ > 0. Consider now C̃1 = (r21, . . . , rd1)>, which is the first column of R without its
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first coordinate. Let us choose λ > 0 large enough such that C̃1 + λR̃X̃ > 0. If for all j 6= 1 we
have r1j = 0, then for X = (1, λx2, . . . , λxd)

> we would have

RX =

(
1 0 · · · 0
C̃1 R̃

)
1
x2
...
xd

 =

(
1

C̃1 + λR̃X̃

)
> 0

and then R would be an S-matrix, contradicting our Assumption 1. �

Lemma 8. If R satisfies Assumptions 1 and 2, and if in addition detR = 0, then R has rank
d− 1, and there exist a positive column vector U > 0 in kerR and a positive row vector a > 0
such that aR = 0.

Proof. The rank of the matrix R is obviously 6 d− 1, since detR = 0. We now show that the
rank is > d− 1.

Let R̃j be the submatrix of R obtained by removing the jth line and the jth column. These
matrices are S-matrices by Assumption 2, and we can choose

X̃j =



x̃1j
...

x̃(j−1)j

x̃(j+1)j
...
x̃dj


> 0 such that R̃jX̃j = Ỹj =



ỹ1j
...

ỹ(j−1)j

ỹ(j+1)j
...
ỹdj


> 0.

We now define the vertical vectors Xε
j = (x̃ij)i=1,...,d, setting x̃jj = ε for some ε > 0. We have

RXε
j = Y ε

j = (yεij)i=1,...,d,

where yεij = εrij + ỹij > 0 for i 6= j and ε > 0 small enough, and yεjj = ε+ L̃jX̃j , where we set

L̃j = (r1j , . . . , r(j−1)j , r(j+1)j , . . . , rdj)

the jth line of R, with the jth coordinate rjj = 1 excluded. Since R is not an S-matrix by our

Assumption 1, we must have yεjj = ε+ L̃jX̃j 6 0. We deduce that y0
jj = L̃jX̃j 6 −ε < 0.

Then, introducing the vectors

Xj =
1

−y0
jj

X0
j > 0 and Yj = (yij)i=1,...,d = RXj ,

we have

Yj = RXj =



y1j
...

y(j−1)j

−1
y(j+1)j

...
ydj


, where yij =

ỹij
−y0

jj

> 0 for i 6= j.

Denoting the matrix P = (X1, . . . , Xd) > 0, we have

−RP =


1 −y12 . . . −y1d

−y21 1 . . . −y2d
...

...
. . .

...
−yd1 −yd2 . . . 1

 = 2Id− T, where T =


1 y12 . . . y1d

y21 1 . . . y2d
...

...
. . .

...
yd1 yd2 . . . 1

 > 0.
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All coefficients of T are positive. Consequently, using Perron-Frobenius theorem, T has a unique
maximal eigenvalue r, its associated eigenspace is one-dimensional and there exists a posi-
tive eigenvector V associated to r. Let us remark that since detR = 0, then det(2Id − T ) =
det(−RP ) = 0 and 2 is an eigenvalue of T . Then r > 2, and there are two cases to treat.

• Assume first that the maximal eigenvalue is r > 2. Let V > 0 be a positive associated
eigenvector such that TV = rV . We deduce that −RPV = 2V − TV = (2 − r)V and
then R(PV ) = (r − 2)V > 0, where PV > 0 since P > 0 and V > 0. Then we have
shown that R is an S-matrix, which contradicts Assumption 1. So we must be in the
situation where r = 2.
• If r = 2 is the maximal eigenvalue of T , and V > 0 the positive eigenvector such that
TV = 2V , then we have RU = 0 for U = PV > 0. Furthermore dim ker(2Id − T ) = 1
and then d− 1 = rank(2Id− T ) = rankRP 6 rankR and then R has rank d− 1.

Left eigenspaces of T are (right) eigenspaces of T>. If we take a such that aR = 0, then a
belongs to the left eigenspace associated to the eigenvalue 2 of T . By Perron-Frobenius theorem,
we deduce that we can choose a > 0. �

We now prove a result showing that the hitting probability of the origin is never 0, for all
starting points.

Lemma 9. For all x ∈ Rd+, f(x) > 0.

Proof. By Proposition 3, there exists a point y0 in the interior of the orthant such that f(y0) > 0.
By continuity of f (Proposition 6), we can find an open neighbourhood U of y0 such that
f(y) > 0 for all y ∈ U . Then we conclude that

f(x) = Ex[f(Zt∧T )] =

∫
Rd
+

f(y)Px(Xt∧T = dy) >
∫
U
f(y)Px(Xt∧T = dy) > 0.

(The first equality in the previous equation has already been proved in the proof of Proposi-
tion 6). �

Let us now prove the main result.

Proof of Theorem 1. (i)⇒ (ii): We assume that f(x) = f1(x1) · · · fd(xd) and we denote ∂ ln fi =
f ′i/fi (note that due to Proposition 6, the functions f and fi are differentiable and by Lemma 9,
fi(xi) 6= 0 for all i and all xi). On the boundary xi = 0, the Neumann boundary condition of
Proposition 6 implies that

0 =
Ri · ∇f

f
= Ri ·

∂ ln f1(x1)
...

∂ ln fd(xd)

 for xi = 0.

In particular, for all j 6= i, taking xi′ = 0 for all i′ 6= j, we obtain

Ri ·


∂ ln f1(0)

...
∂ ln fj(xj)

...
∂ ln fd(0)

 = 0.

We deduce that for all i and j such that i 6= j, the function rij∂ ln fj(xj) is a constant, which
we can compute as −

∑
j′ 6=j rij′∂ ln fj′(0). By Lemma 7, for all j there exists i 6= j such that

rij 6= 0. This implies that ∂ ln fj(xj) is constant and then that fj is exponential: there exists aj
such that fj(xj) = eajxj . The limit value limx→∞ f(x) = 0 implies that a 6= 0.

(ii) ⇒ (i): This implication is trivial by taking fi(xi) = eaixi .
(ii)⇒ (iii): If f(x) = eax satisfies the PDE of Proposition 6, then Ri ·∇f(x) = aRie

ax = 0 on
the boundary face xi = 0. We obtain that aRi = 0 for all i and then that aR = 0. We deduce
that detR = 0 since a 6= 0.
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(iii)⇒ (ii): If detR = 0, then by Lemma 8 one has dim kerR = 1, and we can choose a′ ∈ Rd

such that a′ > 0 and a′R = 0. Then a = − a′µ
a′Σ·a′ a

′ < 0 is the unique vector which satisfies
a ·R = 0 and aΣ ·a+aµ = 0. Then it is easy to verify that eax satisfies the PDE of Proposition 6,
while the boundary condition at infinity comes from the fact that a < 0. �

5. A generalization of Theorem 1: absorption on a facet

Theorem 1 can be generalized to the case where the RBM is absorbed at a facet of the
orthant, with equation

xi1 = · · · = xik = 0,

for some fixed k ∈ {1, . . . , n}. The situation where k = n is the case of an absorption at the
apex of the cone, which is treated in detail in the present article. For the sake of brevity and
to avoid too much technicality, we will not prove this generalization in this article, even though
all intermediate steps in the proof may be extended.

In the general case of a facet, let us state three assumptions which generalize Assumptions 1, 2

and 3. Let us define R̃ (resp. Σ̃) the principal sub-matrix of R (resp. Σ), where we keep only
the i1th up to ikth lines and columns.

• The new Assumption 1 is that the reflection matrix R̃ is not S.
• The new second assumption is that all principal sub-matrices of R which do not contain

R̃ are completely-S.
• The third assumption about the positivity of the drift µ > 0 remains unchanged (even

though we could probably weaken this hypothesis).

Under these assumptions, we may define the reflected Brownian motion (Zt)t>0 until time

T̃ = inf{t > 0 : Zi1t = · · · = Zikt = 0},

where Zi stands for the ith coordinate of Z. Let us denote the absorption probability

f̃(x) = Px[T̃ <∞].

Then Theorem 1 may be extended as follows. The following assertions are equivalent:

(i’) f has a product form.
(ii’) f is exponential, i.e., f(x) = exp(ai1xi1 + · · ·+ aikxik) with aij 6= 0.

(iii’) det R̃ = 0.

In this case, the vector ã = (ai1 , . . . , aik) is negative and is the unique non-zero vector such that

ãR̃ = 0 and ãΣ̃ · ã+ ãµ̃ = 0, where we defined the vertical vector µ̃ = (µij )j=1,...,k.
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brownien réfléchi dans l’orthant positif de Rn. Stochastics Stochastics Rep. 68 229–253

[18] P. A. Ernst, S. Franceschi and D. Huang (2021). Escape and absorption probabilities for obliquely
reflected Brownian motion in a quadrant. Stochastic Processes Appl. 142 634–670

[19] M. E. Foddy (1984). Analysis of Brownian motion with drift, confined to a quadrant by oblique
reflection (diffusions, Riemann-Hilbert problem). ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–
Stanford University

[20] V. Fomichov, S. Franceschi and J. Ivanovs (2022). Probability of total domination for transient
reflecting processes in a quadrant. Adv. Appl. Probab. 54 1–45

[21] S. Franceschi (2021). Green’s functions with oblique Neumann boundary conditions in the quadrant.
J. Theor. Probab. 34 1775–1810

[22] S. Franceschi and K. Raschel (2019). Integral expression for the stationary distribution of reflected
Brownian motion in a wedge. Bernoulli 25 3673–3713

[23] J. M. Harrison (1978). The diffusion approximation for tandem queues in heavy traffic. Adv. Appl.
Probab. 10 886–905

[24] J. M. Harrison and J. Hasenbein (2009). Reflected Brownian motion in the quadrant: tail behavior
of the stationary distribution. Queueing Syst. 61 113–138

[25] J. M. Harrison and M. I. Reiman (1981). On the distribution of multidimensional reflected Brownian
motion. SIAM J. Appl. Math. 41 345–361

[26] J. M. Harrison and M. I. Reiman (1981). Reflected Brownian motion on an orthant. Ann. Probab.
9 302–308

[27] J. M. Harrison and R. J. Williams (1987). Multidimensional reflected Brownian motions having
exponential stationary distributions. Ann. Probab. 15 115–137

[28] J. M. Harrison and R. J. Williams (1987). Brownian models of open queueing networks with homo-
geneous customer populations. Stochastics 22 77–115

[29] J. M. Harrison (2022). Reflected Brownian motion in the quarter plane: an equivalence based on
time reversal. Stochastic Processes Appl. 150 1189–1203

[30] D. G. Hobson and L. C. G. Rogers (1993). Recurrence and transience of reflecting Brownian motion
in the quadrant. Math. Proc. Camb. Philos. Soc. 113 387–399

[31] J. Ivanovs and O. Boxma (2015). A bivariate risk model with mutual deficit coverage. Insurance
Math. Econom. 64 126–134

[32] P. Lafitte-Godillon, K. Raschel and V. C. Tran (2013). Extinction probabilities for a distylous plant
population modeled by an inhomogeneous random walk on the positive quadrant. SIAM J. Appl.
Math. 73 700–722
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