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S U M M A R Y
Ocean-bottom seismic acquisition systems deployed on the seabed give access to three-
component geophone data and hydrophone data. Compared with conventional streamer ac-
quisitions, the separation of sources and receivers makes it possible to increase the maxi-
mum offset and azimuth coverage for improving the illumination at depth. Furthermore, the
three-component geophones naturally capture elastic wave propagation effects. While this
information is mostly overlooked up to now, reconstructing jointly P- and S-wave velocities
would significantly improve the subsurface characterization. To achieve a 3-D high-resolution
multiparameter reconstruction, we design an efficient 3-D fluid–solid coupled full waveform
modelling and inversion engine. In this engine, fluid and solid domains are divided explicitly
and handled with the acoustic and elastic wave equations, respectively. The numerical im-
plementation is based on a time-domain spectral-element method (SEM) with a flexible 3-D
Cartesian-based hexahedral mesh, which contributes to an accurate coupling of the acoustic
and elastic wave equations and high computational efficiency through domain-decomposition
based parallelization. We select the best acoustic–elastic coupled formulations among 4 pos-
sibilities with criteria based on numerical accuracy and implementation efficiency. Moreover,
we propose a specific hybrid approach for the misfit gradient building so as to use a similar
modelling solver for both forward and adjoint simulations. Synthetic case studies on a 3-D
extended Marmousi-II model and a 3-D deep-water crustal-scale model illustrate how our
modelling and inversion engine can efficiently extract information from ocean-bottom seis-
mic data to simultaneously reconstruct both P- and S-wave velocities within a full waveform
inversion framework.

Key words: Inverse theory; Numerical modelling; Waveform inversion; Computational seis-
mology.

1 I N T RO D U C T I O N

In offshore surveys, ocean-bottom seismic acquisition (either OBC—ocean-bottom cables or OBN—ocean-bottom nodes) is emerging as
a mainstream exploration technique. It has been widely used not only in the oil and gas industry for imaging quality enhancement under
complex overburdens (such as salt bodies), but also in the field of regional scale seismology for deep target reconstruction owing to its
turning waves recording (Operto et al. 2006; Górszczyk et al. 2017). Generally speaking, ocean-bottom acquisition mainly has the following
two advantages when compared with conventional streamer acquisitions: (1) separating sources from receivers to achieve a wide-azimuth
coverage and long source–receiver distance for improving the illumination at depth, (2) providing more subsurface information through a
richer amount of data with hydrophones in the water and three-component (3C) geophones on the seabed which can directly record elastic
effects for S-wave velocity reconstruction (Maver 2011; Walker 2020).

Full waveform inversion (FWI) is a powerful technique to extract high-resolution quantitative physical parameters of the subsurface by
fitting the full information of seismic data (Lailly 1983; Tarantola 1984; Virieux & Operto 2009; Virieux et al. 2017). In marine environments,
most FWI studies are developed in the acoustic approximation (with or without anisotropy and attenuation) only using the pressure data
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recorded in the water (Sirgue et al. 2010; Morgan et al. 2013; Prieux et al. 2013a; Operto et al. 2015; Amestoy et al. 2016; Wang et al. 2019;
Kamath et al. 2021). This simplified physics implies that the solid Earth is viewed as a fluid, ignoring its elastic properties. Although elastic
effects in many hydrophone dataset are weak, due to sources and receivers typically in the water, limited time window recording essentially P-
wave phases and soft seabed generating weak P-to-S conversion, they can still be observed on the P-wave amplitudes [amplitude versus offset
(AVO) effect], and therefore have a direct impact on acoustic FWI (Barnes & Charara 2009). To mitigate elastic effects, several methods have
been developed, such as the use of Wiener filters and estimated Vp/Vs models to convert elastic data into pseudo-acoustic data in acoustic FWI
(Agudo et al. 2018, 2020), or more recently the use of neural networks to obtain an acoustic version of the elastic data in the data processing
(Yao et al. 2020). Those methods aim at improving the stability of P-wave velocity reconstruction in the (visco-)acoustic approximation,
disregarding the S-wave velocity reconstruction, which significantly reduces the computational cost of FWI. However, reconstructing jointly
P- and S-wave velocity models could significantly improve the subsurface characterization, especially for the indication of fluid content (Sears
et al. 2008, 2010; Prieux et al. 2013b). To better simulate the wave propagation physics and make good use of the recorded elastic information
from 3C geophones in the ocean-bottom acquisition, the FWI based on an elastic approximation for the subsurface may be worth the extra
computational cost.

An accurate and efficient forward modelling is vital for the success of FWI. To simulate elastic effects in marine environments, modelling
of seismic wave propagation would require to be implemented in fluid–solid coupled media. Typically, there are two approaches to model the
seismic wave propagation in such settings: monolithic and partitioned approaches (Hou et al. 2012; De Basabe & Sen 2015). The monolithic
approach uses the same governing equation in both fluid and solid domains, and the fluid–solid interface is tackled implicitly. Usually, this
approach requires much more sampling nodes to reduce dispersion and discretization errors near the interface (De Basabe & Sen 2015).
Moreover, the first-order elastic wave-equation based monolithic approach incurs additional computing and storing of the vector wavefields
in the fluid domain (Sethi et al. 2021), and the second-order elastic wave-equation based monolithic approach yields strong artefacts in the
fluid region when using a conventional spectral-element (SEM) method for the discretization (Komatitsch et al. 2000). Those shortcomings
lead us to consider the partitioned approach for the simulations in fluid–solid coupled media. The medium is divided into solid and fluid
domains, in which the acoustic wave equation is used to describe the wave propagation in the fluid domain, while the elastic wave equation
models elastic vibrations in the solid domain. Explicit fluid–solid boundary conditions express the mutual interaction between these two
domains. Consequently, the forward problem in the fluid–solid coupled medium is described by an acoustic–elastic coupled wave-equation
system, and the corresponding methodology of FWI gradient building can be developed through the adjoint-state method (Plessix 2006). The
elastic wave equation is based on the second-order partial differential equation of displacement vector for memory savings. Regarding the
acoustic wave equation, it can be formulated in terms of different variables, such as pressure, velocity potential, displacement potential and
displacement (Everstine 1997). Consequently, the acoustic–elastic coupled wave-equation system can be formulated in diverse ways (Feng
2000; Komatitsch et al. 2000; Chaljub & Valette 2004; Ross et al. 2009; Mönkölä 2011), allowing various possibilities for our FWI design.

In this study, we aim at developing a flexible and efficient 3D fluid–solid coupled FWI engine to achieve a high-resolution multiparameter
reconstruction of the subsurface. We use a time-domain spectral-element method (SEM) with a 3-D Cartesian-based hexahedral mesh for
implementing both forward and adjoint problems. The choice of SEM is motivated by its high accuracy in dealing with the boundary
conditions through interface integral, conforming an irregular interface through flexible mesh deformations, and its high computational
efficiency through domain-decomposition based parallelization (Komatitsch 1997; Peter et al. 2011; Trinh et al. 2019). In the following
sections, we first review the procedure of formulating the fluid–solid coupled problem into an acoustic–elastic coupled wave-equation system
(Cao et al. 2020a, b), which is followed by the definition of the associated FWI problem and the derivation of the FWI misfit function gradient
expression for different parameters based on the adjoint-state method. A hybrid approach is proposed here for the gradient building, which
makes it possible to re-exploit the explicit forward modelling solver for the solution of the adjoint system. Next, we illustrate the recipe of
Cartesian-based SEM in the construction of an accurate and efficient acoustic–elastic coupled wave modelling solver which can be used in
both forward and adjoint simulations. Then, we move to numerical studies of the proposed method. For the purpose of validation, several
forward modelling benchmark tests are carried out, with the help of the semi-analytical solution package Gar6more2D (Diaz & Ezziani 2008)
in 2-D and the open-source spectral-element package SPECFEM3D (Peter et al. 2011) in 3-D. The gradient kernels in the FWI part show how
P- and S-wave velocity models can be inferred from data. From the aspect of application, two fluid–solid coupled FWI case studies on a 3-D
extended Marmousi-II model and a 3-D deep-water crustal-scale model are performed. They illustrate how we can benefit from ocean-bottom
seismic acquisition through the reconstruction of S-wave velocity models using 3C geophone data.

2 M E T H O D O L O G Y F O R F LU I D – S O L I D C O U P L E D F W I

In the fluid–solid coupled problem, there are various formulations existing for describing the interaction between acoustic and elastic waves.
Here we consider 4 commonly used formulations for the acoustic–elastic coupled wave-equation system. For each of them, the displacement
field is solved in the elastic wave equation, while the acoustic wave equation is formulated in terms of pressure, velocity potential, displacement
potential and displacement, respectively.
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2.1 Fluid–solid coupled forward problem

In the solid domain, the complete form of the elastic wave equation can be written as

ρs∂t t us = ∇ · σ + fs, σ = C : ε, ε = 1
2

[∇us + (∇us)T
]
, (1)

where us and fs are the displacement and force vectors, respectively, σ is the second-order stress tensor, ε is the second-order strain tensor,
ρs is the solid density and C is the fourth-order elastic stiffness tensor.

In the fluid domain, the wavefield is governed by the following conservation and dynamic equations with an irrotational and inviscid
assumption

ρ f ∂t t u f + ∇ P = f f , ∂t P + κ∇ · ∂t u f = 0, (2)

where uf and ff are the displacement and force vectors in the fluid domain, respectively, P is the pressure, ρ f is the fluid density, and κ is the
bulk modulus of the fluid. By substitution and elimination, eq. (2) can be rewritten in terms of fluid pressure (P), displacement potential (ϕ),
velocity potential (φ) or displacement (uf), respectively:

∂t t P + κ∇ ·
(

− 1

ρ f
∇ P

)
= Pf ,

∂t tϕ − κ∇ ·
(

1

ρ f
∇ϕ

)
=

�
−Pf dtdt,

∂t tφ − κ

ρ f
∇ · ∇φ =

∫
− 1

ρ f
Pf dt,

∂t t u f − 1

ρ f
∇ (

κ∇ · u f

) = 1

ρ f
f f . (3)

Here, Pf is the pressure source associated with the force vector ff through

Pf = −κ∇ ·
(

1

ρ f
f f

)
, (4)

and the velocity potential φ and displacement potential ϕ are defined by

∂t u f := ∇φ, u f := 1

ρ
∇ϕ. (5)

Their relationships with the pressure P follow:

P = −ρ∂tφ, P = −∂t tϕ. (6)

Accordingly, the boundary conditions at the fluid–solid interface (�fs) can be expressed in 4 different ways, leading to the following
formulations for representing the acoustic–elastic coupled wave-equation system:

(1)P − us formulation

1
κ
∂t t P − ∇ ·

(
1

ρ f
∇ P

)
= 1

κ
Pf , in � f ,

ρs∂t t us = ∇ · σ + fs, σ = C : ε, in �s,

∂t t us · n = − 1
ρ f

∇ P · n, σ s · n = −Pn, on � f s ; (7)

(2)ϕ − us formulation

1

κ
∂t tϕ − ∇ ·

(
1

ρ f
∇ϕ

)
= 1

κ

�
−Pf dtdt, in � f ,

ρs∂t t us = ∇ · σ + fs, σ = C : ε, in �s,

us · n = 1

ρ f
∇ϕ · n, σ s · n = ∂t tϕn, on � f s ; (8)

(3)φ − us formulation

1

κ
∂t tφ − 1

ρ f
∇ · ∇φ = 1

κ

∫
− 1

ρ f
Pf dt, in � f ,

ρs∂t t us = ∇ · σ + fs, σ = C : ε, in �s,

∂t us · n = ∇φ · n, σ s · n = ρ f ∂tφn, on � f s ; (9)
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(4)uf − us formulation

ρ f ∂t t u f = ∇ (
κ∇ · u f

) + f f , in � f ,

ρs∂t t us = ∇ · σ + fs, σ = C : ε, in �s,

us · n = u f · n, σ s · n = κ
(∇ · u f

)
n, on � f s, (10)

where the domains �f and �s denote the fluid and solid regions, respectively, and the boundary �fs, which can be any continuous curvilinear
shape, denotes the fluid–solid interface with a unit normal vector n. Note that the continuity of normal component of displacement (u
· n) in the fluid–solid boundary condition has been modified in P − us and φ − us formulations, where only the normal component of
acceleration ∂ ttu and velocity ∂ tu are enforced to be continuous, respectively. In addition, as shown above, only the uf − us formulation uses a
vector-valued equation in the fluid domain, which incurs additional costs of computing and storing compared with the other three approaches
using a scalar-valued equation. For the sake of computing efficiency, we thus focus on the P − us, ϕ − us and φ − us formulations, where a
scalar-valued equation is considered in the fluid domain.

2.2 Fluid–solid coupled inversion problem

FWI on ocean-bottom seismic data can be formulated as the following minimization problem:

min
m

J (m) , m = (
ρ f , κ; ρs, Ci jkl

)
, (11)

where the misfit function J(m) is defined by

J (m) = 1
2

∑
s,r

(
αs‖Ss,r WP (m) − dobs

P ‖2 + βs‖Ss,r Wu (m) − dobs
u ‖2

)
. (12)

Here the full wavefields of pressure WP and displacement Wu are extracted by the restriction operator Ss, r at the receiver position r for each
source s to fit the corresponding observed pressure data dobs

P and 3C displacement data dobs
u , respectively. Due to a large order of magnitude

difference between these two data, scaling factors αs and βs need to be introduced to render the two terms in the misfit function dimensionless
when inverting them simultaneously. They can be determined by the L2 norm of the observed data shot by shot, namely

αs = 1∑
r ‖dobs

P ‖2
, βs = 1∑

r ‖dobs
u ‖2

. (13)

The minimization of J(m) is performed through local optimization techniques, more precisely a quasi-Newton l-BFGS method, which
requires access to the gradient of J(m) at each iteration (Nocedal 1980). Following the conventional FWI scheme, this minimization problem
is subjected to the forward wave-equation constraint, namely the acoustic–elastic coupled wave-equation system formulated in terms of
eqs (7), (8) or (9). The resulting gradient can be obtained from the zero-lag cross-correlation of forward wavefields and adjoint wavefields,
through the adjoint-state method (Plessix 2006).

The adjoint wavefields in both fluid and solid domains come by solving the adjoint system of the acoustic–elastic coupled wave equations.
Thanks to the Lagrange multiplier technique, a Lagrangian L is constructed by including both the misfit function J(m) and the acoustic–elastic
coupled wave-equation constraint, whose stationary points with respect to wavefield variables can generate the resulting adjoint system. As
an example, a detailed mathematical derivation for the adjoint system of the P − us formulation is provided in the Appendix A, and adjoint
systems of the other two formulations (ϕ − us and φ − us formulations) can also be obtained in an analogous way. The expressions of those
adjoint systems are summarized as follows:

(1)The adjoint system of the P − us formulation

1

κ
∂t tμ

(P) − ∇ ·
(

1

ρ f
∇μ(P)

)
=

∑
s,r

αsST
s,r

(
Ss,r WP − dobs

P

)
, in � f ,

ρs∂t tλ = ∇ · T +
∑

s,r
βsST

s,r

(
Ss,r Wu − dobs

u

)
, T = C : ∇λ, in �s,

λ · n = 1

ρ f
∇μ(P) · n, T · n = ∂t tμ

(P)n, on � f s . (14)

(2)The adjoint system of the ϕ − us formulation

1

κ
∂t tμ

(ϕ) − ∇ ·
(

1

ρ f
∇μ(ϕ)

)
= −

∑
s,r

αsST
s,r∂t t

(
Ss,r WP − dobs

P

)
, in � f ,

ρs∂t tλ = ∇ · T +
∑

s,r
βsST

s,r

(
Ss,r Wu − dobs

u

)
, T = C : ∇λ, in �s,

∂t tλ · n = − 1

ρ f
∇μ(ϕ) · n, T · n = −μ(ϕ)n, on � f s . (15)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/671/6445028 by Ludovic M

etivier on 29 July 2022



3D fluid–solid coupled FWI 675

(3)The adjoint system of the φ − us formulation

1

κ
∂t tμ

(φ) − ∇ ·
(

1

ρ f
∇μ(φ)

)
= 1

ρ f

∑
s,r

αsST
s,r∂t

(
Ss,r WP − dobs

P

)
, in � f ,

ρs∂t tλ = ∇ · T +
∑

s,r
βsST

s,r

(
Ss,r Wu − dobs

u

)
, T = C : ∇λ, in �s,

∂tλ · n = ∇μ(φ) · n, T · n = ρ f ∂tμ
(φ)n, on � f s, (16)

where the adjoint wavefields μ(P), μ(ϕ) and μ(φ) are associated with pressure P, displacement potential ϕ and velocity potential φ in the fluid
domain, respectively. In the solid domain, the vectorial adjoint wavefield λ is associated with the displacement vector u. Their corresponding
gradient expressions of density ρ and bulk modulus κ in the fluid domain can be written as

∂ J (m)
∂ρ

=
(

∇μ(P), 1
ρ2

f
∇ P

)
� f ,t

and ∂ J (m)
∂κ

= (
μ(P), 1

κ2 ∂t t P
)
� f ,t

, (17)

∂ J (m)
∂ρ

=
(

∇μ(ϕ), 1
ρ2

f
∇ϕ

)
� f ,t

and ∂ J (m)
∂κ

= (
μ(ϕ), 1

κ2 ∂t tϕ
)
� f ,t

, (18)

∂ J (m)
∂ρ

= (∇μ(φ), ∇φ
)
� f ,t

and ∂ J (m)
∂κ

=
(

μ(φ),
ρ2

f

κ2 ∂t tφ

)
� f ,t

. (19)

For the solid domain, however, each fluid–solid coupled formulation shares the same gradient expressions due to a unique formulation used
for the elastic wave equation, where the gradient expressions of density ρ and elastic stiffness tensor C are given by

∂ J (m)
∂ρ

= − (λ, ∂t t u)�s ,t and ∂ J (m)
∂Ci jkl

= −
(
∇λ, ∂C

∂Ci jkl
:: ∇u

)
�s ,t

. (20)

Consequently, we get three ways to construct the gradient kernels in the fluid–solid coupled FWI in terms of P − us formulation, ϕ − us

formulation and φ − us formulation, respectively. Note that among three adjoint systems, only the φ − us formulation is self-adjoint, namely
the forward and associated adjoint systems share the same structure. Systems based on the other two formulations are not self-adjoint. The
self-adjoint property of the φ − us formulation makes it attractive to re-exploit the forward modelling solver for getting the solution of the
adjoint system. However, the time discretization in the next section will show that the φ − us formulation is implicit in time and usually
needs to involve a large matrix inverse during the solution, while the P − us and ϕ − us formulations are explicit in time and can be solved
by an efficient time-marching scheme. In addition, we find an interesting property that the adjoint system of the P − us formulation shares
the same structure as the forward system of the ϕ − us formulation, and reciprocally, the adjoint system of the ϕ − us formulation shares the
same structure as the forward system of the P − us formulation.

Inspired by this reciprocity, we consider to design a new approach for the gradient building in the fluid–solid coupled FWI, which not
only avoids the use of an implicit time scheme, but also keeps the feature of using the same modelling solver in the solution of both forward
and adjoint problems. To achieve this goal, there are two options based on the gradient expressions (17) and (18). The forward and adjoint
wavefields required in each expression can be computed with the same explicit modelling solver based on a hybrid combination of the P −
us and ϕ − us formulations. However, the adjoint wavefield μ(ϕ) in the gradient expression (18) relies on the solution of adjoint system (15),
whose adjoint source involves a double time-derivative of the data residual that could magnify the high-frequency data-misfit noise on the
receiver side (It will be demonstrated in the numerical validation section). Therefore, we choose an implementation based on the gradient
expression 17. To calculate this gradient expression, we first extract the pressure wavefield P from the ϕ − us based forward modelling, and
then get the adjoint wavefield μ(P) by solving the P − us adjoint system which has the same structure as the ϕ − us forward system as noted
before. Doing so, we can benefit from (1) exploiting the same modelling solver for both adjoint and forward modelling, (2) using explicit
time stepping algorithms and (3) avoiding involving double time-derivatives in the source term of the adjoint system. A detailed algorithm
workflow of this hybrid approach is summarized as follows:

Step 1: Solve the ϕ − us forward system (eq. 8) for the forward wavefields ϕ in the fluid domain and us in the solid domain.
Step 2: Extract the pressure wavefield P from the forward wavefield ϕ obtained in Step 1 by P = −∂ ttϕ (eq. 6).
Step 3: Based on the deduced pressure wavefield in Step 2, solve the adjoint P − us system (eq. 14) with the same explicit modelling

solver as in Step 1 for the adjoint wavefields μ(P) in the fluid domain and λ in the solid domain.
Step 4: Compute the zero-lag cross-correlation of the forward and the adjoint wavefields to get the elementary gradients with the help

of pressure forward and adjoint wavefields (eq. 17) and the help of displacement forward and adjoint wavefields (eq. 20). The gradient for
some other parameters, such as P-wave (Vp) and S-wave (Vs) velocities, can be calculated by the chain rule based on them.

3 S E M - B A S E D I M P L E M E N TAT I O N

Theoretically, the three acoustic–elastic coupled formulations mentioned above can all be used for modelling the wave propagation in the
fluid–solid coupled media. However, from the aspect of numerical implementation, each of them has its own pros and cons.
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Figure 1. Cartesian-based hexahedral mesh in the SEM discretization (a) and 8 partitions on parallel cores (b). Here the blue parts indicate the fluid domain.

3.1 Generalities

Up to now, a wide range of numerical discretization methods has been developed for solving the acoustic and elastic partial differential equations
(PDE). Among them, the finite-difference (FD) method is commonly used due to its numerical efficiency and relatively simple implementation
(Kelly et al. 1976; Virieux 1986). However, the standard FD method has some numerical difficulties in the correct implementation of the
boundary conditions at specific interfaces, such as the fluid–solid interface, and an extra effort and trade-off of accuracy and complexity are
always required (De Basabe & Sen 2015; Sun et al. 2017; Sethi et al. 2021). As an alternative, here we adopt the spectral-element method
(SEM) for the spatial discretization, which is a specific finite-element method based on the weak form of the PDE. This method has the
geometric flexibility of the finite-element method and the high accuracy of a spectral convergence. In SEM, the wavefield discretization
is accomplished by using high-order Lagrange interpolants on hexahedral elements, and the integration over elements are based on the
Gauss–Lobatto–Legendre (GLL) points so as to yield a diagonal mass matrix (Komatitsch 1997; Komatitsch & Vilotte 1998; Komatitsch &
Tromp 1999). Compared with standard finite-element methods, such a diagonal mass matrix avoids the mass matrix inversion in explicit-time
marching schemes, making it easily parallel and efficient in the large-scale problem computation. More importantly, the weak form in SEM
ensures that the fluid–solid boundary conditions can be easily and accurately implemented in both fluid and solid domains through a surface
integral over the interface. As an example, we give the weak form of the P − us formulation (eq. 7) as follows:∫

� f

1

κ
∂t t Pwd� +

∫
� f

1

ρ f
∇w · ∇ Pd� −

∫
� f s

w∂ttus · nd� =
∫

� f

1

κ
Pf wd�,∫

�s

ρs∂ttus · wd� +
∫

�s

∇w : σd� +
∫

� f s

w · Pnd� =
∫

�s

fs · wd�, (21)

where scalar w and vector w are the test functions in the fluid and solid domains, respectively, and the fluid–solid boundary conditions are
naturally embedded within the third term on the left hand side by means of surface integrals.

3.2 Cartesian-based hexahedral mesh

In the SEM implementation, we consider using a Cartesian-based hexahedral mesh, which allows for conforming complex surface geometry
through a high-order polynomial based vertical deformation of elements (Fig. 1a). Owing to its easy implementation and accurate surface
conforming, this kind of structured mesh has been widely used in simulations of wave problems, such as the hyperbolic PDEs simulation
engine ExaHyPE (Reinarz et al. 2020) which uses the discontinuous Galerkin (DG) method, the curvilinear and mimetic finite-difference
methods in handling surface topography (Hestholm & Ruud 1998, 2002; Tarrass et al. 2011; Zhang et al. 2012; de la Puente et al. 2014;
Konuk & Shragge 2019). Compared with general unstructured meshes as the one used in SPECFEM (Peter et al. 2011), this Cartesian-based
mesh requires the number of elements in x-, y- and z-directions to be constant in both fluid and solid domains (although the size of elements
can vary, see Fig. 1a), which makes it less practical in the application of local mesh refinement and tilting seabed scenarios where the size
of elements in the shallow-water area need to be compressed. However, from the aspect of parallel computing, this mesh is convenient for
partitioning in the domain decomposition as shown in Fig. 1(b). In this partition, we do not rely on an additional external partitioner,
such as SCOTCH (Pellegrini 2018) or METIS (Karypis 2013), and the spatial position of each element is directly associated with three
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3D fluid–solid coupled FWI 677

element-indices like the conventional finite-difference implementation. In particular, elements in fluid and solid domains can be localized
according to the element index in the vertical direction, without labelling the acoustic or elastic properties for each elements during the SEM
modelling.

3.3 Time discretization: explicit or implicit scheme

After the spatial discretization in terms of spectral elements, we can get the semi-discretized systems associated with the weak forms of three
acoustic–elastic coupled formulations. The matrix form of those semi-discretized systems are given by

P − us system(
M f A
0 Ms

)(
∂t t P
∂t t us

)
+

(
D f 0
0 Ds

)(
∂t P
∂t us

)
+

(
K f 0
AT Ks

)(
P
us

)
=

(
Pf

fs

)
, (22)

ϕ − us system(
M f 0
AT Ms

)(
∂t tϕ

∂t t us

)
+

(
D f 0
0 Ds

)(
∂tϕ

∂t us

)
+

(
K f A
0 Ks

)(
ϕ

us

)
=

(
ϕ f

fs

)
, (23)

φ − us system(
M f 0
0 Ms

)(
∂t tφ

∂t t us

)
+

(
D f A
AT Ds

)(
∂tφ

∂t us

)
+

(
K f 0
0 Ks

)(
φ

us

)
=

(
φ f

fs

)
, (24)

where A is the coupling matrix obtained by the integral along the fluid–solid interface, and the remaining matrices correspond to conventional
notations in SEM, namely, Mf and Ms are the mass matrices, Df and Ds are the matrices for implementing absorbing boundary condition and
Kd and Ks are the stiffness matrices.

For the time discretization, we use the finite difference to approximate time derivatives in the above semi-discretized systems. Let us
illustrate that the P − us and ϕ − us systems lead to an explicit time-marching scheme, while the φ − us system is implicit in time and needs
to solve equations governing the fluid and solid domain simultaneously. We consider using the standard second-order central finite difference
scheme to approximate the following time derivatives

∂t t P ≈ Pn+1 − 2Pn + Pn−1

�t2
, ∂t P ≈ Pn+1 − Pn−1

2�t
, (25)

where P can be replaced by other wavefields like ϕ, φ and us. The resulting discretized system of ϕ − us formulation is given by

M f
ϕn+1 − 2ϕn + ϕn−1

�t2
+ D f

ϕn+1 − ϕn−1

2�t
+ K f ϕ

n + Aun
s = ϕn

f , (26)

Ms
un+1

s − 2un
s + un−1

s

�t2
+ Ds

un+1
s − un−1

s

2�t
+ Ksun

s + AT ϕn+1 − 2ϕn + ϕn−1

�t2
= fn

s . (27)

It is easy to find that the time stepping is carried out explicitly. At each time step n, we first compute the displacement potential ϕn + 1 according
to eq. (26) and then the displacement vector un + 1 from eq. (27). This time-marching procedure is also suitable for the P − us discretized
system. By contrast, the time scheme for the φ − us system is implicit as shown below:

M f
φn+1−2φn+φn−1

�t2 + D f
φn+1−φn−1

2�t + K f φ
n + A un+1

s −un−1
s

2�t = φn
f , (28)

Ms
un+1

s −2un
s +un−1

s

�t2 + Ds
un+1

s −un−1
s

2�t + Ksun
s + AT ϕn+1−ϕn−1

2�t = fn
s , (29)

where φn + 1 and un + 1 need to be solved simultaneously, thus involving the inverse of the matrix(
M f

�t2 + D f

2�t
A

2�t
AT

2�t
Ms
�t2 + Ds

2�t

)
(30)

at each time step.
In our numerical implementation, the explicit finite-difference time-marching schemes for both P − us and ϕ − us discretized systems

are achieved on the basis of Newmark scheme, written in a prediction-correction format (Komatitsch 1997). The corresponding algorithm for
the ϕ − us system is summarized in Table 1 as an example. For the implicit scheme of the φ − us discretized system, we still want to consider
it in our following numerical comparison. Since a direct inverse of coefficient matrix is not affordable for large scale problem, we use an
iterative Newmark scheme (Antonietti et al. 2020) listed in Table 2 as an alternative, which is based on a staggered prediction-multicorrection
technique (Park & Felippa 1980) for the velocity correction.
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Table 1. Newmark scheme for the ϕ − us system.

Newmark scheme

1 Given initial conditions u0, ∂ tu0, ∂ ttu0, ϕ0, ∂ tϕ
0, ∂ ttϕ

0

2 ϕn+1 = ϕn + �t∂t ϕ
n + �t2

2 ∂t tϕ
n

3 un+1 = un + �t∂t un + �t2

2 ∂t t un

4 ϕ̃ = ∂t ϕ
n + �t

2 ∂t tϕ
n

5 ũ = ∂t un + �t
2 ∂t t un

6 ∂t tϕ
n+1 = M−1

(
Fn+1

ext − Fn+1
int

(
ϕn+1, ϕ̃, un+1

))
7 ∂t t un+1 = M−1

(
Fn+1

ext − Fn+1
int

(
un+1, ũ, ∂t tϕ

n+1
))

8 ∂tϕ
n+1 = ϕ̃ + �t

2 ∂t tϕ
n+1

9 ∂t un+1 = ũ + �t
2 ∂t t un+1

Table 2. Staggered prediction/multicorrection Newmark scheme for the φ −
us system.

Predictor-corrector staggered Newmark scheme

1 Given initial conditions u0, ∂ tu0, φ0, ∂ tφ
0

2 ∂t tφ
n = M−1

(
Fn

ext − Fn
int (φn, ∂tφ

n, ∂t un)
)

3 ∂t t un = M−1
(
Fn

ext − Fn
int (un, ∂t un, ∂t φ

n)
)

4 φn+1 = φn + �t∂tφ
n + �t2

2 ∂t tφ
n

5 un+1 = un + �t∂t un + �t2

2 ∂t t un

6 φ̃ = ∂t φ
n + �t

2 ∂t tφ
n, ∂t φ

n+1 = φ̃

7 ũ = ∂t un + �t
2 ∂t t un, ∂t un+1 = ũ

8 do i = 1, niter

9 ∂t tφ
n+1 = M−1

(
Fn+1

ext − Fn+1
int

(
φn+1, φ̃, ∂t un+1

))
10 ∂t t un+1 = M−1

(
Fn+1

ext − Fn+1
int

(
un+1, ũ, ∂t φ

n+1
))

11 ∂tφ
n+1 = φ̃ + �t

2 ∂t tφ
n+1

12 ∂t un+1 = ũ + �t
2 ∂t t un+1

13 end do

4 N U M E R I C A L VA L I DAT I O N

For the purpose of validation, we conduct various numerical tests from the forward modelling to the FWI gradient building. We compare
pros and cons of the three acoustic–elastic coupled formulations in terms of accuracy and computational efficiency. The feasibility of the
hybrid approach is illustrated in the gradient building. A load-balanced strategy is also introduced in the domain decomposition to enhance
the performance of parallel computing.

4.1 Validation studies in 2-D space

We conduct the first validation study in a 2-D space for evaluating the numerical performance in both forward modelling and gradient building,
which serves as the foundation for the design of an accurate and efficient 3-D fluid–solid coupled FWI engine.

4.1.1 Forward modelling

The SEM-based simulation accuracy of three coupled formulations (P − us, φ − us and ϕ − us formulations) is illustrated through the
comparison with semi-analytical solutions in a 2-D bi-layered benchmark model (Diaz & Ezziani 2008). This model has a size of 31.2 km
× 12 km and its physical parameters are listed in Table 3. The upper half-part is acoustic, while the lower half-part is elastic isotropic. An
explosive pressure-source with a 10 Hz Ricker wavelet characteristic is applied 0.5 km above their interface. Thus, the minimum wavelength
we consider in the modelling is λmin = 1500/20 = 75 m. In the SEM implementation, the 5th-order Lagrange polynomials are chosen as basis
functions. By following its dispersion criteria of h ≤ λmin/1.2 (Komatitsch 1997), the element size is set to be 60 m, and therefore the total
number of elements for the model discretization is 520 × 200 = 104 000. A time step of �t = 1 ms is used in the test, which well satisfies
the CFL condition �t ≤ 0.3 × 0.1175 × min(h/Vmax). To match the semi-analytical solution, unlike the real marine environment, there is
no free-surface boundary conditions at the top of the fluid layer, and all outgoing wavefields at the model boundaries are absorbed by a
combination of the radiative boundary condition (Lysmer & Kuhlemeyer 1969) and sponge layers (Cerjan et al. 1985). For the three coupled
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Table 3. Physical parameters of the bi-layered model used for the modelling solver test.

Media Property ρ (kg m–3)Vp (m s–1)Vs (m s–1)
Anisotropy/Attenuation Parameters

Fluid Acoustic 1000 1500 0

Solid

E-ISO

2500 3400 1963

N/A

E-VTI ε = 0.1, δ = 0.4, γ = 0.2

E-TTI
ε = 0.1, δ = 0.4, γ = 0.2

θ = 45◦, φ = 15◦

E-VISCO Qp = 40, Qs = 30

formulations, the exponential tapering factors in sponge layers are directly applied onto the wavefield variables P, φ or ϕ in the fluid domain
and us in the solid domain.

Fig. 2(a) shows an excellent agreement between all three numerical modelling results and the semi-analytical solution obtained from
Gar6more2D (Diaz & Ezziani 2008) in terms of pressure and two displacement components, which are recorded on the seabed with an offset
of 12.6 km. A further accuracy estimation, the continuity checking at the fluid–solid interface, is shown in Fig. 2(b), where we extract the
normal displacements uz at the interface from both fluid and solid sides and zoom-in the results from 7 to 10 s for clarifying the difference.
From Fig. 2(b), we find that only the result using the ϕ − us formulation produces the same vertical displacement component from both fluid
and solid sides. This is due to the fact that, instead of the normal displacement continuity, the other two formulations enforce the normal
component of acceleration and velocity to be continuous, respectively. Thus, from the aspect of accuracy, ϕ − us formulation is a better choice
for the fluid–solid coupled modelling.

However, when we look at the right-hand side (RHS) term of ϕ − us formulation in the fluid domain (eq. 8), a double time-integration
of the source wavelet is required. According to the spectrum analysis in Fig. 3(a), this double time-integration pushes the peak frequency of
ϕ − us formulation’s RHS term towards the low frequency direction, and a similar phenomenon can also be observed on the RHS term of
φ − us formulation, due to its single time-integration of the source wavelet (eq. 9). Fig. 3(b) displays that those low-frequency components
are harmful to the effectiveness of sponge layers in the absorption of fluid-related wavefield variables φ and ϕ (their energies in terms of L2

norm decay slowly). However, the physical variable of interest in the fluid domain is pressure. According to eq. (6), it can be obtained through
first- or second-order time-derivative of potential variables, and then we observe a similar absorption effectiveness for the pressure P even if
using the different formulations (Fig. 3c). Analogously, an absorption comparison of displacement vector in the solid domain is illustrated in
Fig. 3(d). In contrast to different wavefield variables in the fluid domain, the elastic wave equation in the solid is only formulated with the
displacement vector, and therefore an identical absorption effectiveness is achieved for all three coupled formulations.

In addition, the comparison in terms of elapsed time and memory consumption in Table 4 reveals a higher computational efficiency of P −
us and ϕ − us formulations, which benefits from their explicit time-marching schemes. By contrast, the staggered prediction-multicorrection
iterative scheme for the φ − us formulation is more expensive from a computational time point of view, which requires at least two iterations
at each time step. Consequently, by a comprehensive consideration of the above continuity checking, absorbing effectiveness evaluation and
computational cost, we conclude that the ϕ − us formulation achieves the best trade-off in terms of both efficiency and accuracy.

4.1.2 Gradient building

The conventional FWI gradient is a sum of gradient kernels associated with different source-receiver couples. Here we investigate the
gradient kernels of a specific source–receiver couple in different computing approaches on a simple bi-layered model. We add perturbations
of +500 m s–1 on the P-wave velocity, +200 m s–1 on the S-wave velocity and +50 kg m–3 on the density for the solid domain. The resulting
gradient kernels of P-wave velocity, S-wave velocity and density are illustrated in Fig. 4. We see that the model parameters can be inferred
from data through the contribution of different waves, such as the diving wave, reflected wave and P-to-S converted wave that supports the
S-wave velocity reconstruction. It can be seen that the gradient kernels obtained from the hybrid approach are nearly identical with the other
three gradient kernels following the P − us, ϕ − us and φ − us formulations rigorously, confirming the feasibility of the hybrid approach
in the gradient building. A detailed comparison shows some high-frequency noise on the receiver side in the gradient kernels obtained from
the ϕ − us formulation (the zones delineated by red squares in Fig. 4b). It is because a double time-derivative of the data residual is used as
the adjoint source in the adjoint system of ϕ − us formulation (eq. 15), which magnifies the numerical oscillation in the data residual during
the adjoint simulation. By contrast, the adjoint source used in the hybrid approach comes from the adjoint system of the P − us formulation
(eq. 14), which is the data residual itself. Therefore, we select this hybrid approach for the gradient building in the following 3-D fluid–solid
coupled FWI engine design.

4.2 3-D implementation and load balancing

We move to the design of 3-D SEM-based fluid–solid coupled FWI engine, in which a domain-decomposition parallelization strategy is used
for improving the computational efficiency in large-scale problems. This 3-D implementation is embedded into the SEM46 code (SEM for
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680 J. Cao et al.

Figure 2. Validation of the modelling results in 2-D isotropic bi-layered model. (a) Benchmark against the semi-analytical solution (Gar6more2D (Diaz &
Ezziani 2008)), (b) continuity checking at the fluid–solid interface. Receiver is located at the interface with an offset of 12.6 km. Here tP, tS/tLR, tf, tSch denote
the arrival time of P-wave, S-wave (solid)/leak Rayleigh wave (fluid), fluid acoustic wave and Scholte wave, respectively (Zhu et al. 2004).
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3D fluid–solid coupled FWI 681

Figure 3. Absorption evaluation of sponge layers in P − us, φ − us and ϕ − us formulations. (a) Spectrum illustration of three different right-hand side (RHS)
terms used in the acoustic wave equation, where a Ricker wavelet with 10 Hz peak frequency serves as the source-time function and its spectrum is plotted in
red as a reference for comparison, (b) absorbing effectiveness of fluid-related variables (P, φ and ϕ) in three formulations, (c) absorbing effectiveness of the
fluid pressure (P), (d) absorbing effectiveness of the solid displacement vector (us). We use the L2 norm of wavefield variables to measure the wave energy

decay with respect to time in both fluid and solid domains, namely ‖P‖2

‖P‖2
max

, ‖φ‖2

‖φ‖2
max

and ‖ϕ‖2

‖ϕ‖2
max

in (b), ‖P‖2 in (c) and ‖us‖2 in (d). NSP: number of sponge

elements.

Table 4. Comparison of the elapsed time and memory consump-
tion for P − us, φ − us and ϕ − us systems. Shared-memory
OpenMP is applied for parallelization with 32 threads.

Elapsed time (s) Memory (MB)

P − us system 650.75 445.64

φ − us system 929.27 445.70

ϕ − us system 628.10 445.64
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682 J. Cao et al.

Figure 4. Comparison of the acoustic–elastic coupled gradient kernels (Vp: P-wave velocity, Vs: S-wave velocity and density) computed using 4 different
approaches. (a) P − us formulation based approach, (b) ϕ − us formulation based approach, (c) φ − us formulation based approach, (d) hybrid approach: the
forward wavefield from ϕ − us formulation and the adjoint wavefield from the adjoint system of P − us formulation. The source (SRC) and receiver (REC)
denoted by green dots are both in the fluid domain. Two red squares in (b) delineate the high-frequency noise on the receiver side, which is caused by using an
adjoint source built by the double time-derivative of the data residual.
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Figure 5. 3-D modelling results in the bi-layered models with a sinusoidal fluid–solid interface. (a) Seismogram comparison with results from SPECFEM3D
(Peter et al. 2011) when the solid domain is a perfectly elastic isotropic medium, where the receiver is located at the fluid–solid interface with offsets of 2.8
and 0.1 km in the x- and y-directions. (b) Snapshot comparison of z-component displacements in the cases of isotropic, viscous-isotropic, VTI and TTI solid
domains, respectively.

Seismic Imaging at eXploration scale), which is a time-domain (visco-)elastic wave-equation modelling and full waveform inversion package
developed within the framework of SEISCOPE (Brossier & Trinh 2017; Trinh et al. 2019). To account for the real environment of marine
seismic exploration, the fluid free-surface boundary condition has been applied at the model top during the implementation. Based on the
physical parameters listed in Table 3, we first perform the modelling test in the 3-D bi-layered models. The same pressure source as in the 2-D
test is located in the middle of x–y plane at 1 km depth below the sea level, and the receiver line is located on the seabed along the x-direction
with a constant y-offset of 0.1 km. The corresponding fluid–solid coupled modelling results are shown in Fig. 5. As a validation, we choose a
single trace whose x-offset is 2.8 km, and compare its 4C ocean-bottom data with results produced by SPECFEM3D (Peter et al. 2011) in the
isotropic case. An excellent agreement can be observed in Fig. 5(a). Fig. 5(b) illustrates snapshots of the acoustic–elastic coupled modelling
in the cases of isotropic, viscous-isotropic, VTI and TTI solid domains, respectively, which reveals its applicability in dealing with different
kinds of media. Secondly, to demonstrate the feasibility of this hybrid approach in the 3-D gradient building, we calculate the acoustic–elastic
coupled gradient kernels in the 3-D bi-layered model which has the same model parameters and perturbations as illustrated in the 2-D test.
Because the free-surface boundary condition is applied in the 3-D gradient building, the resulting gradient kernels (Fig. 6) reveal a wider
azimuth illumination contributed by the free-surface related multiples.

For the high performance computing (HPC) aspect of the 3-D fluid–solid coupled FWI engine, a conventional domain-decomposition
strategy based on the same number of elements (same size of submesh) for each domain does not yield an appropriate load balancing. The
reason is that different wave equations are involved in each part of the mesh in the fluid–solid coupled problem, therefore, the computational
complexity for each element is not equivalent, depending on the domain it belongs to.

We compare the elapsed time of the fully acoustic modelling, the fully elastic modelling and new developed fluid–solid coupled modelling
without any load-balanced optimization (‘without LB’) in Fig. 7(a). A rough evaluation yields a factor around 3 between the computational
complexities of acoustic modelling and elastic modelling. Therefore, for the fluid–solid coupled problem, the fluid domain governed by
the acoustic wave equation has less computation to perform. Consequently, domains in the fluid part wait for domains in the solid part to
finish their computation, and the overall ‘time-to-solution’ is driven by the elements in the solid domain. This complexity ratio can be used
to optimize the domain-decomposition strategy by weighting each element in the decomposition, proportionally to the amount of expected
computation. This leads to an optimized domain decomposition with more acoustic elements in subdomains to achieve the load balancing
over domains, and consequently shorten the elapsed time significantly (see two lines labelled with ‘with LB’ in Fig. 7a). The scalability of
this load-balanced fluid–solid coupled engine is evaluated by calculating the relative parallel efficiency

ε = Pref

P

T ref
P

TP
, (31)

where P is the number of process, TP is the elapsed time using P processes, and Pref and T ref
P correspond to the number of process and elapsed

time at the reference point (here we choose Pref = 32 and 256 for two different clusters, namely DAHU and SWAN platforms). As shown in
Fig. 7(b), ε = 1 indicates a linear scaling, and we observe efficiencies over 0.95 and 0.72 on these two clusters, respectively. In addition, our
implementation considers an additional constraint for the domain partitioning in order to avoid the fluid–solid interface to match a domain
boundary. Thus, there is no need of the message passing interface (MPI) communication in the computation of coupling condition terms.
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Figure 6. 3-D acoustic–elastic coupled gradient kernels computed in a hybrid way: the incident wavefield from ϕ − us system and the adjoint wavefield from
the adjoint-state equation of P − us system. The parametrization is P-wave velocity (a), S-wave velocity (b) and density (c). The fluid and solid domains are
separated by the flat seabed (black line), and the vertical cross-section through source (white dot on the left-hand side) and receiver (white dot on the right-hand
side) is extracted.

5 F W I S Y N T H E T I C C A S E S T U D I E S

In this section, we apply our fluid–solid coupled FWI engine into two synthetic case studies to highlight its feasibility and capability in the
high-resolution multiparameter reconstruction. The first case study is an exploration-scale problem based on a 3-D extended Marmousi-II
model (Fig. 8a), and the second one is a large 3-D deep-water crustal-scale problem based on the model shown in Fig. 8(b) which was designed
to represent the offshore subduction environment of Nankai Trough in Japan (Górszczyk & Operto 2021).
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Figure 7. Efficiency tests on cubic models with 2563 and 5123 elements using two Intel-Xeon Skylake CPU architectures: DAHU platform from University
Grenoble Alpes and SWAN platform from CRAY Marketing Partner Network (https://partners.cray.com). (a) Elapsed time comparison of the fully acoustic,
fully elastic and fluid–solid coupled modelling (with and without load-balanced optimization), (b) estimation of relative parallel efficiency ε for the fluid–solid
coupled modelling with the load-balanced optimization from (a).

Figure 8. 3-D Marmousi-II velocity model (a) and the truncated GO 3D OBS crustal-scale velocity model (b) used in the fluid–solid coupled FWI tests. Note
that models vary in all three directions and have uneven seabeds. Vp: P-wave velocity, Vs: S-wave velocity.
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5.1 3-D Marmousi-II model

5.1.1 Case study design

The Marmousi model is a 2-D marine structural model widely used in the test of seismic imaging and velocity model building techniques.
Its elastic version has been developed by Martin et al. (2006) and named as Marmousi-II model. Our first FWI synthetic case study will be
performed on a 3-D extended version of the Marmousi-II model. It is obtained by an extension along the y-direction with an angle of 45◦, and
an uneven seabed is added to replace the original flat one (see Fig. 8a). For clarity, we extract the slices at the seabed, the depth of z = 0.62 km
and along the crossline direction with y = 0.42 km in Fig. 9. Unlike the original Marmousi-II model, the Poisson’s ratio of this new model
has been changed to be around 0.25 to avoid very low S-wave velocities in the sediments. The main geological characteristic of this model is
the distributed steep thrust faults in the centre of the model, and our targets are those small hydrocarbon reservoirs that are embedded in the
thrust fault system. For the quality control (QC) measurement, two wells across the faulted trap gas sands are considered (see two white lines
marked W1 and W2 in Fig. 9).

Three different datasets are considered for better understanding the behaviour of the fluid–solid coupled FWI engine:

(i)Pressure data from a standard streamer acquisition (Streamer).
(ii)Pressure data from an OBC acquisition (OBC-P).
(iii)3C displacement data from the same OBC acquisition (OBC-3C).

We show the precise geometry of the streamer and OBC acquisitions as follows:

(i) A towed streamer acquisition along 2 shot lines (38 shots in total, every 300 m in the inline and crossline directions), in which each shot
is recorded by 9 streamers with streamer separation of 50 m and maximum offset of 5.8 km in the acquisition direction as shown in Fig. 10(a)

(ii) An OBC acquisition with 18 shooting lines covering the whole x − y plane (separation is 50 m) and 2 ocean-bottom cables (38 4C
receivers in total, every 300 m in the inline and crossline directions) as shown in Fig. 10(b).

Those datasets are generated by the forward modelling part of the proposed engine, with a constant element-size mesh (but vertically
deformed to conform the seabed variation) and a 10 Hz Ricker wavelet as the source-time function.

The initial Vp and Vs are smoothed from the true models and illustrated in Fig. 11. A similar smoothed density model is used in both
observed data generation and inversion. The conventional frequency-filtered multiscale strategy (Bunks et al. 1995) is used in the inversion
to mitigate the cycle-skipping effect, and the maximum frequency we invert is 20 Hz. The Vp and Vs models are inverted simultaneously
for each dataset with the same inversion process, except that a source-receiver reciprocity is applied to the OBC dataset for decreasing the
computational cost. Reciprocity relation makes it possible to interchange the role of receivers and sources in the seismic modelling, so as to
benefit from the lower number of receivers. The detailed parameter settings and computational costs are listed in Table 5, and we can find that
for 3C data (OBC-3C), CPU cores are required three times as much as the inversion on single component data (Streamer and OBC-P). It is
because 3C geophones are viewed as 3C sources in the source–receiver reciprocity, leading to the number of source tripled in the FWI.

5.1.2 Data fit

Figs 12 and 13 show the final data fit of pressure and 3C displacement in three different datasets, in which the synthetic data of the reconstructed
model are plotted in blue and red with 40 per cent transparency, while the observed data are plotted in white and black. From it, we can find
an almost perfect fit between the synthetic data and the observed data in terms of phase and amplitude for all three datasets (no white, red
and blue colours can be observed at the final stage). To evaluate these data-fits quantitatively, we calculate the relative difference between the
synthetic data and the observed data over three datasets, namely 2.25 per cent for the streamer dataset, 2.70 per cent for the OBC-P dataset
and 2.86 per cent for the OBC-3C dataset, indicating that the proposed fluid–solid coupled FWI engine successfully retrieves over 97 per cent
wave information from three different types of data for the model reconstruction.

5.1.3 Streamer and OBC-P data inversion results

For the streamer and OBC-P datasets, the pressure data recorded by hydrophones in the water only contain P waves due to no S waves in the
water, and the S-wave information mainly appears in terms of AVO effects on the primary P-wave reflection phases (the converted P waves are
usually much weaker than it). According to the comparison of the pressure data at the initial and final stages for both datasets, we can easily
find the energy redistribution of P waves at the far offset from the initial stage to the final stage (indicated by the black arrows in Fig. 12).
It reveals the information of the S wave has been extracted indirectly through the amplitude variations of P waves according to the AVO
effect. Their corresponding reconstructed models of Vp and Vs are shown in Figs 14 and 15, respectively. As expected, due to a wide-azimuth
coverage and long offset, OBC acquisition seems to efficiently mitigate the footprints and artefacts observed in the reconstructed models
from the streamer acquisition, and recovers more structure details in both Vp and Vs models (see Figs 14b and 15b where only the pressure is
inverted).
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Figure 9. Velocity slices of 3-D Marmousi-II model. (a) Vp, (b) Vs. In each figure, the slices at seabed, z = 0.62 km (red line) and y = 0.42 km (black line) are
shown. W1 and W2 are the wells across two faulted gas traps (indicated by black arrows), respectively.
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Figure 10. Acquisition geometry in the X − Y plane for a single streamer vessel (a) and ocean-bottom cables (b). The red and black dots indicate the shot and
receiver locations, respectively.

5.1.4 OBC-3C data inversion result

Different from the hydrophone data, both P and S waves are recorded in the OBC-3C dataset, since 3C geophones are located on the solid
seabed. As shown in Fig. 13, the converted P-to-S energy can be clearly observed in the horizontal displacement components (indicated by the
black arrows in Figs 13a and b), in particular to the y-component displacement in which converted S waves are dominant. Thanks to this direct
recording of S wave information, the fluid–solid coupled FWI based on the 3C displacement dataset produces a superior S-wave velocity
reconstruction, in which all the structure details are almost totally recovered (Fig. 15c). However, for its reconstructed P-wave velocity, there
is no significant improvement as in the S-wave velocity reconstruction, when comparing with the P-wave velocity obtained from the OBC-P
dataset (see Figs 14b and c).

5.1.5 Quality control

The vertical profiles of Vp and Vs depicted in Fig. 16 are presented for a further comparison of the FWI results from three datasets in the
aspect of reservoir characterization. We can see the gas trap indicated by the black arrow at location W1 is clearly recovered from all three
datasets, and a higher resolution is obtained from the reconstructed S-wave velocity model due to a smaller wavelength of S-wave compared
with P-wave wavelength. For the vertical profile at location W2, it passes through two adjacent gas traps (two low velocity anomalies indicated
by black arrows). However, the reconstructed Vs model from the streamer acquisition identifies them into one gas trap. The reconstructed Vs

model from the OBC acquisition (either pressure or 3C displacement dataset) makes a proper distinction between them (see the low velocity
anomaly indicated by the blue arrow in Fig. 16b).
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Figure 11. Initial velocity models used in the FWI of 3-D Marmousi-II model. (a) Vp, (b) Vs. In each figure, the slices at seabed, z = 0.62 km and y = 0.42 km
are shown.
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Table 5. Summary of parameter settings and computational costs in the fluid–solid coupled FWI of 3-D Marmousi-II model and
GO 3D OBS model. The frequency bands for 3-D Marmousi-II model are : 0 − 5 Hz (Band 1), 0 − 10 Hz (Band 2), 0 − 20 Hz (Band
3); the frequency bands for GO 3D OBS model are : 0 − 0.5 Hz (Band 1), 0 − 1 Hz (Band 2) and 0 − 2 Hz (Band 3). Those tests are
run on Jean Zay (HPE SGI 8600 supercomputer from IDRIS, national computing centre for the CNRS) with Intel Cascade Lake CPU
architecture (2.5G Hz, 40 cores per node).

Model
Mesh (x × y ×

z)
Element
size (m)

NT Iterations Data type Cores
Run time (hr)

Band 1 Band 2 Band 3

3-D Marmousi-II 102 × 21 × 24 60 12 000 60 × 3
Streamer 1520 3.85 3.90 4.21

OBC-P 1520 3.81 4.12 4.17

OBC-3C 4560 3.64 4.02 4.25

GO 3D OBS 112 × 20 × 32 600 10 000 60 × 3
OBN-P 1600 2.18 2.43 2.44

OBN-3C 4800 1.90 2.42 2.55

Figure 12. Pressure data-fit comparison at the initial and final stages in the streamer acquisition (a and b) and the OBC acquisition (c and d), respectively. The
synthetic data (plotted in blue-red with 40 per cent transparency) are superimposed onto the observed data (plotted in white-black), and a perfect fit can be
observed at the final stage (no white, red and blue colours). The black arrows indicate the energy redistribution of P wave at the far offset from the initial stage
to the final stage. The white arrows highlight the event of Scholte wave propagating along the seabed.

5.2 GO 3D OBS crustal-scale model

5.2.1 Case study design

In the second FWI synthetic case study, we consider the application of fluid–solid coupled FWI engine on the reconstruction of GO 3D OBS
subduction zone model (Fig. 8b). Essentially, this is a seismology-scale problem with a sparse acquisition and low-frequency data in contrast
to the exploration-scale test mentioned above. The reconstruction of S-wave velocity or Vp/Vs ratio is very important in the subduction
environment, since it can give a lot of information about the presence of fluids which migrate along the plate interface, the branches of the
splay faults, or in the subduction channel. Such information contributes to the analysis of potential earthquakes. The extracted Vp and Vs

slices at the seabed, the depth of z = 12 km and along the crossline direction with y = 4.8 km are shown in Fig. 17. It can be seen that the
region of this model is quite large with x, y and z dimensions of 64.8 km × 9.6 km × 14.55 km, and therefore it has a wider range of Poisson’s
ratio from 0.21 to 0.38 in the subsurface. In addition, compared with the 3-D extended Marmousi-II model, its water depth has a significant
variation from 2.55 km to 8.35 km, which might produce strong and complex free-surface related multiples leading to difficulties in the FWI.
Our aim is to reconstruct the complex geometry of accretionary wedge illustrated in the x − z section in Fig. 17.

Here we use a ocean-bottom node (OBN) acquisition consisting of 20 4C receiver nodes distributed sparsely on the seabed with spacing
intervals of 8.5 km in the inline direction and 2.5 km in the crossline direction, and 16 shooting lines (1720 shots in total) covering the whole
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Figure 13. Comparison of 3C displacement data at the final stage in the OBC acquisition: (a) ux, (b) uy and (c) uz. The synthetic data (plotted in blue-red with
40 per cent transparency) are superimposed onto the observed data (plotted in white-black), and a perfect fit can be observed (no white, red and blue colours).
The black arrows indicate the converted P-to-S energy recorded from the horizontal components, which is dominant in the y component (b).

x − y plane with a separation of 0.6 km as presented in the seabed slice in Fig. 17. Again, we use the forward modelling part to generate the
observed 4C data (pressure + 3C displacement) with a constant element-size mesh (but vertically deformed to conform the seabed variation)
and a 1 Hz Ricker wavelet as the source-time function. The same workflow for the fluid–solid coupled FWI is run on the pressure dataset and
3C displacement dataset, respectively, from the low-frequency band (≤0.5 Hz) to the high-frequency band (≤2 Hz). The detailed parameter
settings and computational costs are listed in Table 5 as well.

5.2.2 Inversion results

Figs 18 and 19 compare the initial and reconstructed models of Vp and Vs, respectively. For this study, we also invert Vp and Vs simultaneously,
and use a smooth density model computed from the initial Vp with Gardner’s relation (Gardner et al. 1974) in both observed data generation and
inversion. Although the overall velocity structures of Vp and Vs have been significantly improved compared with the initial status, the updates
of Vp from both pressure and 3C displacement are only limited to the shallow region and missing small-scale structures. By contrast, the
reconstructed Vs models are updated in a deeper region and exhibit more structure details, especially for the Vs obtained from 3C displacement
dataset that recovers most of the features of the true Vs model (see the fine-scale sediments in the subducting channel indicated by black
arrows in Fig. 19c). A comparison of the data fit in Fig. 20 reveals that a perfect data matching is achieved at the near offset for both pressure
and 3C displacement datasets. However, we can observe a significant discrepancy at the far offset where P-waves are dominant (events with
red and blue colours delineated by white circles), which explains a poor recovery of Vp in the deep region. The reason that data fit at the near
and far offsets are inconsistent in the FWI is probably related to the unbalanced energy contribution of P- and S-waves in the L2-based misfit
function. We display the data residuals of pressure and 3C displacement computed on the initial models (see Fig. 21), and their low-pass
frequency-filtered results are used as the adjoint sources at the first FWI stage. Because the low-pass frequency filtering only changes the
signal frequency band not the original energy distribution of P- and S-waves, we can use these data residuals to reveal the energy contribution
of P- and S-waves in the misfit function. As shown in Fig. 21, for the FWI in both pressure and 3C displacement datasets, the near-offset
traces are dominant in the contribution of misfit function ensuring a good reconstruction of the shallow region, whereas the contribution of
far-offset traces (P-wave dominant) delineated by blue and red lines is nearly ignorable leading to the lack of enough information in the deep
region reconstruction of Vp. For the traces in the intermediate-offset region (converted P-to-S waves dominant) delineated by black and blue
lines, its contribution is strengthened in the 3C displacement dataset compared with the pressure dataset, which makes it possible to better
constrain the Vs reconstruction.
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692 J. Cao et al.

Figure 14. Inversion results of Vp by using the streamer acquisition (a), OBC acquisition with pressure data only (b) and OBC acquisition with 3C displacement
data (c). In each figure, the slices at seabed, z = 0.62 km and y = 0.42 km are shown.
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Figure 15. Inversion results of Vs by using the streamer acquisition (a), OBC acquisition with pressure data only (b) and OBC acquisition with 3C displacement
data (c). In each figure, the slices at seabed, z = 0.62 km and y = 0.42 km are shown.
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Figure 16. Vertical profiles for comparing the Vp (a) and Vs (b) inversion results at well locations W1 and W2. The low-velocity anomalies indicated by black
arrows are gas traps. The inset in (b) zooms in the red square region which delineates two adjacent gas traps.
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Figure 17. Velocity slices of GO 3D OBS model. (a) Vp, (b) Vs. In each figure, the slices at seabed, z = 12 km (red line) and y = 4.8 km (black line) are
shown. The distribution of ocean-bottom nodes (black dots) and shots (red dots) are depicted on the seabed slice.
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Figure 18. Vp slices of the initial model (a), reconstructed model using OBN acquisition with pressure data only (b), reconstructed model using OBN
acquisition with 3C displacement data (c). In each figure, the slices at seabed, z = 12 km and y = 4.8 km are shown.
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Figure 19. Vs slices of the initial model (a), reconstructed model using OBN acquisition with pressure data only (b), reconstructed model using OBN acquisition
with 3C displacement data (c). In each figure, the slices at seabed, z = 12 km and y = 4.8 km are shown.
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Figure 20. Data-fit comparison at the final stage: (a) the pressure dataset (OBN-P), (b)-(d) the 3C displacement data (OBN-3C) corresponding to ux, uy and
uz, respectively. The synthetic data (plotted in blue-red with 40 per cent transparency) are superimposed onto the observed data (plotted in white-black), and
they are normalized trace by trace. The regions delineated by white circles show the mismatch of the synthetic data and the observed data at the far offset (red
and blue colours can be observed), where the P-wave energy is dominant.

Figure 21. Comparison of the residuals (serving as the adjoint sources) of two datasets at the initial stage: (a) the pressure data (OBN-P), (b)–(d) the 3C
displacement data (OBN-3C) corresponding to ux, uy and uz, respectively. Here two regions corresponding to intermediate- and far-offsets are highlighted:
the intermediate-offset region between black and blue lines is dominated by converted P-to-S waves, and the far-offset region between blue and red lines is
dominated by the P waves.

6 C O N C LU S I O N S

Our study presents a new efficient fluid–solid coupled FWI parallel engine for modelling and inverting the multicomponent ocean-bottom
seismic data, where the acoustic–elastic coupled wave-equation system is introduced to simulate the elastic effects in synthetic data.
Consequently, the forward problem and the definition of the associated FWI problem are developed within the framework of the acoustic–
elastic coupled wave-equation system. According to different wavefield variables used in the fluid domain, we recast and investigate 4
acoustic–elastic coupled formulations: P − us formulation, ϕ − us formulation, φ − us formulation and uf − us formulation. From the
aspect of wave propagation modelling, both theoretical analysis and SEM-based 2-D numerical tests reveal that the ϕ − us formulation has a
better performance in terms of accuracy and computational efficiency than the other three formulations, due to its precise representation of
the fluid–solid boundary condition and explicit time-marching scheme. In the FWI part, we put forward a hybrid approach for the gradient
building. This approach involves the ϕ − us formulation for the incident wavefield simulation and the P − us formulation for the adjoint
wavefield simulation. It achieves the possibility of using the same explicit solver in the solution of both forward and adjoint problems. The
feasibility test of this hybrid approach in 2-D also shows its another advantage of eliminating the unwanted high-frequency noise on the
receiver side in the computation.

The 3-D implementation of this SEM-based fluid–solid coupled FWI engine is accomplished within the framework of the SEISCOPE
SEM46 code. For the parallel computing aspect, a load-balanced domain-decomposition strategy is proposed. Various simulations with
increasing complexity are presented, including the wave modelling in isotropic elastic, anisotropic elastic (VTI and TTI) and viscoelastic
media, for an accuracy, efficiency and applicability evaluation. The constructed gradient kernels from this engine reveal the model parameters

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/671/6445028 by Ludovic M

etivier on 29 July 2022



3D fluid–solid coupled FWI 699

can be inferred from data through the contribution of different waves, such as the diving wave, reflected wave and P-to-S converted wave
that supports the S-wave velocity reconstruction. In particular, by applying the free-surface boundary condition, the resulting gradient kernels
show a wider azimuth illumination contributed by the free-surface related multiples. Finally, we provide two FWI synthetic case studies on
exploration-scale and crustal-scale models to confirm the feasibility of the proposed SEM-based 3-D fluid–solid coupled FWI engine in
the high-resolution multiparameter reconstruction. Their results demonstrate a significant resolution improvement can be obtained from the
reconstruction of the S-wave velocity model, especially for the use of 3C geophone dataset in the ocean-bottom acquisition. In addition, in
the inversion with pressure data only, the proposed SEM-based 3-D fluid–solid coupled FWI engine also shows its ability of reconstructing
the S-wave velocity through AVO effects from the amplitude variation of P waves.

Future work will be devoted to (1) further applications of this 3-D SEM-based fluid–solid coupled FWI engine in several ocean-bottom
seismic case studies, including high-quality synthetic data and field data; (2) investigation on the inversion workflow of multicomponent data
(4C data), such as the hierarchical strategies over different data components and the alternative multicomponent misfit function, so as to
quantify both P- and S-wave velocities accurately; (3) extensions of the engine to reconstruct more parameters (such as density, anisotropy
and attenuation parameters) and efficiency improvement based on GPU accelerated architecture.

A C K N OW L E D G E M E N T S

The work leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under
the ENERXICO project, grant agreement No. 828947. This work was also partially funded by the SEISCOPE consortium (http://seiscope
2.osug.f r), sponsored by AKERBP, CGG, CHEVRON, EQUINOR, EXXON-MOBIL, JGI, SHELL, SINOPEC, SISPROBE and TOTAL.
This work was granted access to the HPC resources of the Dahu platform of the CIMENT infrastructure (https://ciment.ujf -grenoble.fr),
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A P P E N D I X : A D J O I N T S Y S T E M O F T H E P − US F O R M U L AT I O N

According to the Lagrange multiplier method, we define the associated Lagrangian as

L
(
P, us ; μ(P), μ0, μ1, β,λ, λ0, λ1,α

) = 1

2

∑
s,r

∫ T

0
αs

(
Ss,r WP (t) − dobs

P (t)
)2 + βs

(
Ss,r Wu (t) − dobs

u (t)
)2

dt

−
∫ T

0

∫
� f

μ(P) (x, t) ·
{

1

κ
∂t t P (x, t) − ∇ ·

(
1

ρ f
∇ P (x, t)

)
− 1

κ
Pf

}
dV dt

−
∫ T

0

∫
�s

λ (x, t) · {ρs∂t t us (x, t) − ∇ · σ (x, t) − fs} dV dt

−
∫

� f

μ0 (x, 0) · P (x, 0) dV −
∫

� f

μ1 (x, 0) · ∂t P (x, 0) dV

−
∫

�s

λ0 (x, 0) · us (x, 0) dV −
∫

�s

λ1 (x, 0) · ∂tus (x, 0) dV

−
∫ T

0

∫
� f s

β (x, t) ·
{
∂t t us (x, t) · n + 1

ρ f
∇ P (x, t) · n

}
dSdt

−
∫ T

0

∫
� f s

α (x, t) · {σ s (x, t) · n + P (x, t) n} dSdt, (A1)

where μ0, μ1, λ0 and λ1 are adjoint-state variables associated with the initial conditions, and α and β are adjoint-state variables associated
with the fluid–solid boundary conditions.

A1 Acoustic adjoint-state equation

The derivative of eq. (A1) with respect to the wavefield variable P is

∂L

∂ P
=

∑
s,r

αsST
s,r

(
Ss,r WP (t) − dobs

P (t)
)

− ∂

∂ P

[∫ T

0

∫
� f

μ(P) (x, t) ·
[

1

κ
∂t t P (x, t) − ∇ ·

(
1

ρ f
∇ P (x, t)

)]
dV dt

]
︸ ︷︷ ︸

0©

− ∂

∂ P

[∫
� f

μ0 (x, 0) · P (x, 0) dV +
∫

� f

μ1 (x, 0) · ∂t P (x, 0) dV

]

− ∂

∂ P

[∫ T

0

∫
� f s

(
β (x, t) · 1

ρ f
∇ P (x, t) · n + α (x, t) · P (x, t) n

)
dSdt

]
. (A2)

By integrating twice by parts in time and space, the term 0© can be reformulated as

0© =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂ P

[∫
� f

∂t μ
(P)(x,0)
κ

P (x, 0) dV − ∫
� f

μ(P)(x,0)
κ

∂t P (x, 0) dV
]

+ ∂

∂ P

[∫
� f

μ(P)(x,T )
κ

∂t P (x, T ) dV − ∫
� f

∂t μ
(P)(x,T )

κ
P (x, T ) dV

]
+ ∫ T

0

∫
� f

1
κ
∂t tμ

(P) (x, t) − ∇ ·
(

1
ρ f

∇μ(P) (x, t)
)

dV dt

+ ∂

∂ P

[
− ∫ T

0

∫
� f s

1
ρ f

∇μ(P) (x, t) · P (x, t) ndSdt + ∫ T
0

∫
� f s

1
ρ f

μ(P) (x, t) ∇ P (x, t) · ndSdt
]
.

(A3)

The adjoint-state variables are evaluated by

∂L
∂ P = 0. (A4)
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Consequently, we have

∂L

∂ P
=

∑
s,r

αsST
s,r

(
Ss,r WP (t) − dobs

P (t)
) −

∫ T

0

∫
� f

1

κ
∂t tμ

(P) (x, t) − ∇ ·
(

1

ρ f
∇μ(P) (x, t)

)
dV dt︸ ︷︷ ︸

1©

− ∂

∂ P

[∫
� f

∂tμ
(P) (x, 0)

κ
P (x, 0) dV +

∫
� f

μ0 (x, 0) · P (x, 0) dV

]
︸ ︷︷ ︸

2©

− ∂

∂ P

[
−

∫
� f

μ(P) (x, 0)

κ
∂t P (x, 0) dV +

∫
� f

μ1 (x, 0) · ∂t P (x, 0) dV

]
︸ ︷︷ ︸

3©
− ∂

∂ P

∫
� f

μ(P) (x, T )

κ
∂t P (x, T ) dV︸ ︷︷ ︸

4©

+ ∂

∂ P

∫
� f

∂tμ
(P) (x, T )

κ
P (x, T ) dV︸ ︷︷ ︸

5©
+ ∂

∂ P

∫ T

0

∫
� f s

(
1

ρ f
∇μ(P) (x, t) · P (x, t) n − α (x, t) · P (x, t) n

)
dSdt︸ ︷︷ ︸

6©
− ∂

∂ P

∫ T

0

∫
� f s

(
1

ρ f
μ(P) (x, t) ∇ P (x, t) · n + β (x, t) · 1

ρ f
∇ P (x, t) · n

)
dSdt︸ ︷︷ ︸

7©
= 0. (A5)

By zeroing 1© to 7© simultaneously, we obtain the acoustic adjoint-state equations

1

κ
∂t tμ

(P) (x, t) + ∇ ·
(

− 1

ρ f
∇μ(P) (x, t)

)
=

∑
s,r

αsST
s,r

(
Ss,r WP (t) − dobs

P (t)
)
,

μ0 (x, 0) = − 1

κ
∂tμ

(P) (x, 0) , μ1 (x, 0) = 1

κ
μ(P) (x, 0) ,

μ(P) (x, T ) = 0, ∂tμ
(P) (x, T ) = 0,

α (x, t) · n = 1

ρ f
∇μ(P) (x, t) · n, β (x, t) n = −μ(P) (x, t) n. (A6)

A2 Elastic adjoint-state equation

The derivative of eq.(A1) with respect to the wavefield variable us is

∂L

∂ P
=

∑
s,r

βsST
s,r

(
Ss,r Wu (t) − dobs

u (t)
) − ∂

∂us

[∫ T

0

∫
�s

λ (x, t) · {ρs∂t t us (x, t) − ∇ · σ (x, t)} dV dt

]
︸ ︷︷ ︸

0©
− ∂

∂us

[∫
�s

λ0 (x, 0) · us (x, 0) dV +
∫

�s

λ1 (x, 0) · ∂t us (x, 0) dV

]

− ∂

∂us

[∫ T

0

∫
� f s

(β (x, t) · ∂ttus (x, t) · ns + α (x, t) · σ s (x, t) · ns) dSdt

]
. (A7)

By integrating twice by parts in time and space, the term 0© can be reformulated as

0© =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂us

[∫
�s

ρs∂tλ (x, 0) · us (x, 0) dV − ∫
�s

ρsλ (x, 0) · ∂t us (x, 0) dV
]

+ ∂

∂us

[∫
�s

ρsλ (x, T ) · ∂t us (x, T ) dV − ∫
�s

ρs∂tλ (x, T ) · us (x, T ) dV
]

+ ∫ T
0

∫
�s

(ρs∂t tλ (x, t) − ∇ · T (x, t)) dV dt

+ ∂

∂us

[∫ T
0

∫
� f s

T (x, t) · n · us (x, t) dSdt − ∫ T
0

∫
� f s

σ s (x, t) · n · λ (x, t) dSdt
]
,

(A8)
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where T = C : ∇λ. The adjoint-state variables are evaluated by

∂L
∂us

= 0. (A9)

Consequently, we have

∂L

∂us
=

∑
s,r

βsST
s,r

(
Ss,r Wu (t) − dobs

u (t)
) −

∫ T

0

∫
�s

(ρs∂t tλ (x, t) − ∇ · T (x, t)) dV dt︸ ︷︷ ︸
1©

− ∂

∂us

[∫
�s

(ρs∂tλ (x, 0) · us (x, 0) + λ0 (x, 0) · us (x, 0)) dV

]
︸ ︷︷ ︸

2©
− ∂

∂us

[∫
�s

(λ1 (x, 0) · ∂t us (x, 0) − ρsλ (x, 0) · ∂t us (x, 0)) dV

]
︸ ︷︷ ︸

3©
+ ∂

∂us

[∫
�s

ρs∂tλ (x, T ) · us (x, T ) dV

]
︸ ︷︷ ︸

4©

− ∂

∂us

[∫
�s

ρsλ (x, T ) · ∂t us (x, T ) dV

]
︸ ︷︷ ︸

5©

+ ∂

∂us

[∫ T

0

∫
� f s

(σ s (x, t) · n · λ (x, t) − α (x, t) · σ s (x, t) · n) dSdt

]
︸ ︷︷ ︸

6©

− ∂

∂us

[∫ T

0

∫
� f s

(∂t tβ (x, t) · us (x, t) · n + T (x, t) · n · us (x, t)) dSdt

]
︸ ︷︷ ︸

7©
= 0. (A10)

By zeroing 1© to 7© simultaneously, we obtain the elastic adjoint-state equations

ρs∂t tλ (x, t) − ∇ · T (x, t) =
∑

s,r
βsST

s,r

(
Ss,r Wu (t) − dobs

u (t)
)
,

T (x, t) = C : ∇λ (x, t) ,

λ0 (x, 0) = −ρs∂tλ (x, 0) , λ1 (x, 0) = ρsλ (x, 0) ,

λ (x, T ) = 0, ∂tλ (x, T ) = 0,

α (x, t) · n = λ (x, t) · n, ∂t tβ (x, t) n = −T (x, t) · n. (A11)

A3 Acoustic–elastic coupled adjoint-state equation system

By combining equations in eqs (A6) and (A11) and eliminating β(x, t) and α (x, t), we get the acoustic–elastic coupled adjoint-state equation
system

1
κ
∂t tμ

(P) − ∇ ·
(

1
ρ f

∇μ(P)
)

= ∑
s,r αsST

s,r

(
Ss,r WP − dobs

P

)
, in � f ,

ρs∂t tλ = ∇ · T + ∑
s,r βsST

s,r

(
Ss,r Wu − dobs

u

)
, T = C : ∇λ, in �s,

λ · n = 1
ρ f

∇μ(P) · n, T · n = ∂t tμ
(P)n, on � f s, (A12)

and associated final conditions

μ(P) (x, T ) = 0, ∂tμ
(P) (x, T ) = 0,

λ (x, T ) = 0, ∂tλ (x, T ) = 0. (A13)
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