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Abstract This article introduces a new Penalized Ma-

jorization-Minimization Subspace algorithm (P-MMS)

for solving smooth, constrained optimization problems.

In short, our approach consists of embedding a subspace

algorithm in an inexact exterior penalty procedure. The

subspace strategy, combined with a Majoration-Mini-

mization step-size search, takes great advantage of the

smoothness of the penalized cost function, while the

penalty method allows to handle a wide range of con-

straints. The main drawback of exterior penalty ap-

proaches, namely ill-conditioning for large values of the

penalty parameter, is overcome by using a trust-region-

like technique. The convergence of the resulting algo-

rithm is analyzed. Numerical experiments carried out

on two large-scale image recovery applications demon-

strate that, compared with state-of-the-art algorithms,
the proposed method performs well in terms of compu-

tational time.
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1 Introduction

Many challenges in image processing can be addressed

by solving constrained optimization problems. These

problems may be difficult to solve numerically in rea-

sonable times because of their high dimension and of

the involved constraints. These constraints may play

diverse and crucial roles as they enforce prior knowl-

edge about the solution. For example, constraints may

have a regularization effect [30], promote sparsity [6],

ensure consistency with the noise model through a data-

fit term [2,52], or impose the fulfillment of geometrical

properties as in deformable image matching [61].

In this paper, we propose a novel method for solv-

ing large-scale differentiable constrained problems for-

mulated as

minimize
x∈C

F (x), (1)

where F : RN −→ R is a differentiable cost function

and C ⊆ RN . In particular, our approach allows to

tackle image recovery problems of high dimension (typ-

ically, at least 109 variables) efficiently. Although such

problems are often formulated as the minimization of

a nondifferentiable objective function – being the sum

of a differentiable data-fidelity term and a nondiffer-

entiable regularization term, e.g. `1 or total variation

semi-norms – satisfying (and sometimes better) results

can be obtained by adopting a smooth formulation,

yielding problems expressed as (1). Let us mention in
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particular two common methods to circumvent the non-

smoothness possibly arising in the regularization term.

The first one consists of using a smoothed approxi-

mation to the regularization function, which usually

does not alter the recovery performance and can some-

times avoid undesirable effects such as staircasing [63].

The second possibility is to re-express the regulariza-

tion term in the objective as a constraint, in the spirit

of Ivanov approach [53].

The differentiability assumption gives us access to a

wide range of algorithms for solving Problem (1), that

we review hereafter. Let us first give a brief overview

of standard methods for solving unconstrained differen-

tiable optimization problems, i.e. Problem (1) with C =

RN . These methods can be divided into two families,

namely line-search and trust region methods (see [35]

for a survey). Algorithms from both these classes are it-

erative; they generate sequences (xk)k∈N such that, for

every k ∈ N,

xk+1 = xk + sk, (2)

where sk ∈ RN . Line-search and trust region methods

differ from the way they compute the step sk at each

iteration. On the one hand, in the line-search strategy,

one chooses a direction dk ∈ RN and searches along this

direction from the current iterate xk for a new iterate

with a (sufficiently) lower function value. The scale fac-

tor αk ∈ R quantifying the move along dk, referred to

as the step-size, is found by approximately solving the

following scalar minimization problem:

minimize
α∈R

F (xk + αdk). (3)

The resulting step is then defined as sk = αkdk. On the

other hand, in the trust region strategy, the step sk is

computed by solving an inner optimization problem on

the whole space RN as follows. First, a quadratic model

mk of F around xk is constructed from the information

available at the current k-th iterate. This model is ex-

pected to provide a satisfactory approximation to the

objective in a neighborhood of xk, so that the step sk
is defined as an inexact solution to the trust region sub-

problem:

minimize
s∈RN

mk(s)

subject to ‖s‖2 ≤ ∆k,
(4)

where the radius ∆k > 0 of the trust region follows pre-

defined rules. However, the aforementioned line-search

and trust region strategies might not be suitable for

solving large-scale problems. For the former, the direc-

tion dk might be difficult to compute (e.g., Newton di-

rection) or the decrease of the objective function too

slow along iterations (e.g., gradient direction). For the

latter, solving the full-space constrained optimization

problem (4) at each iteration might be computation-

ally demanding.

A successful strategy for overcoming the curse of

dimensionality amounts to search for a compromise be-

tween a one-dimensional linesearch and an inner prob-

lem resolution in the entire space. The idea is to select

sk within a restricted low-dimensional subspace Sk of

RN , so that, for every k ∈ N,

sk ∈ Sk, (5)

yielding the so-called subspace methods. It is worth men-

tioning that the state-of-the-art line-search methods can

be viewed as a special type of such methods, as they

actually define the direction dk as a linear combination

of other directions of interest. For example, the well-

known nonlinear conjugate gradient (NLCG) [46] and

limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-

BFGS) [56] algorithms can be interpreted as subspace

methods, with Sk respectively defined as

Sk = Span{gk, xk − xk−1}, (6)

and

Sk = Span{−gk, xk − xk−1, . . . , xk−m+1 − xk−m,
gk − gk−1, . . . , gk−m+1 − gk−m}, (7)

for some m ∈ N∗, where gk = ∇F (xk). In this work,

we will be interested in more general subspace methods

where the whole subspace Sk is explored [27,42], i.e. for

which a multidimensional step-size is computed instead

of the scalar step-size αk. Specifically, one defines the

step-size uk ∈ RMk , where Mk is the dimension of Sk,

as an approximate solution to

minimize
u∈RMk

F (xk +Dku), (8)

with Dk ∈ RN×Mk the matrix of directions which span

Sk, and then update xk by

xk+1 = xk +Dkuk. (9)

A practical and efficient way to compute the step uk,

which we will consider later, is the Majorization-Mini-

mization procedure proposed in [26]. In particular, ap-

proaches of the form (9) have shown their interest in

terms of computation time on several image processing

applications [47,87]. The subspace strategy can also be

applied to trust region methods, in such case the trust

region subproblem (4) is modified as follows:

minimize
s∈RN

mk(s)

subject to ‖s‖2 ≤ ∆k and s ∈ Sk,
(10)
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therefore reducing the dimension of the inner problem

from N to Mk. This strategy was successfully used

in many problems, including image processing prob-

lems [73,80,81,82].

Interestingly, subspace methods can also be used

to tackle constrained differentiable optimization prob-

lems, corresponding to (1) with C ( RN . In particular,

the case of linear constraints can be handled efficiently

by relying on specific techniques, similar to the ones

used in full-space trust region methods [60] or unidi-

rectional line-search methods [29]. For instance, active-

set methods [65, Chap. 16] have been used for line-

search strategies, defining xk+1 via a direction com-

puted from a reduced problem associated only with the

inactive variables. Based on these ideas, Shanno and

Marsten [72] proposed a conjugate gradient method

for solving problems with linear equality constraints

and bound constraints. Byrd et al. [19] adapted the L-

BFGS method [56] to minimize a smooth function un-

der bound constraints leading to the extensively used L-

BFGS-B algorithm. Furthermore, rescaling strategies [35,

Sec. 6.7] have been applied to subspace trust region

methods for bound-constrained optimization. For in-

stance, in [16], Branch et al. performed a change of

variables to eliminate the bound constraint in the trust

region subproblem and their algorithm was applied to

image deblurring in [79].

In contrast, there are fewer works on how to use sub-

space algorithms for handling nonlinear constraints. In

the literature, attempts to use line-search or trust re-

gion methods (without a subspace strategy) for prob-

lems with general constraints of the form

C = {x ∈ RN | ci(x) ≤ 0, ∀i ∈ {1, . . . , r}}, (11)

where, for every i ∈ {1, . . . , r}, ci : RN −→ R is con-

tinuously differentiable, usually involve the setup of so-

phisticated procedures. These procedures are essentially

based on barrier procedure [17], exterior penalty [34]

strategies, Sequential Quadratic Programming (SQP)

approaches [50], or mixed penalty-SQP strategies [45,

37]. To our knowledge, mostly SQP methods have been

combined with a subspace strategy. SQP consists of

solving a sequence of quadratic programming subprob-

lems. Each of them aims at minimizing a quadratic

model of the objective subject to a linearization of the

constraints. A typical subspace SQP line-search [65,

Sec. 18.4] approach solves the subproblem:

minimize
d∈RN

mk(d)

subject to ∇ci(xk)>d+ ci(xk) ≤ 0, i ∈ {1, . . . , r},
d ∈ Sk,

(12)

where mk is a quadratic model of F at the current it-

erate xk. The next iterate is then computed as xk+1 =

xk +αkdk, where dk is a solution to (12) and αk ∈ R is

determined via classical rules. Lee et al. [55] analyzed

this subspace SQP line-search algorithm for the partic-

ular choice of subspace:

Sk = Span{−gk, d1, . . . , dk−1,−∇ci(xk)}, (13)

with i = argmax{|ci(xk)|, i ∈ {1, . . . r}}. On the other

hand, in a subspace SQP trust region approach [65,

Sec. 18.5], the solution sk to the following subproblem

is computed:

minimize
s∈RN

mk(s)

subject to ∇ci(xk)>s+ ci(xk) ≤ 0, i ∈ {1, . . . , r},
‖s‖ ≤ ∆k,

s ∈ Sk,
(14)

and the next iterate corresponds to xk+1 = xk + sk.

However the trust region strategy (14) is more complex

to implement than the line-search one (12) because the

approximate feasible region and the trust region may be

disjoint. Celis et al. [22] proposed to relax problem (14),

in the case Sk = RN , into the so-called CDT problem,

by replacing the linear inequalities with

‖
(
∇ci(xk)>s+ ci(xk)

)
− ‖

2 ≤ ζk,i, i ∈ {1, . . . , r}, (15)

where (ζk,i)1≤i≤r ∈ (R+)r. Grapiglia et al. [51] stud-

ied a subspace version of CDT, but one drawback of

their method is that the subspace dimension increases

with iterations. In general, although SQP methods con-

verge locally at a superlinear rate, they remain complex

to implement as the subproblems may be infeasible.

Well-known undesirable practical convergence behav-

iors [66] must also be circumvented. In addition, even

in the special case when the constraint set C is closed

convex, these approaches do not take advantage of the

projection onto C when it is available. To our knowl-

edge, the only subspace methods to do so are projected

NLCG [74,85] in the same spirit as projected gradi-

ent algorithms [13]. However, such algorithms remain

limited to this category of constraints and cannot cope

with simple precomposition with linear operators.

The method we investigate in this paper is an adap-

tation of the Majorization-Minimization Subspace algo-

rithm (MMS) proposed in [27] to constrained problems.

In a nutshell, our method is a subspace method follow-

ing the scheme (9), coupled with techniques reminiscent

of trust region techniques, embedded into an exterior

penalty framework. Our approach offers several advan-

tages over the previously mentioned ones: (i) it can take
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into account a wide variety of constraints, and in par-

ticular, constraints for which the projection has closed-

form are easily handled; (ii) the choice of the subspace

is very flexible; (iii) the step search at each iteration

is easy to implement, in particular it does not require

solving a constrained problem thus avoiding feasibility

issues. Our contribution is twofold. We first propose

a modification of the MMS algorithm for solving effi-

ciently penalized problems. The new MMS algorithm

uses a local majoration strategy similar to trust region

approaches, to overcome the ill-conditioning that usu-

ally arises in penalty methods. The convergence of the

algorithm is analyzed. Secondly, the penalty method in

which the new MMS algorithm is nested is allowed to be

inexact, each subproblem being solved with a fixed tol-

erance. The convergence of the global method towards

a solution to the constrained problem (1) is proved.

The rest of the paper is organized as follows: Section

2 presents the optimization problem tackled through

the paper. In Section 3, we describe the original MMS

algorithm, and we propose a new accelerated variant

of it in Section 4. Section 5 is dedicated to the inexact

exterior penalty method. Finally, in Section 6, compar-

isons between our approach and state-of-the-art algo-

rithms are conducted on two image recovery applica-

tions.

2 Considered optimization problem

2.1 Notation and definitions

In this paper, RN denotes the N -dimensional Euclidean

space endowed with the standard scalar product 〈·, ·〉
and the norm ‖ · ‖. We denote by SN the set of sym-

metric matrices of RN×N and SN+ the set of symmetric

semi-definite positive matrices of RN×N . The Loewner

order relation is denoted by �, i.e., for every A ∈ SN
and B ∈ SN , A � B if, for every x ∈ RN , x>Ax ≤
x>Bx. We refer to the identity matrix of RN×N as IN .

For every nonempty set C ⊆ RN , dC is the distance

function to C with respect to the Euclidean norm, and

ιC is the indicator function of C, namely ιC(x) = 0 if

x ∈ C, ιC(x) = +∞ otherwise.

The following definition will be at the core of the

developments in this paper:

Definition 1 (Exterior penalty function) Let C be

a nonempty subset of RN . We say R : RN −→ [0,+∞)

is an exterior penalty function for constraint x ∈ C if

ArgminR = C and minR = 0. (16)

As their name suggests it, such penalty functions as-

sign a nonnegative cost to every point which is exterior

to C.

Example 1 Let ψ : [0,+∞) → [0,+∞) be a strictly in-

creasing function such that ψ(0) = 0. Let the con-

straint set C be the lower zero-level set of a function

f : RN −→ R. Then functions of the form

(∀x ∈ RN ) R(x) = ψ
(

max(0, f(x))
)
, (17)

are exterior penalty functions for the constraint f(x) ≤
0 [10,57]. In addition,

– if f and ψ are convex, then R is convex;

– if f and ψ are differentiable and ψ′(0) = 0, then R

is differentiable.

In particular, when ψ = (·)2, we recover the widely used

quadratic penalty [44,21].

Remark 1 One could think of using exact penalization

methods. However, these techniques require more re-

strictive assumption since either they use non-differen-

tiable penalties, or the objective and the constraint

functions of the problem are assumed to be twice diffe-

rentiable [38,10].

A useful property of exterior penalty functions is

the following one:

Proposition 1 Let r ∈ N∗ and let (Ci)1≤i≤r be subsets

of RN . For every i ∈ {1, . . . , r}, let Ri : RN −→ R
be an exterior penalty function for constraint x ∈ Ci.

Then
∑r
i=1Ri is an exterior penalty function for the

constraint x ∈ ⋂ri=1 Ci.

2.2 Optimization problem

Throughout this paper, we will use functions F and R

satisfying the following hypotheses.

Assumption 1.

(i) F : RN −→ R is a differentiable function.

(ii) C is a nonempty subset of RN , which is decomposed

as C =
⋂r
i=1 Ci, where r ∈ N∗ and (Ci)1≤i≤r are

subsets of RN .

(iii) R =
∑r
i=1Ri where, for every i ∈ {1, . . . , r},

Ri : RN −→ R is a differentiable exterior penalty

function for constraint x ∈ Ci.
Our main goal will be to solve the following con-

strained optimization problem.

Problem (P) Suppose that Assumption 1 is satisfied.

We want to find

x̂ ∈ Argmin
x∈C

F (x). (18)

Following the framework of exterior penalty meth-

ods, we will tackle this problem by considering the pe-

nalized problem hereunder defined for every γ ∈ (0,+∞).
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Problem (Pγ) Suppose that Assumption 1 is satisfied.

We want to find

x̂γ ∈ Argmin
x∈RN

Fγ(x), (19)

where

(∀x ∈ RN ) Fγ(x) = F (x) + γR(x). (20)

3 Majorization-Minimization subspace

algorithm

Let the penalty parameter γ > 0 be fixed in the whole

section, and let F and (Ri)1≤i≤N be functions fulfilling

Assumption 1. We seek to solve the penalized problem

(Pγ). Among available methods, the Majorization-Mi-

nimization (MM) principle offers a generic framework

to solve this problem and can be efficiently combined

with a subspace acceleration [78,42,83]. Hereafter, we

describe the use of the Majorization-Minimization sub-

space algorithm, initially proposed in [26], for this par-

ticular problem.

3.1 Majoration-Minimization principle

Definition 2 Let f : RN −→ R be a differentiable

function and x′ ∈ RN . A function x 7→ Q(x, x′) is said

to be a global tangent majorant of f at x′ if, for every

x ∈ RN ,

f(x) ≤ Q(x, x′) and f(x′) = Q(x′, x′). (21)

Moreover x 7→ Q(x, x′) is said to be a global tangent

quadratic majorant of f at x′ if

(∀x ∈ RN ) Q(x, x′) = f(x′) +∇f(x′)>(x− x′)

+
1

2
(x− x′)>A(x′)(x− x′),

(22)

with A(x′) ∈ SN+ . In that case, A(x′) is called the cur-

vature matrix of function Q at point x′.

The following proposition, which is readily proved,

provides a useful tool for building quadratic majorants

of functions involving a precomposition with a linear

operator.

Proposition 2 Let ψ : RP −→ R be a differentiable

function, let L ∈ RP×N and let c ∈ RP . Assume that

for every y′ ∈ RP , there exists A(y′) ∈ SP+ such that

(∀y ∈ RP ) ψ(y) ≤ ψ(y′) +∇ψ(y′)>(y − y′)

+
1

2
(y − y′)>A(y′)(y − y′). (23)

Then function Ψ defined as

(∀x ∈ RN ) Ψ(x) = ψ(Lx+ c) (24)

satisfies the following majoration property at every x′ ∈
RN :

(∀x ∈ RN ) Ψ(x) ≤ Ψ(x′) +∇Ψ(x′)>(x− x′)

+
1

2
(x− x′)>B(x′)(x− x′) (25)

with

B(x′) = L>A(Lx′ + c)L ∈ RN×N . (26)

In the following, we will assume that the functions F

and (Ri)1≤i≤r, involved in Problem (Pγ), have quadratic

majorants:

Assumption 2.

(i) For every x ∈ RN , F has a quadratic tangent ma-

jorant at x with curvature matrix AF (x).

(ii) For every i ∈ {1, . . . , r} and for every x ∈ RN , Ri
has a quadratic tangent majorant at x with curva-

ture matrix ARi(x).

As a consequence, for every x ∈ RN , the penalty

function R has a quadratic tangent majorant at x with

curvature

AR(x) =

r∑
i=1

ARi(x), (27)

and Fγ defined in (20) has a quadratic tangent majorant

at x with curvature

AFγ (x) = AF (x) + γAR(x). (28)

Example 2 Let us consider a wide class of penalty func-

tions that we will subsequently use in our numerical ex-

periments (see Section 6). Let L ∈ RP×N and let C ′ be

a nonempty closed convex set of RP . Suppose that the

constraint set is

C = L−1(C ′) = {x ∈ RN | Lx ∈ C ′}. (29)

Let us define the exterior penalty function relative to

the constraint set (29) as

(∀x ∈ RN ) R(x) = d2
C′(Lx). (30)

Since ψ = d2
C′ has a 2-Lipschitz gradient, (23) holds

with, for every y′ ∈ RP , A(y′) = 2IP . It then follows

from Proposition 2 that a quadratic majorant of func-

tion R can be built with (constant) curvature

(∀x ∈ RN ) AR(x) = 2L>L. (31)
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MM approaches are iterative methods for the min-

imization of an objective function f : RN −→ R based

on a surrogate such as (22). At each iteration of the al-

gorithm, a global tangent majorant of the objective at

the current iterate is minimized, yielding the following

update rule:{
x0 ∈ RN ,
(∀k ∈ N) xk+1 ∈ Argmin

x∈RN
Q(x, xk). (32)

When applied to the objective Fγ , the iterative proce-

dure (32) corresponds to the half-quadratic algorithm.

The convergence guarantees for this algorithm have been

established for instance in [64,4] under mild bounded-

ness assumptions on the curvature matrices sequence(
AFγ (xk)

)
k
. However, the computational complexity for

(32) is rather high, as it involves the inversion of an

N × N matrix at each iteration. We thus propose to

resort to a subspace accelerated version of it that we

describe next.

3.2 Majorization-Minimization subspace algorithm

The MM subspace algorithm (MMS) takes advantage of

both the MM principle, introduced in Sec. 3.1 and sub-

space acceleration strategies. In short, the MMS method

that we describe in this section is a subspace minimiza-

tion algorithm coupled with a quadratic MM step-size

search [26,27]. This allows us to avoid tedious N × N
matrix inversions involved in the update of (32), while

still preserving fast practical convergence [28].

3.2.1 Subspace minimization

A general subspace method moves the current point xk
at each iteration k ∈ N along a subspace of dimension

Mk ∈ {1, . . . , N}, by generating

(∀k ∈ N) xk+1 = xk +Dkuk, (33)

where

(∀k ∈ N) Dk = [d1k, . . . , d
Mk

k ] (34)

and, for every j ∈ {1, . . . ,Mk}, djk ∈ RN . Dk is the

search direction matrix and uk ∈ RMk is a multivariate

step-size. In the present study, we will adopt the same

requirement on Dk as in [26], that is d1k is assumed

to be gradient-related (see more details in Sec. 4.2).

The following example describes relevant choices for Dk

encompassed by our analysis.

Example 3 Let k ∈ N and let us introduce the shorter

notation gk = ∇Fγ(xk).

(i) If d1k = −gk, then we retrieve the classical gradient

descent direction.

(ii) We can also use a preconditioned gradient direction,

d1k = −Hkgk, where Hk is a symmetric positive def-

inite matrix of RN×N . For instance, if the Hessian

of the objective function is invertible at the current

iterate, Hk can be chosen equal to the inverse of this

Hessian (or an approximation of it). We then obtain

the classical Newton (or quasi-Newton) direction.

(iii) One can also use for d1k, the truncated Newton di-

rection obtained by solving approximately the lin-

ear system ∇2Fγ(xk)d+ gk = 0 with the Conjugate

Gradient algorithm. Such choice was adopted, for

instance, in the SESOP-TN method from [86].

(iv) When the subspace is spanned by the gradient di-

rection and the difference between two past iterates

(also called memory term), i.e.

Dk =

{
−gk k = 0

[−gk, xk − xk−1] elsewhere,
(35)

we recover the memory gradient subspace introduced

in [59], which is closely related to the search direc-

tion employed in the NLGC algorithm [46,86].

(v) A generalization of the latter consists in adding fur-

ther past directions by setting for some m ∈ N∗,
and k ≥ m:

Dk = [−gk, xk − xk−1, . . . , xk−m+1 − xk−m], (36)

yielding the supermemory gradient subspace from [36].

(vi) Matrix

Dk = [−gk, xk − xk−1, . . . , xk−m+1 − xk−m,
gk − gk−1, . . . , gk−m+1 − gk−m], (37)

with m ∈ N∗, and k ≥ m, spans the subspace inher-

ent to the limited memory quasi-Newton L-BFGS

algorithm [56], when setting the memory size to m.

L-BFGS method amounts to approximate the New-

ton step by a step in the above subspace, composed

of (2m + 1) directions including the m last differ-

ences between the passed iterates and the m last

differences between the past gradients.

Once the method for building the subspace Dk has

been selected, one must define a suitable step-size strat-

egy. Two approaches are typically employed. In the first

approach, used in NLCG and L-BFGS for instance, a

vector sk ∈ RN belonging to the subspace spanned by

the columns of Dk is selected in a deterministic way

(e.g., conjugation rules in NLCG). Then, the next it-

erate is xk+1 = xk + αksk where αk > 0 is obtained

through a standard one-dimensional linesearch proce-

dure using rules such as Armijo, Goldstein, or Wolfe
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ones [65]. This approach is appealing because of its low

complexity cost, but it requires an ad-hoc procedure for

determining sk. Moreover, a one-dimensional step-size

search might not allow to exploit optimally the whole

subspace generated by Dk, which can limit the perfor-

mance of the method. In contrast, a multidimensional

step-size search consists of finding a step uk ∈ RMk

minimizing fk defined by

(∀u ∈ RM ) fk(u) = Fγ(xk +Dku). (38)

Solving the aforementioned minimization problem can

be time-consuming, so a compromise must be reached

between accuracy, convergence stability, and complex-

ity. Typical strategies in the literature of subspace opti-

mization involve a Newton or truncated Newton method

[62,86], however they go with limited convergence guar-

antees.

As shown in [26], the MM framework allows to de-

sign a practical, fast step search, while providing bet-

ter theoretical properties for convergence than Newton-

based methods. The use of MM procedure for the step-

size search in (33) yields MMS method, that we describe

hereafter.

3.2.2 MMS algorithm

MMS defines the stepsize uk in (33) by minimizing a

quadratic tangent majorant for fk, defined hereabove,

at u′ = 0. According to Assumption 2, such a majorant

reads for every k ∈ N,

(∀u ∈ RMk) qk(u) = Fγ(xk) +∇Fγ(xk)>Dku

+
1

2
u>Bku, (39)

where Bk ∈ RMk×Mk is defined as

Bk = D>k AFγ (xk)Dk, (40)

and AFγ (xk) is the majorant curvature matrix intro-

duced in (28). The MM step search strategy then re-

duces to minimizing the quadratic function qk over RMk ,

therefore leading to a low-complexity closed form com-

putation for the step-size uk at each iteration. The

MMS method for minimizing Fγ is detailed in Algo-

rithm 1, where † stands for the pseudo-inverse oper-

ation. The convergence properties of MMS are stud-

ied for instance in [28,26,27]. Its good practical perfor-

mance, in comparison with NLCG and L-BFGS in par-

ticular, have been illustrated on various image restora-

tion problems in [26,27].

Algorithm 1: MMS(x0, γ, ε)

Inputs: (γ, ε) ∈ (0,+∞)2, x0 ∈ RN .

for k = 0, 1, . . . ... do
Construct Dk according to (34),

Compute Bk according to (40),

uk = − [Bk]
†
D>k ∇Fγ(xk),

xk+1 = xk +Dkuk,

if ‖∇Fγ(xk+1)‖ ≤ ε then
exit loop // stop algorithm if given

precision ε on the norm of the

gradient is reached

return xk+1.
end

end

4 Proposed local variant of MMS

The penalty function present in Problem (Pγ) may have

a large curvature, which can jeopardize the good accu-

racy of the majorant function inherent to the MM strat-

egy and thus significantly slowdown the convergence of

the algorithm [71,25]. This issue had been overcome by

the authors of [71], in the particular case of the MM

memory gradient (3MG) method, by empirically sub-

stituting local majorations for global majorations, in

a similar spirit as trust-region approaches [84,76,16].

In what follows, we formalize and generalize such a lo-

cal approach to accelerate any MM subspace algorithm,

and we demonstrate the convergence of the resulting it-

erative approach to a critical point of Problem (Pγ).

4.1 Description of the algorithm

According to theoretical results concerning penalty meth-

ods, large values of the penalty parameter γ should be

chosen for the solutions to Problem (Pγ) to lie close

to the constraint set. However, as stressed out in [35,

41,54], large values of γ tend to overemphasize the role

of the penalty function R with respect to the objec-

tive function F . Consequently, the penalized problem

becomes ill-conditioned, hence difficult to solve. This

harshly impacts the convergence profile of MMS as ob-

served in [71]. This slowdown is directly related to a

large spectral norm of the curvature matrix Bk, defined

by (40) at each iteration k, which leads to small update

steps.

We thus propose a novel approach to cope with the

aforementioned issue by making use of a local majorant



8 Emilie Chouzenoux et al.

for Fγ — by opposition to a global one. We define a local

majorant as follows.

Definition 3 Let f : RN −→ R be a differentiable

function, let D ⊆ RN , and let x′ ∈ D. A function x 7→
Q(x, x′) is said to be a local tangent majorant of f at x′

on the trust region D if, for every x ∈ D, the majorizing

property (21) is satisfied.

The local MM framework shares similarities with

trust region methods [35], the objective model identify-

ing here with the quadratic majorant and the trust re-

gion with the domain over which the majorant is valid.

This kind of local majoration strategy has already been

successfully used for the proximal-based MM algorithm

in [25], leading to a significant speed up. In the case of

penalized problems of the form of Problem (Pγ), the

use of local majorants is promising. Indeed, when γ is

large enough, constraints are likely to be satisfied after

some iterations. Then, the penalty term has no more

effect locally and therefore the majorant of Fγ can be

reduced to the sole contribution of F .

At each iteration k and given xk, we thus propose

to make a finite number of curvature trials for our local

majorants of Fγ . For each trial, an MMS update is per-

formed using the corresponding curvature. If the result-

ing iterate lies in the local domain where the majorizing

property (21) is verified, it is accepted and defined as

xk+1. Otherwise the curvature of the local majorant is

strictly increased (in the sense of Loewner order). De-

signing this test allows us to guarantee the same descent

properties than in the global case as will be shown in

next subsection. To construct the sequence of increasing

curvatures, we rely on the following definitions.

Definition 4 Let I ⊆ {1, . . . , r}. For every x ∈ RN ,

we define the curvature A
(I)
Fγ

(x) ∈ SN+ as

A
(I)
Fγ

(x) = AF (x) + γ
∑
i∈I

ARi(x), (41)

and the associated local domain as

D (I) =
{
x ∈ RN | (∀i /∈ I) x ∈ Ci

}
. (42)

Note that, for every x ∈ RN , A
(I)
Fγ

(x) � AFγ (x), where

AFγ (x) is defined in (28). In particular, when I =

{1, . . . , r}, we have, for every x ∈ RN , A
(I)
Fγ

(x) = AFγ (x)

and D (I) = RN . In other words, we recover a global ma-

jorant.

Let us now explain how to build local majorants of

Fγ at xk, for a given k ∈ N. Let

Ik = {i ∈ {1, . . . , r} | xk /∈ Ci}. (43)

A suitable strategy for majorizing Fγ at xk then con-

sists of choosing a local majorant which only penalizes

the remaining constraints (Ci)i∈Ik . Such a local majo-

rant can be given by

Q
(Ik)
k : x 7→ Fγ(xk) +∇Fγ(xk)>(x− xk)

+
1

2
(x− xk)>A

(Ik)
Fγ

(xk)(x− xk), (44)

on the trust region D (Ik), that is

(∀x ∈ D (Ik)) Fγ(x) ≤ Q(Ik)
k (x). (45)

Consequently, q
(Ik)
k defined as

(∀u ∈ RM ) q
(Ik)
k (u) = Fγ(xk) +∇Fγ(xk)>Dku

+
1

2
u>B

(Ik)
k u, (46)

with

B
(Ik)
k = D>k A

(Ik)
Fγ

(xk)Dk, (47)

is a local majorant of fk defined in (38), at u′ = 0, on

the trust region

{
u ∈ RMk | xk +Dku ∈ D (Ik)

}
. (48)

Remark 2 From the definition of A
(Ik)
Fγ

(xk) in (41), for

every u ∈ RMk , q
(Ik)
k (u) ≤ qk(u), which means that the

local majorants are upper bounded by the global one.
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Our resulting local MMS procedure is detailed in

Algorithm 2.

Algorithm 2: MMSloc(x0, γ, ε)

Inputs: (γ, ε) ∈ (0,+∞)2, x0 ∈ RN .

for k = 0, 1, . . . do
Construct Dk according to (34),

xk,0 = xk, // initialize the current point to

xk

Ik,0 = {i ∈ {1, . . . , r} | xk,0 /∈ Ci},
// initialize index set with the indices

of constraints not satisfied by xk,0

for ` = 1, . . . do

Compute B
(Ik,`−1)
k according to (47),

uk,` = −
[
B

(Ik,`−1)
k

]†
D>k ∇Fγ(xk),

xk,` = xk +Dkuk,`,

Ik,` = Ik,`−1 ∪ {i ∈ {1, . . . , r} | xk,` /∈ Ci},
// increment index set with the

indices of constraints not satisfied

by xk,`

if Ik,` = Ik,`−1 then
exit loop, // accept the update xk,` if

the local majoration property is

valid

end

end

xk+1 = xk,`, // define xk+1 as xk,`

if ‖∇Fγ(xk+1)‖ < ε then
exit loop // stop algorithm if given

precision ε on the norm of the

gradient is reached

return xk+1.
end

end

At each iteration k ∈ N and, at each MMS trial

` ∈ N of Algorithm 2, a local majorant of fk is con-

structed on a trust region which depends on the con-

straints satisfied at the previous trials xk,0, . . . , xk,`−1.

The procedure stops when xk,` violates no new con-

straints compared to the previous trials (xk,i)0≤i≤`−1.

In other words, xk,` belongs to the trust region of the

local majorant from which it was computed. The fact

that the sequence (Ik,`)`∈N is monotonically increas-

ing ensures that the method is well defined: in the

worst case we end up using the global majorant (i.e.,

Ik,` = {1, . . . , r}) and thus the standard MMS iteration

is retrieved.

4.2 Convergence analysis of the proposed algorithm

We analyse here the convergence of Algorithm 2. Our

main convergence result corresponds to Theorem 1 and

does not require any convexity assumption on Fγ .

4.2.1 Assumptions

In addition to Assumption 1-2, our convergence analysis

of Algorithm 2 relies on similar assumptions as the ones

commonly adopted for MMS [27].

We first make the following assumption ensuring the

boundedness of the sequence generated by Algorithm 2.

Assumption 3. Fγ is coercive on RN .

The next assumption controls the eigenvalues of the

curvature function x 7→ AFγ (x).

Assumption 4. We have the following boundedness

properties on the curvature functions x 7→ AF (x) and

x 7→ AFγ (x):

(i) There exists η > 0 such that, for every x ∈ RN ,

(∀v ∈ RN ) η‖v‖2 ≤ v>AF (x)v. (49)

(ii) For every nonempty compact set B ⊆ RN , there ex-

ists ν > 0 such that for every x ∈ B,

(∀v ∈ RN ) v>AFγ (x)v ≤ ν‖v‖2. (50)

Note that this last assumption is mild, since As-

sumption 4(i) can be satisfied by adding an elastic term

to F , and Assumption 4(ii) is straightforwardly satis-

fied when x 7→ AFγ (x) is continuous, which is often the

case. Let us also remark that Assumption 4(i) ensures

that for every I ⊆ {1, . . . , r} and for every x ∈ RN ,

(∀v ∈ RN ) η‖v‖2 ≤ v>A(I)
Fγ

(x)v. (51)

In particular for I = {1, . . . , r} we obtain

(∀v ∈ RN ) η‖v‖2 ≤ v>AFγ (x)v, (52)

which is a standard assumption in the analysis of MM

and MMS methods [4,27,28].

Moreover, we assume that the set of directions (Dk)k∈N
fulfills the following condition.

Assumption 5. There exist (µ0, µ1) ∈ (0,+∞)2 such

that for every k ∈ N, the first column d1k of direction

matrix Dk ∈ RN×Mk (with 1 ≤Mk ≤ N) satisfies:

∇Fγ(xk)>d1k ≤ −µ0‖∇Fγ(xk)‖2, (53)

‖d1k‖ ≤ µ1‖∇Fγ(xk)‖. (54)
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Assumption 5 is satisfied by classical subspace di-

rections, including all those listed in Example 3 (see

also [26] for a discussion on this assumption).

We finally assume that the penalized function Fγ
verifies the following Kurdyka-Lojasiewicz (KL) prop-

erty.

Assumption 6. For all x̃ ∈ RN , there exist β ∈ (0,+∞),

ζ ∈ (0,+∞) and θ ∈ [0, 1) (all depending of γ) such that

for every x ∈ RN verifying |Fγ(x)− Fγ(x̃)| ≤ ζ,

‖∇Fγ(x)‖ ≥ β|Fγ(x)− Fγ(x̃)|θ. (55)

In recent years, this property has become a fun-

damental tool for convergence analysis in a noncon-

vex setting [11,12]. Functions satisfying the KL prop-

erty include semi-algebraic functions and real analytic

functions. In particular, the set of semi-algebraic func-

tions is stable under various operations (sum, product,

composition...) and contains polynomials, square root,

distance to a semi-algebraic set, etc. The KL assump-

tion on Fγ is not restrictive for standard choices of F

and R. As we will see in the applications in Section 6,

this assumption is met for a wide range of functions

used in the context of image recovery. For instance, the

standard Gaussian log-likelihood x 7→ ‖Hx − y‖2 with

H ∈ RN×M and y ∈ RM , and classical regularizations

such as `1 or total variation are semi-algebraic. Con-

cerning the penalty function R, if we suppose it to be

of the form given in Example 1, it is semi-algebraic as

soon as ψ and f are. Therefore, constraints that can be

taken into account include polynomial constraints and

distance to balls or ellipsoids.

4.2.2 Convergence proof

Our proof follows the same structure as the convergence

proof of MMS [27]. We adapt the descent lemmas to the

local case and conclude using [27, Theorem 3].

Lemma 1 Suppose that Assumptions 1, 2, and 4 are

satisfied. Let x0 ∈ RN be given. Then, the sequence

(xk)k∈N produced by Algorithm 2 with ε = 0 satisfies

for every k ∈ N,

Fγ(xk)− Fγ(xk+1) ≥ η

2
‖xk+1 − xk‖2, (56)

where η is defined in (49).

Proof. Since Algorithm 2 is well-defined, there exists

` ∈ N∗ such that xk+1 = xk,` = xk + Dkuk,`, uk,` ∈
RMk . By definition of uk,` we have

D>k ∇Fγ(xk) = −B(Ik,`−1)
k uk,`, (57)

for some index set Ik,`−1 ⊆ {1, . . . , r} built from the

previous trials xk = xk,0, . . . , xk,`−1. Using the expres-

sion (46) of q
(Ik,`−1)
k ,

Fγ(xk)−q(Ik,`−1)
k (uk,`)

= −∇Fγ(xk)>D>k uk,` −
1

2
(uk,`)

>B
(Ik,`−1)
k uk,`

= (uk,`)
>B

(Ik,`−1)
k uk,` −

1

2
(uk,`)

>B
(Ik,`−1)
k uk,`

=
1

2
(uk,`)

>B
(Ik,`−1)
k uk,`. (58)

We now use the fact that q
(Ik,`−1)
k is a local tangent

majorant of fk at u′ = 0 on the trust region{
u ∈ RM | xk +Dku ∈ D (Ik,`−1)

}
.

By definition of `, uk,` belongs to the above set, hence

q
(Ik,`−1)
k (uk,`) ≥ fk(uk,`)

= Fγ(xk +Dkuk,`)

= Fγ(xk+1). (59)

Finally, from Assumption 4(i), (58), and (59),

Fγ(xk)− Fγ(xk+1) ≥ 1

2
(uk,`)

>B
(Ik,`−1)
k uk,`

=
1

2
(Dkuk,`)

>A
(Ik,`−1)
Fγ

(xk)Dkuk,`

≥ η

2
‖Dkuk,`‖2

=
η

2
‖xk+1 − xk‖2. (60)

Corollary 1 Suppose that Assumptions 1-4 are satis-

fied. Let x0 ∈ RN be given. Then the sequence (xk)k∈N
generated by Algorithm 2 with ε = 0 is bounded.

Proof. From Lemma 1, (Fγ(xk))k∈N is nonincreasing,

thus for every k ∈ N, Fγ(xk) ≤ Fγ(x0). We deduce that

(Fγ(xk))k∈N is bounded from above and the bounded-

ness of (xk)k∈N follows from Assumption 3.

Lemma 2 Suppose that Assumptions 1, 2, 4 and 5

hold. Let x0 ∈ RN be given. Then, there exists ν > 0

such that the sequence (xk)k∈N produced by Algorithm

2 with ε = 0 satisfies, for every k ∈ N,

Fγ(xk)− Fγ(xk+1) ≥ 1

2

µ2
0

νµ2
1

‖∇Fγ(xk)‖2, (61)

where µ0 and µ1 are defined in Assumption 5.
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Proof. Fix k ∈ N. First, note that if the first direction

in Dk satisfies d1k = 0, then Assumption 5 implies that

∇Fγ(xk) = 0. Thus xk+1 = xk and (61) is satisfied.

We shall now assume that d1k 6= 0. In the same way

as in the previous proof, there exists ` ∈ N∗ such that

xk+1 = xk,` = xk +Dkuk,`. Let

(∀t ∈ R) hk(t) = qk([t, 0, . . . , 0]), (62)

where qk is defined in (39). Expanding hk yields

hk(t) = Fγ(xk) + t∇Fγ(xk)>d1k +
t2

2
(d1k)>AFγ (xk)d1k.

(63)

Because of Assumption 4(i), hk is a strictly convex

quadratic function which achieves its minimum at

t̂k =
−∇Fγ(xk)>d1k

(d1k)>AFγ (xk)d1k
, (64)

with minimum value

hk(t̂k) = Fγ(xk) +
1

2
t̂k∇Fγ(xk)>d1k. (65)

Recall that by definition, uk,` minimizes q
(Ik,`−1)
k , de-

fined in (46). It follows from Remark 2 that

q
(Ik,`−1)
k (uk,`) = min

u∈RMk
q
(Ik,`−1)
k (u)

≤ min
u∈RMk

qk(u)

≤ hk(t̂k)

= Fγ(xk) +
1

2
t̂k∇Fγ(xk)>d1k, (66)

which can be rewritten as

Fγ(xk)− qI(`)k (uk,`) ≥ −
1

2
t̂k∇Fγ(xk)>d1k. (67)

In addition, since q
(Ik,`−1)
k is a local tangent majorant

of fk at u′ = 0 on a trust region containing uk,`,

q
(Ik,`−1)
k (uk,`) ≥ fk(uk,`)

= Fγ(xk +Dkuk,`)

= Fγ(xk+1). (68)

Coupling (67) and (68), we obtain:

Fγ(xk)− Fγ(xk+1) ≥ −1

2
t̂k∇Fγ(xk)>d1k. (69)

Let us now use Assumptions 4 and 5. From Lemma 1,

(xk)k∈N belongs to a compact set B ⊆ RN . Let ν be

given by Assumption 4(ii) for this compact set. Firstly,

according to (54),

t̂k ≤ −
∇Fγ(xk)>d1k
ν||d1k||2

≤ − ∇Fγ(xk)>d1k
νµ2

1‖∇Fγ(xk)‖2 . (70)

Moreover, according to (53),(
∇Fγ(xk)>d1k

)2 ≥ µ2
0‖∇Fγ(xk)‖4. (71)

Combining (69), (70), and (71), the desired inequality

is obtained

Fγ(xk)− Fγ(xk+1) ≥ 1

2

µ2
0

νµ2
1

‖∇Fγ(xk)‖2. (72)

Finally the following theorem can be deduced as a

consequence of the previous lemmas and [27, Theorem

3], which was established using the KL Assumption 6.

Theorem 1 Suppose that Assumptions 1-6 are satis-

fied. Let x0 ∈ RN be given. Then, for every ε ∈ (0,+∞)

Algorithm 2 stops after a finite number of iterations Kε.

In addition, there exists a critical point x̂ of Fγ such

that xKε → x̂ as ε→ 0.

5 Embedding the proposed algorithm in a

sequential penalty framework

In the previous section, we have presented a new MM-

based subspace algorithm for the resolution of penalized

problems of the form (Pγ). Coming back to our main

objective of solving the constrained problem (P), we

propose to embed Algorithm 2 in an exterior penalty

method by progressively increasing the penalty param-

eter. This section describes the proposed iterative ap-

proach and provides a convergence proof for it.

5.1 Inexact exterior penalty method

Exterior penalty methods solve Problem (P) by recast-

ing it into a sequence of unconstrained subproblems of

the form (Pγ), for γ > 0 growing to infinity [10,14].

The motivation is the following. Let (γj)j∈N be a real

sequence of positive reals such that limj→+∞ γj = +∞.

Then, for every x ∈ RN ,

γjR(x) −→
j→+∞

ιC(x). (73)

Thus, for some j sufficiently large, one may expect any

solution to (Pγj ) to be close to a solution of (P). This

intuition turns out to be valid under the assumption

that F and R are lower semi-continuous, which is cov-

ered by Assumption 1 (see [10,14,57]). More precisely,

let (γj)j∈N be set as stated before, and denote by xj a

solution to (Pγj ) for j ∈ N. Then, (xj)j∈N is bounded

and any of its cluster points is a solution to (P) [57,

Chap. 10, Thm. 1]. However, for obvious practical rea-

sons, the penalized subproblems (Pγj )j∈N cannot be



12 Emilie Chouzenoux et al.

solved exactly. It is actually not even desirable to solve

them with high accuracy before reaching large values

of γj as this would be of limited interest while inducing

a high computation cost.

Following [49,44], we propose to solve the subprob-

lems (Pγj )j∈N with an increasing accuracy. More pre-

cisely, given j ∈ N, an initial point x
(0)
j ∈ RN , a penalty

parameter γj ∈ (0,+∞) and a precision εj ∈ (0,+∞),

Algorithm 2 generates a vector xj ∈ RN such that

‖∇Fγj (xj)‖ < εj . (74)

The loop over j ∈ N in Algorithm 3 leads to an in-

exact exterior penalty method, for which we provide a

convergence analysis in the remaining of this section.

We denote by P-MMSloc (resp. P-MMS) the penalized

MMS algorithm with (resp. without) local acceleration.

Algorithm 3: P-MMS(loc)

Inputs: (γj)j∈N ∈ (R+)N, (εj)j∈N ∈ (R+)N.

for j = 0, 1, . . . do

Set initial point x
(0)
j ,

xj = MMS(loc)(x
(0)
j , γj , εj), // find an inexact

solution to (Pγj )
end

return xj .

5.2 Assumptions

We introduce the following classical assumption on the

sequence of penalty and precision parameters involved

in our method.

Assumption 7. The sequences of parameters (εj)j∈N
and (γj)j∈N satisfy:

(i) For every j ∈ N, εj > 0 and limj→+∞ εj = 0.

(ii) (γj)j∈N is nondecreasing sequence of positive reals

and limj→+∞ γj = +∞.

In addition, the convergence analysis hereafter is led

under the following assumption on the involved func-

tions.

Assumption 8. There exists some j∗ ∈ N that such,

for every j ≥ j∗, Fγj is convex.

Note that the above assumption implies that F is

convex on C, but it can be nonconvex on the whole

space as shown next and illustrated in Figure 1.

Example 4 Assume that C is the closed ball of RN with

center 0 and radius ρ ∈ (0,+∞). Let R = d2
C/2 and

let F be a continuously differentiable function which

is convex on C and twice-differentiable on RN \C with

Fig. 1 Illustration of Example 4 in the one-dimensional case.
C is the closed ball of R of center 0 and radius ρ = 1.5, and
R = d2

C/2. F is defined as F (x) = 14.4
√
|x|+ ln(1 + |x|)x−

x− 10 if x ≤ −ρ, and F (x) = P (x) if x > −ρ, where P (x) =
ax4 + bx3 + cx2 − x + e, is the unique polynomial function
such that P (−ρ) = F (−ρ), P ′(−ρ) = F ′(−ρ), P ′(0.6) = 0
and P ′(11.07) = 0. On this illustration, F corresponds to the
red curve and Fγ with γ = 2 to the blue curve. One can note
that F is convex on C and nonconvex on R, but for γ ≥ 2,
Fγ is convex. Moreover Fγ is coercive for any γ > 0.

its Hessian ∇2F satisfying the following property: there

exists (α, δ) ∈ (0,+∞)2 with α ≥ ρδ such that

(∀x ∈ RN \ C) ∇2F (x)− α

‖x‖
(
IN −

xx>

‖x‖2
)
� −δIN .

(75)

Then Fγ is convex if

γρ ≥ α. (76)

Indeed (75) means that G defined as

(∀x ∈ RN ) G(x) = F (x)− α‖x‖+
δ

2
‖x‖2 (77)

is a convex function on every convex subset of RN \C.

We have then

(∀x ∈ RN \ C) Fγ(x) = G(x) +∆(x), (78)

where

∆(x) = α‖x‖ − δ

2
‖x‖2 +

γ

2
d2
C(x)

= α‖x‖ − δ

2
‖x‖2 +

γ

2
(‖x‖ − ρ)2. (79)

For every x ∈ RN \ C,

∇2∆(x) = (γ − δ)IN +
α− γρ
‖x‖

(
IN −

xx>

‖x‖2
)

(80)

If (76) holds, the minimum eigenvalue of ∇2∆(x) is

γ − δ + (α− γρ)/‖x‖ ≥ γ − δ + (α− γρ)/ρ

= α/ρ− δ ≥ 0, (81)
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which shows that ∆ is convex on every convex subset

of RN \ C. We deduce from (78) that Fγ shares the

same property. Since F is C1 and convex on C and

∇d2
C = 2(Id − projC) is continuous, Fγ is also C1 and

convex on C. Fγ is thus convex on RN .

Note that a sufficient condition for (75) to be satisfied

with α = ρδ is

(∀x ∈ RN \C) λmin

(
∇2F (x)

)
≥ −δ

(
1− ρ

‖x‖

)
, (82)

where λmin

(
∇2F (x)

)
is the minimum eigenvalue of the

Hessian of F at x.

5.3 Convergence analysis

Our convergence result is given in Theorem 2 and ex-

hibits some similarity to the one obtained in [57, Chap.

10, Thm. 1] for the classical exact exterior penalty meth-

od.

Lemma 3 Suppose that Assumptions 1 and 2 hold. Let

(εj)j∈N and (γj)j∈N be two sequences satisfying Assump-

tion 7. Suppose that Assumptions 3-6 and 8 are satis-

fied by (Fγj )j∈N. Then the sequence (xj)j∈N generated

by Algorithm 3 is bounded.

Proof. For every j ∈ N, since Assumptions 1-6 are sat-

isfied by Fγj , the convergence results established in Sec-

tion 4.2.2 apply. Thus Algorithm 2 produces, in a finite

number of iterations, a vector xj ∈ RN verifying (74).

This shows that Algorithm 3 is well-defined.

Let us now prove the boundedness of sequence

(xj)j∈N. By definition of sequence (xj)j∈N and because

of the convexity of functions (Fγj )j≥j∗ , the Cauchy-

Schwarz inequality yields for every j ≥ j∗ and z ∈ RN ,

Fγj (xj)− Fγj (z) ≤ 〈∇Fγj (xj), xj − z〉,
< ‖∇Fγj (xj)‖‖xj − z‖,
≤ εj‖xj − z‖. (83)

We then argue by contradiction. Assume that (xj)j∈N is

unbounded. Then there exists a subsequence of nonzero

vectors (xjq )q∈N and x ∈ RN such that

lim
q→+∞

‖xjq‖ = +∞, (84)

lim
q→+∞

xjq
‖xjq‖

= x, (85)

‖x‖ = 1. (86)

Let z ∈ C. According to (83), for every q ∈ N such that

jq ≥ j∗,
Fγjq (xjq )

‖xjq‖
<
Fγjq (z)

‖xjq‖
+ εjq

∥∥∥∥ xjq
‖xjq‖

− z

‖xjq‖

∥∥∥∥
=
F (z)

‖xjq‖
+ εjq

∥∥∥∥ xjq
‖xjq‖

− z

‖xjq‖

∥∥∥∥ , (87)

where we have used the fact that z ∈ C, henceR(z) = 0,

to obtain the equality. Let us take the infimum limit

on both sides. It follows from (84), (85), and Assump-

tion 7(i), that

lim inf
q→+∞

Fγjq (xjq )

‖xjq‖
≤ 0. (88)

Let q0 ∈ N. By using (84), (85) and the convexity (and

continuity) of Fγj∗ ,

Fγj∗
(
z + ‖xjq0 ‖x

)
= lim
q→+∞

Fγj∗

((
1−
‖xjq0 ‖
‖xjq‖

)
z +
‖xjq0 ‖
‖xjq‖

xjq

)
≤ lim inf

q→+∞

[(
1−
‖xjq0 ‖
‖xjq‖

)
Fγj∗ (z) +

‖xjq0 ‖
‖xjq‖

Fγj∗ (xjq )

]
≤ lim inf

q→+∞

[(
1−
‖xjq0 ‖
‖xjq‖

)
F (z) +

‖xjq0‖
‖xjq‖

Fγjq (xjq )

]
.

(89)

The last inequality (89) is a consequence of the mono-

tonicity of (γj)j∈N and of the equality of Fγj∗ (z) and

F (z). By using (88), we deduce that

Fγj∗
(
z + ‖xjq0 ‖x

)
≤ F (z). (90)

Thus the sublevel set {x ∈ RN | Fγj∗ (x) ≤ F (z)} con-

tains the unbounded set {z + ‖xjq0 ‖x, q0 ∈ N}, which

contradicts the coercivity of Fγj∗ .

Theorem 2 Under the same assumptions as in Lem-

ma 3, the sequence (xj)j∈N generated by Algorithm 3

has at least one cluster point. In addition, every of its

cluster points is a solution to Problem (P).

Proof. According to Lemma 3, (xj)j∈N is bounded. Let

(xjq )q∈N be a subsequence of (xj)j∈N which converges

to a point x∗ ∈ RN . We shall show that x∗ ∈ C and

that, for every z ∈ C, F (x∗) ≤ F (z).

Let us first prove that x∗ ∈ C. Let z ∈ C and q ∈ N
such that jq ≥ j∗. Following the same reasoning as for

(83), and using the equality Fγjq (z) = F (z), we have

Fγjq (xjq ) < F (z) + εjq‖xjq − z‖. (91)

Since the sequence (xjq )q∈N is bounded and Assump-

tion 7(i) holds, we deduce that there exists a constant

ν ∈ R such that

(∀q ∈ N) Fγjq (xjq ) ≤ ν. (92)

In addition, since F is continuous and (xj)j∈N is bounded,

(F (xjq ))q∈N is bounded from below by a constant ζ ∈ R
and the following inequality holds:

(∀q ∈ N) Fγjq (xjq ) = F (xjq ) + γjqR(xjq )

≥ ζ + γjqR(xjq ). (93)



14 Emilie Chouzenoux et al.

By combining (92) and (93), we deduce that

(∀q ∈ N) 0 ≤ R(xjq ) ≤
ν − ζ
γjq

. (94)

Next, passing to the limit when q → +∞ in (94) and

using Assumption 7(ii), we obtain by continuity of R,

R(x∗) = 0, (95)

which, according to Definition 1, is equivalent to x∗ ∈
C.

Let us now show that, for every z ∈ C, F (x∗) ≤
F (z). Equation (91) implies that

F (xjq ) ≤ F (z) + εjq‖xjq − z‖ − γjqR(xjq )

≤ F (z) + εjq‖xjq − z‖. (96)

Passing to the limit when q → +∞ in (96), we obtain

by continuity of F ,

F (x∗) ≤ F (z), (97)

which completes the proof.

Corollary 2 Under the same assumptions as in Lemma

3, if Problem (P) admits a unique solution x∗ ∈ RN ,

then the sequence (xj)j∈N generated by Algorithm 3 con-

verges to x∗.

Remark 3

(i) Our convergence proof remains valid if, at each iter-

ation j ∈ N of the proposed inexact penalty method,

the subproblem (Pγj ) is solved by any method re-

turning an inexact minimizer xj ∈ RN such that

(74) holds.

(ii) The whole theory is conducted here with a single se-

quence of penalty parameters for the global penalty

function R. However, in the case where there are r

penalty functions that we wish to weight differently

with sequences of parameters (γ
(1)
j )j∈N, . . . , (γ

(r)
j )j∈N,

a similar proof may be carried.

5.4 Initial guess at each iteration

The choice of the initial point x
(0)
j at each iteration can

influence the convergence speed of the algorithm, so

one should define it carefully. Ideally, the latter must

be determined in such a way that ‖∇Fγj (x(0)j )‖ is as

small as possible, with

∇Fγj (x(0)j ) = ∇F (x
(0)
j ) + γj∇R(x

(0)
j ). (98)

We propose a heuristic algorithm initialization, re-

lying on the two previous iterates, xj−1 and xj−2, and

on the penalty parameters γj−2, γj−1, γj , when j ≥ 2.

In a neighborhood N (x∗) of the optimum x∗ for Prob-

lem (P), we suppose that

(∀x ∈ N (x∗)) ∇Fγ(x) ' ∇F (x∗) + γ∇R(x)

' ∇F (x∗) + 2γ(x− x∗). (99)

The latter approximation is valid if x∗ lies on the bound-

ary of C, x 6∈ C, and

(∀x ∈ N (x∗) \ C) R(x) ' ‖x− x∗‖2 (100)

(e.g., R = d2
C). Then, using the approximation (99)

for the values (γ, x) in {(γj−2, xj−2), (γj−1, xj−1)} and

assuming that ∇Fγj−2
(xj−2) ' 0 and ∇Fγj−1

(xj−1) '
0, we obtain

xj−1 − xj−2 '
1

2
∇F (x∗)

(
1

γj−2
− 1

γj−1

)
. (101)

Similarly, to get ∇Fγj (x(0)j ) ' 0, we should have

x
(0)
j − xj−1 '

1

2
∇F (x∗)

(
1

γj−1
− 1

γj

)
. (102)

Gathering (101) and (102) leads to the following choice

for the initial point:

x
(0)
j = xj−1 +

1
γj−1

− 1
γj

1
γj−2

− 1
γj−1

(xj−1 − xj−2). (103)

6 Numerical experiments

We consider two applicative scenarios with the aim to

highlight the computational efficiency of our approach

on large-scale image recovery problems, as well as to
illustrate the variety of constraints that can be handled.

All algorithms are implemented in Python 3 and the

computations are performed on a desktop having an

Intel Xeon 3.2 GHz processor and 16 GB of RAM.

6.1 Frame-based image restoration in presence of

heteroscedastic noise

The first numerical scenario we consider concerns im-

age restoration in the presence of pixel-dependent addi-

tive Gaussian noise. We emphasize that the optimiza-

tion problem addressed hereafter is a generalization of

a standard wavelet denoising problem [3].

We consider an image restoration scenario aiming at

recovering an original image y ∈ RM from a degraded

version of it, z = (zi)1≤i≤M ∈ RM , given the observa-

tion model

z = Hy + w, (104)
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where H ∈ RM×M is a matrix modelling a blur and

w = (wi)1≤i≤M ∈ RM is an additive noise. The noise

is assumed to be zero-mean Gaussian i.i.d. and het-

eroscedastic (i.e. with non stationary variance). As dis-

cussed in [48,75], heteroscedastic noise is commonly en-

countered when dealing with raw digital images of an

under or over-exposed scene, as it is often the case in

satellite imaging. A suitable model for the noise vari-

ance that was used in [48] is given by

(∀i ∈ {1, . . . ,M}) wi = σ((Hy)i) vi, (105)

where (·)i designates the i-th component of its vector

in argument, (vi)1≤i≤M are realizations of independent

zero-mean, unit-variance Gaussian random variables,

and

(∀t ∈ R) σ(t) =

{√
at+ b if at+ b ≥ 0√
b otherwise,

(106)

with (a, b) ∈ (R+)2.

6.1.1 Tight frame decomposition

Restoring y from its degraded version z is an ill-posed

inverse problem which resolution requires the introduc-

tion of prior knowledge on the sought image. The prior

can either be formulated in the original data space of

the image, or through an appropriate linear represen-

tation (e.g., Fourier, cosine, wavelet domain) of it. In

this experiment, we opt for a sparsity enhancing prior

in a frame domain [58]. More precisely, we consider the

decomposition of the image on a tight frame [68,20,40]

i.e., an overcomplete dictionary of vectors (e1, . . . , eN ) ∈
(RM )N with N > M such that the operator

W : RM 7→ RN : y 7→ (〈y, en〉)1≤n≤N (107)

satisfies W ∗W = µIM for some parameter µ > 0, where

W ∗ refers to the adjoint ofW . Such an overcomplete de-

composition leads to a more flexible linear model than

traditional orthonormal representations. In particular,

if we set µ ∈ N∗, one can build a tight frame with

W ∗W = µIM by concatenating µ orthonormal wavelet

bases, associated to the decomposition operator

W = [W ∗1 | . . . |W ∗µ ]∗ ∈ RN×M , (108)

where N = µM and (Wi)1≤i≤µ ∈ (RM×M )µ are or-

thogonal operators.

6.1.2 Optimization problem

Let W ∈ RN×M be the tight frame decomposition op-

erator introduced above. We propose to follow the so-

called synthesis approach for solving the inverse prob-

lem (104). This approach consists of estimating x ∈ RN ,

the decomposition of the original image y onto the tight

frame, by solving an optimization problem in the space

of the frame coefficients. A solution to the initial Prob-

lem (104) is then retrieved as y = W ∗x.

When the Gaussian noise is identically distributed

for every pixel, the minimization problem on the tight

frame coefficients usually takes the form

minimize
x∈RN

‖HW ∗x− z‖2 + λF (x), (109)

where F : RN → R is a regularization function on the

frame coefficients, and λ > 0 a regularization param-

eter. The main drawback of formulation (109) is the

difficulty to adjust the regularization parameter λ. This

can be alleviated by considering instead the constrained

minimization problem [52,20]:

minimize
x∈RN

F (x)

subject to ‖HW ∗x− z‖2 ≤ α,
(110)

in which the fidelity to the model is ensured by means of

a constraint. By virtue of the law of large numbers, the

new parameter α > 0 can be estimated as α ' σ2M ,

where σ is the standard deviation of the noise.

In the present case, the heteroscedastic noise follows

the standard deviation rule (106) and using directly the

formulation (110) might not be appropriate to account

for the local properties of such a noise. We thus pro-

pose to partition the image into L ∈ N∗ rectangular

blocks of B ∈ N∗ pixels and to impose a taylored data

fidelity constraint on each of these blocks. For every

` ∈ {1, . . . , L}, we denote by [·]` the component corre-

sponding to the `-th block. The minimization problem

we propose to solve then reads

minimize
x∈RN

F (x),

subject to ‖[HW ∗x− z]`‖2 ≤ α` (∀` ∈ {1, . . . , L}),
W ∗x ∈ [0, 1]M .

(111)

Hereabove, F is a smooth `1-regularization promoting

sparsity of the frame coefficients chosen as

(∀x = (ξn)1≤n≤N ∈ RN ) F (x) =

N∑
n=1

λn
√
δ + ξ2n,

(112)
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with, for every n ∈ {1, . . . , N}, λn ∈ (0,+∞). More-

over, δ ∈ (0,+∞) and (α`)1≤`≤L ∈ (R+)L are given

hyper-parameters. Note that the optimization problem

(111) is an instance of Problem (P) where function F

is defined as in (112) and constraint set C corresponds

to{
x ∈ RN | (∀` ∈ {1, . . . , L}) ‖[HW ∗x− z]`‖2 ≤ α`

}⋂{
x ∈ RN | W ∗x ∈ [0, 1]M

}
. (113)

Remark 4 Regarding the partition of the image, we opted

here for a rectangular one as it was the most straight-

forward for the considered image. However one could

also consider using a partition based on a segmenta-

tion of the degraded image when such a segmentation

is available.

6.1.3 Proposed algorithm

We propose to apply the methods P-MMS and P-MMSloc

to the minimization problem (111). To do so, we have

to define the penalty functions for the data-fidelity con-

straints. For every ` ∈ {1, . . . , L}, we set

(∀x ∈ RN ) R1,`(x) = d2
B`([HW

∗x]`), (114)

where B` is the Euclidean ball of RB centered at [z]`
with radius α`. Similarly, we define the penalty function

for the pixel-range constraint by

(∀x ∈ RN ) R2(x) = 1
10 d2

[0,1]M (W ∗x). (115)

This latter penalty function will be split into M penalty

functions operating on each component of W ∗x, which

naturally provides a suitable applicative context for the

local approach described in Section 4. In a nutshell, the

penalty function for Problem (111) reads

(∀x ∈ RN ) R(x) =

L∑
`=1

R1,`(x) +R2(x). (116)

The penalized MMS method relies on Assumption 2,

which requires building explicitly quadratic majorants

of the objective F and the penalty functions (R1,`)1≤`≤L
and R2. It can be easily shown (see [24] for instance)

that, for every x = (ξn)1≤n≤N ∈ RN , the matrix

AF (x) = Diag


(

λn√
δ + ξ2n

)
1≤n≤N

 ∈ RN×N (117)

defines the curvature of a valid quadratic majorant of F

at x. Regarding the penalty functions, according to Ex-

ample 2, quadratic majorants for (R1,`)1≤`≤L are given

by the curvature matrices

(∀` ∈ {1, . . . , L})(∀x ∈ RN )

AR1,`
(x) = 2WH>T`HW

∗, (118)

where T` = Diag
{

(ti)1≤i≤M

}
∈ RM×M with ti = 1 if

the i-th pixel belongs to the `-th block, ti = 0 other-

wise. Similarly, we define

(∀x ∈ RN ) AR2
(x) = 1

5 WW ∗. (119)

By assuming that set C defined by (113) is nonempty1,

for both P-MMS and P-MMSloc, the convergence con-

ditions introduced in Section 5.3 are met. Indeed, As-

sumptions 1-4 and Assumption 6 are fulfilled by func-

tions F and R. By choosing the subspace as the memory

gradient one in (35), Assumption 5 is satisfied. Finally,

penalty parameters (γj)j∈N in P-MMS or P-MMSloc

were set to

γj = (3j)0.8 (120)

and the precision parameters (εj)j∈N were chosen as

εj = 40
/

(γj)
0.25, (121)

so that the requirements in Assumption 7 are satisfied.

Assumption 8 also holds since F and R are convex.

6.1.4 Results

For our numerical experiment, we consider the satel-

lite zaghouane image, of size M = 512 × 512, blurred

by an 11× 11 Gaussian kernel with standard deviation

1.7 using symmetric boundary conditions. The image

is corrupted with a Gaussian noise following the stan-

dard deviation rule (106), with a = 10−4 and b = 10−3

(Fig. 2 (left)). The tight frame operator W is defined

as a concatenation of µ = 3 orthonormal wavelet bases,

each one with 4 resolution levels: Daubechies of order

2, Coiflets of order 3, and Symlets of order 6 (respec-

tively db2, coif3, sym6 from the pywt Python pack-

age). The size of the considered optimization problem

is therefore N = 3M . In the numerical implementa-

tion of the algorithm, the operators W and W ∗ are

not stored as matrices; they are defined as functions

returning a matrix-vector product relying on the dis-

crete wavelet transform of Python. In (112), λn = 1 if

ξn is a detail (i.e. high frequency) wavelet coefficient,

whereas λn = 10−4 if ξn is an approximation (i.e. low

frequency) coefficient. The image is divided into a parti-

tion of L = 256 squares of size B = 32× 32 pixels. The

hyper-parameters are set to δ = 10−4 and, for every

` ∈ {1, . . . , L}, α` = 0.9 σ̂`
2B, where σ̂` is the empir-

ical standard deviation of the noise on the `-th block,

estimated as

σ̂`
2 ' a

B

∑
i∈`-th block

zi + b. (122)

1 Since W∗ is surjective, this means that there exists y ∈
[0, 1]M such that, for every ` ∈ {1, . . . , L}, ‖[Hy−z]`‖2 ≤ α`.
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We compare the convergence speed of P-MMS and

its local acceleration P-MMSloc, with four state-of-the-

art algorithms, namely the primal-dual Condat-Vũ al-

gorithm (CV) [32,77], the parallel proximal algorithm

(PPXA+) [31], FISTA [8] and the SQP trust region al-

gorithm of Byrd et al. [18] (trust-constr). FISTA is im-

plemented using the improved scheme [23] where subite-

rations for computing the proximity operator are per-

formed with an accelerated dual Forward-Backward al-

gorithm [1]. The trust region method is a solver already

implemented in the Python package scipy.optimize.

Note that PPXA+ is similar to a parallel version of

ADMM [70,15].

The restored image using formulation (111) is dis-

played in Fig. 2 (right). We compare, in Fig. 3, the con-

vergence speed of the algorithms in terms of the relative

distance between the outer iterate (corresponding to xj)
and the limit point x∞, computed after a large number

of iterations for each method. One can observe that the

proposed method P-MMSloc outperforms all the other

competitors. The advantage of resorting to the local

majoration strategy can be observed when comparing

P-MMS and P-MMSloc curves.

Fig. 2 (top left) Degraded image, PNSR = 29.90dB ; (top
right) Restored image, PNSR = 31.58dB; (bottom left) Zoom
on the degraded image ; (bottom right) Zoom on the restored
image.
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Fig. 3 Distance to the optimum versus time.

6.2 Image reconstruction in the presence of Poisson

noise

Our second example focuses on a medical imaging re-

construction problem, typically encountered in Positron

Emission Tomography (PET) imaging.

6.2.1 Positron Emission Tomography

PET is a medical imaging technique used to detect the

presence of specific molecules enriched in tissues (e.g.

tumors) of an organ by means of an appropriate tracer

injected to the patient. The tracer is marked by a ra-

dioactive element that emits a positron when it disinte-

grates. The positron then annihilates with an electron.

This results in the emission of two photons travelling in

two opposite directions (see Fig. 4(a)), making it possi-

ble to identify a “line-of-response” (LOR) in which the

annihilation occurred (see Fig. 4(b)). The PET acqui-

sition of a 2D scene, represented as a vector x ∈ RN ,

is a so-called sinogram y ∈ RM gathering the number

of disintegrations detected per pair of detectors. This

leads to the observation model:

y = P(Hx), (123)

where H ∈ RM×N is the projection matrix whose el-

ements Hm,n represents the intersection area between

the n-th pixel and the m-th LOR, and P models a Pois-

son noise.

6.2.2 Considered optimization problem

We propose to tackle the inverse problem (123) of re-

constructing x from the sinogram y and the geometry

matrix H, by minimizing a data fidelity function reflect-

ing the properties of Poisson noise, under a Total Vari-

ation (TV) regularization constraint and a pixel range

constraint. A typical choice to account for Poisson noise
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(a) (b)

Fig. 4 (a) Two photons are emitted in opposite directions
and are detected almost simultaneously by two different de-
tectors. (b) The annihilation is assumed to occur within an
LOR delimited by the two detectors [67].

[39,52] consists of making use of the Anscombe variance

stabilizing transform [5],

T : [0,+∞)M −→ [0,+∞)M

u = (ui)1≤i≤M 7−→
(

2
√
ui + 3

8

)
1≤i≤M

,

(124)

which approximately transforms the Poisson noise into

an i.i.d. Gaussian noise with zero-mean and unit vari-

ance. The associated data-fidelity function is then de-

fined as

(∀x ∈ D) F (x) = ‖T (Hx)− T (y)‖2, (125)

with the domain

D = {x ∈ RN | Hx ∈ [0,+∞)M}. (126)

One can rewrite (125), using (124):

(∀x ∈ D) F (x) = 4

M∑
i=1

(
(Hx)i +

3

8

)

+ 4

M∑
i=1

(T (y))i ρ((Hx)i) + ‖T (y)‖2, (127)

where (·)i denotes the i-th component and

(∀υ ∈ [0,+∞)) ρ(υ) = −
√
υ + 3/8. (128)

In order to extend the domain of F to RN , we introduce

the above differentiable extension of ρ on R:

(∀υ ∈ R) ρ(υ) =

{
ρ(υ) if υ ≥ 0,

−
√

2
3υ −

√
3/8 if υ < 0,

(129)

which yields the following extension of F on the whole

space:

(∀x ∈ RN ) F (x) = 4

M∑
i=1

(
(Hx)i +

3

8

)

+ 4

M∑
i=1

(T (y))i ρ((Hx)i) + ‖T (y)‖2. (130)

The optimization problem to tackle is then

minimize
x∈RN

F (x),

subject to TV(x) ≤ α and x ∈ [0, xmax]N ,
(131)

where α ∈ (0,+∞) is the TV bound acting as a regular-

ization parameter, and xmax ∈ (0,+∞) is the maximal

pixel intensity of the sought image x. Moreover, TV

stands for the total variation semi-norm [69]:

(∀x ∈ RN ) TV(x) =

N∑
n=1

‖(Gx)n‖2, (132)

where G ∈ R2N×N is the 2D discrete gradient opera-

tor. A natural choice for the regularization parameter

would be α = TV(x). As discussed in [30], opting for a

slightly smaller value of α (and thus over-regularizing)

can improve the reconstruction performance.

The optimization problem (131) is an instance of

Problem (P) with F given by (130) and

C = {x ∈ RN | TV(x) ≤ α and x ∈ [0, xmax]N}. (133)

As we will see, our penalized MMS approach, although

designed for differentiable objective functions, is able

to handle nonsmooth regularization constraints such as

the TV constraint involved here.

6.2.3 Proposed algorithm

We propose to apply the penalized MMS method de-

scribed in Sections 4 and 5 to the resolution of (131).

To do so, we introduce the penalty function for the TV

constraint:

(∀x ∈ RN ) R1(x) = d2
B(Gx), (134)

where B is the `1,2-ball with radius α, i.e.

B = {g = (gn)1≤n≤N ∈ (R2)N |
N∑
n=1

‖gn‖2 ≤ α}. (135)

Moreover, we define the penalty function for the pixel-

range constraint as

(∀x ∈ RN ) R2(x) = 2 d2
[0,xmax]N

(x). (136)

Finally, the penalty function for problem (131) is

(∀x ∈ RN ) R(x) = R1(x) +R2(x). (137)

Our MMS approach requires the design of quadratic

tangent majorants for the functions F , R1, and R2,

respectively defined in (130), (134) and (136).

To determine a majorant function for F , we rely on

the following proposition extending the result from [43].
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Proposition 3 Let ρ : [0,+∞) −→ R be a convex, twice

continuously differentiable function with concave deriva-

tive ρ′. We denote by ρ′(0) (resp. ρ′′(0)) the right-hand

derivative (resp. second-order derivative) of ρ at 0. Let

ρ the continuously differentiable extended version of ρ

on R, given by

(∀υ ∈ R) ρ(υ) =

{
ρ(υ) if υ ≥ 0,

ρ′(0)υ + ρ(0) if υ < 0.
(138)

Then, ρ satisfies the following majoration property at

every τ ∈ R:

(∀υ ∈ R) ρ(υ) ≤ ρ(τ) + ρ′(τ)(υ− τ) +
1

2
ω(τ)(υ− τ)2,

(139)

with ρ′ the derivative of ρ and

(∀τ ∈ R) ω(τ) =

{
ρ′(|τ |)−ρ′(0)

|τ | if τ 6= 0,

ρ′′(0) if τ = 0.
(140)

A proof of Proposition 3 is given in the appendix.

In particular, Proposition 3 holds for ρ in (128) and

ρ defined in (129). The majorant obtained in Propo-

sition 3 is more accurate than the one based on the

descent lemma ([7, Lemma 2.64]) as illustrated in the

example of Fig. 5. This behaviour should be beneficial

for the practical convergence speed of our method.

Fig. 5 Comparison of two strategies for majorizing function
ρ (red) around v = −1. The green curve is the majorant re-
sulting from the descent lemma (i.e., exploiting the Lipschitz
constant of ρ′). The blue curve is the majorant obtained with
our Proposition 3.

Using now Propositions 2 and 3, we build a quadratic

majorant of F at x ∈ RN characterized by the curva-

ture matrix:

(∀x ∈ RN ) AF (x)

= 4H>Diag
{(

(T (y))i ω((Hx)i)
)
1≤i≤M

}
H + εIN ,

(141)

with ε a small positive parameter which ensures that

the curvature matrix is positive. Quadratic majorants

of R1 and R2 can be obtained following our Example

2, which yields the respective curvatures:

(∀x ∈ RN ) AR1(x) = 2G>G and AR2(x) = 4 · IN .
(142)

We illustrate the performance of P-MMS and P-

MMSloc methods. For both algorithms, since the con-

straint set C defined in (133) is nonempty (it contains

the zero image), the convergence conditions derived in

Section 5.3 are met. Indeed, Assumptions 1-4 and 6 are

fulfilled by functions F and R defined in (137). In addi-

tion, as the memory gradient subspace (35) was chosen,

Assumption 5 is satisfied. Finally, penalty parameters

(γj)j∈N in P-MMS and P-MMSloc were set to

(∀j ∈ N) γj = (0.002j)0.6, (143)

and the precision parameters (εj)j∈N were chosen as

(∀j ∈ N) εj = 0.01/(γj)
0.15. (144)

These sequences satisfy the requirements of Assump-

tion 7. Assumption 8 also holds since F and R are con-

vex.

6.2.4 Results

We simulate a realistic example using the brain phan-

tom image x from the dataset [9] of size N = 128× 128

pixels and intensity range [0, 200] displayed in Fig. 6

(left)). Measurements are generated using Model (123)

where H models a simplified 2D PET geometry with

144 detectors regularly distributed on a circle with ra-

dius equals to 64
√

2 + 16 pixel units, leading to M =

10296 pairs of detectors and approximately 4 ·105 Pois-

son counts. The hyper-parameters were set to xmax =

200, α = 0.9 TV(x), and ε = 10−3.

We again compare the convergence speed of P-MMS

and its local acceleration P-MMSloc with the primal-

dual CV algorithm [32,77], PPXA+ [31], and the im-

proved FISTA [8] scheme from [23] using the method [1]

for the inner proximity steps. All the aforementioned al-

gorithms require projection steps onto the `1,2-ball, so

as to handle the TV term. This can be expressed as a

function of the projection on the `1-ball, that we imple-

mented using Condat’s algorithm in [33]. Note that a

comparison to a second-order algorithm was not possi-

ble as the objective function F is not twice differentiable

and the TV function is not differentiable.

The reconstructed image is displayed in Fig. 6 (right).

One can assess the good quality of reconstruction ob-

tained with the proposed formulation (131), compared
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to the use of a simpler least-square approach coupled

with a quadratic regularization (Fig. 6 (bottom)). We

display in Fig. 7 the evolution of the relative distance

between the outer iterate and the limit point x∞, for

each method. Hereagain, one can notice that the pro-

posed method P-MMSloc outperforms all the other com-

petitors.

Fig. 6 (top left) Original image ; (top right) Reconstructed
image with model (131) ; (bottom) Reconstructed image with
a Tikhonov least squares approach.
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Fig. 7 Comparison of convergence speed on the PET recon-
struction example. Evolution of the distance to the optimum
versus time.

7 Conclusion

In this paper, we have proposed a new combined subspace-

exterior penalty algorithm for solving constrained, dif-

ferentiable optimization problems. An interesting fea-

ture of our approach is the trust-region technique used

to accelerate the algorithm. The proposed method can

handle a large variety of constraints and was shown to

compare favorably with state-of-the-art algorithms in

terms of convergence speed on two large-scale image

recovery problems. In future work, it could be interest-

ing to relax the convexity assumption (Assumption 8)

made in the theoretical analysis of the penalty method,

possibly by better relying on the KL property. Another

development would consist in establishing a local con-

vergence rate for our algorithm.

Appendix: proof of Proposition 3

Proof. Let τ ∈ R. Define, for every υ ∈ R,

φ(υ) = ρ(υ)−ρ(τ)−ρ′(τ)(υ− τ)− ω(τ)

2
(υ− τ)2. (145)

We shall prove that φ is nonpositive on R. First, note

that our assumptions on ρ imply that ρ′ is nondecreas-

ing on [0,+∞) and ρ′′ is positive, nonincreasing on

[0,+∞). We distinguish three cases namely τ > 0,

τ = 0, and τ < 0.

(i) Suppose that τ > 0. Differentiating φ twice yields

the equality

(∀υ ∈ (0,+∞)) φ′′(υ) = ρ′′(υ)− ρ′(τ)− ρ′(0)

v
(146)

and φ′′(0+) = ρ′′(0) − (ρ′(τ) − ρ′(0))/τ . Since ρ′ is

concave on [0,+∞) and τ > 0, it follows from the

tangent inequality that

φ′′(0+) ≥ 0 and φ′′(τ) ≤ 0. (147)

In addition, φ′′ is nonincreasing and continuous on

[0,+∞), thus there exists ζ ∈ [0, τ ] such that φ′′(ζ) =

0. Hence, φ′ is nondecreasing on [0, ζ) and nonin-

creasing on [ζ,+∞). Since φ′(0) = φ′(τ) = 0, it

follows that

(∀υ ∈ [0, τ)) φ′(υ) ≥ 0, (148)

(∀υ ∈ [τ,+∞)) φ′(υ) ≤ 0. (149)

Finally, φ is nondecreasing on [0, τ ], nonincreasing

on [v,+∞), and since φ(τ) = 0,

(∀υ ∈ [0,+∞)) φ(υ) ≤ 0. (150)

Let us prove the same inequality on ] − ∞, 0[. We

have

∀υ ∈ (−∞, 0[, φ′′(υ) = −ρ
′(τ)− ρ′(0)

v
. (151)
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Since ρ′ is nondecreasing on [0,+∞) and τ > 0,

∀υ ∈ (−∞, 0), φ′′(υ) ≤ 0. (152)

We deduce that φ′ is nonincreasing on (−∞, 0). More-

over, since φ′(0) = 0, we obtain by continuity that

φ′(υ) ≥ 0 for all υ ∈ (−∞, 0). Hence φ is nonde-

creasing on (−∞, 0) and, according to (150), φ(0) ≤
0. Thus

(∀υ ∈ (−∞, 0)) φ(υ) ≤ 0, (153)

which concludes the study in the case when τ > 0.

(ii) Suppose that τ = 0. The derivative of φ reads

(∀υ ∈ R) φ′(υ) = ρ′(υ)− ρ′(0)− ρ′′(0)υ, (154)

thus by concavity of ρ′ on [0,+∞), for every υ ≥ 0,

φ′(υ) ≤ 0. Moreover, for every υ < 0,

φ′(υ) = −ρ′′(0)υ ≥ 0. (155)

Since φ(0) = 0, we easily conclude that

(∀υ ∈ R) φ(υ) ≤ 0. (156)

(iii) Suppose that τ < 0. For every υ ∈ [0,+∞),

φ′′(υ) = ρ′′(υ)− ρ′(−τ)− ρ′(0)

−τ . (157)

Since ρ′ is concave on [0,+∞),

φ′′(0+) ≥ 0 and φ′′(−τ) ≤ 0. (158)

As for the case τ > 0, there exists ζ ∈ [0,−τ ] such

that φ′′(ζ) = 0. Hence φ′ is nondecreasing on [0, ζ[

and nonincreasing on [ζ,+∞). Let us show that
φ′(ζ) ≤ 0. Using the fact that ρ′(τ) = ρ′(0) (be-

cause of (138) when τ < 0), an immediate calcula-

tion yields

φ′(ζ) = ρ′(ζ)− ρ′(0)

− (ρ′(−τ)− ρ′(0))− ρ′(−τ)− ρ′(0)

−τ ζ. (159)

Since ρ′ is nondecreasing and ρ′′(ζ) = ρ′(−τ)−ρ′(0)
−τ

by definition of ζ, we have

φ′(ζ) ≤ ρ′(ζ)− ρ′(0)− (ρ′(ζ)− ρ′(0))− ρ′′(ζ)ζ

= −ρ′′(ζ)ζ

≤ 0. (160)

Therefore

(∀υ ∈ [0,+∞)) φ′(υ) ≤ 0, (161)

and φ in nonincreasing [0,+∞).

Now, it suffices to prove that φ(0) ≤ 0 to deduce

the nonpositivity of φ on [0,+∞). We have

φ(0) = ρ(0)− ρ(τ)− ρ′(τ)(−τ)− ρ′(−τ)− ρ′(0)

−2τ
τ2

= ρ(0)− (ρ′(0)τ + ρ(0)) + ρ′(0)τ

+
1

2
(ρ′(−τ)− ρ′(0)) τ

=
1

2
(ρ′(−τ)− ρ′(0)) τ

≤ 0, (162)

where the last inequality follows from the fact that

ρ′ is nondecreasing on ]−∞, 0]. Hence

(∀υ ∈ [0,+∞)) φ(υ) ≤ φ(0) ≤ 0. (163)

To prove a similar inequality on (−∞, 0), we observe

that

(∀υ ∈ (−∞, 0)) φ′′(υ) = −ω(τ) ≤ 0. (164)

Thus φ′ is nonincreasing on (−∞, 0). Since φ′(τ) =

0, we deduce that φ is nondecreasing on (−∞, τ ]

and nonincreasing on [τ, 0). It follows that

(∀υ ∈ (−∞, 0)) φ(υ) ≤ φ(τ) = 0. (165)

Finally, gathering inequalities (163) and (165) yields

(∀υ ∈ R) φ(υ) ≤ 0, (166)

which concludes the proof.
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