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On the construction of conditional probability densities∗

Pavel V. Gapeev† Monique Jeanblanc‡

Abstract

In this paper, we construct strictly positive conditional probability densities with re-

spect to the given reference filtration in the two cases of a filtration generated by a

Brownian motion and a (compound) Poisson process. Then, by means of the results con-

tained in [23], it is possible to construct the associated random times on some extended

probability space. Hence, Jacod’s equivalence hypothesis, that is, the existence of strictly

positive conditional densities for the random times with respect to the reference filtration,

is obviously satisfied.

1 Introduction

In this paper, we construct strictly positive conditional probability densities with respect to

some reference filtration. In that case, one can apply the results obtained in Jeanblanc and

Song [23] to construct the associated random times on some extended probability spaces. These

properties automatically lead to the satisfaction of Jacod’s equivalence hypothesis, that is, to

the existence of a strictly positive conditional density for the random time with respect to

the reference filtration (see, e.g. Aksamit and Jeanblanc [1] for further discussions on Jacod’s

hypothesis). We present a general framework for this model in Section 2, and then, under

the assumption that the intensity is deterministic, consider the cases of Brownian reference

filtrations in Section 3 as well as filtrations generated by (compound) Poisson processes in

Sections 4-5. We also derive connections between our results and the models of quickest change-

point (or disorder) detection (see, e.g. Shiryaev [32] and the references therein).
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2 The framework

We give a model for constructions of conditional probability densities with respect to a reference

filtration. For this purpose, we assume that we work on a filtered probability space (Ω,G,F,P),
where F is a given (reference) filtration. We call an F-conditional density any family of strictly

positive F-martingales ((pt(u))t≥0;∀u ≥ 0), parameterised by u ∈ [0,∞), such that∫ ∞

0

pt(u) g(u) du = 1, ∀t ≥ 0 ,

where g is a given density on R+ and p0(u) = 1, ∀u ≥ 0.

There are very few examples in the literature (see, e.g. [1, chapter 4]). In this paper, we

will investigate the inverse problem in two cases: when F is a Brownian filtration and when F
is a (compound) Poisson filtration, and show how to construct such families. In the both cases,

we start with a deterministic bounded strictly positive function λ = (λ(t);∀t ≥ 0) satisfying∫∞
0

λ(s)ds = ∞ and a supermartingale G = (Gt, t ≥ 0) valued in )0, 1] such that the process

(Gte
∫ t
0 λ(s)ds)t≥0 is a (strictly) positive F-local martingale. In this case, using the work of [23], on

the extended space Ω× [0,∞), one can construct a random variable τ (in fact τ(ω′, ω′′) = ω′′ )

and a probability Q (on G ⊗ B([0,∞))) such that

Q(τ > t | Ft) = Gt and Q
∣∣
Ft

= P
∣∣
Ft
, ∀t ≥ 0 .

The Doob-Meyer decomposition of the F-supermartingale G has a predictable part equal to

λ(t)Gt−dt , hence (see Proposition 2.4 in [1]), the process

11{τ≤t} −
∫ t∧τ

0

λ(s) ds, ∀t ≥ 0 ,

is a martingale in the progressive enlargement of F with τ , where 11{·} denotes the indicator

function, and λ is called the intensity of τ . This implies that

Q(τ ≤ t) =

∫ t

0

λ(s)Q(τ > s) ds, ∀t ≥ 0 ,

and hence,

Q(τ ≤ t) = 1− exp

(
−

∫ t

0

λ(s) ds

)
, ∀t ≥ 0 ,

Note that Q(τ = 0) = 0, and G0 = 1, and τ admits a density g given by

g(u) = λ(u) exp

(
−
∫ u

0

λ(v) dv

)
, ∀u ≥ 0 .

It follows from the deterministic character of the intensity function λ that the following Jacod’s

equivalence hypothesis holds, that is, the regular conditional distribution of τ given Ft is

equivalent to the distributional law of τ , that is expressed by

Q(τ ∈ · | Ft) ∼ Q(τ ∈ ·) (Q-a.s.), ∀t ≥ 0 . (2.1)
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We recall that Jacod’s equivalence hypothesis holds if there exists a family p(u) of F-conditional
densities p(u) = (pt(u);∀t ≥ 0), ∀u ≥ 0, such that

Q(τ > u | Ft) =

∫ ∞

u

pt(v) g(v) dv, ∀t ≥ 0, ∀u ≥ 0 .

The family of processes (p(u);∀u ≥ 0) is then called the conditional density. The deterministic

property of λ enables us to prove the existence of a conditional density in our model. A similar

problem is studied in [23] with a different method. We refer the reader to the seminal papers

of Jacod [20], Grorud and Pontier [19] and Amendinger [2], and to the book [1] for more details

on Jacod’s hypothesis. Note that the knowledge of the conditional density allows to give the

decomposition of any martingale in the reference filtration as a semimartingale in the initial

(and progressive) enlargement with τ (see [1]).

3 The case of Brownian filtrations

In this section, we consider the case where F is the filtration generated by a standard Brownian

motion W . We use the notation of the framework described in Section 2.

3.1 The conditional survival probability process G

Suppose that there exists a standard Brownian motion W = (Wt)t≥0 generating the reference

filtration F = (Ft)t≥0 which is complete under the probability measure P . Let us consider the
stochastic differential equation

dΦt =

(
(1 + Φt)λ(t) +

Φ2
t

1 + Φt

)
ρ2 dt+ Φt ρ dWt (3.1)

where ρ > 0 is a given constant, λ = (λ(t);∀t ≥ 0) is a strictly positive deterministic function,

and Φ0 = 0. Since the coefficients of the stochastic differential equation in (3.1) are Lipschitz

continuous and of a linear growth, it follows from the result of [26, Chapter IV, Theorem 4.8]

that the equation in (3.1) admits a pathwise unique (strong) solution process Φ = (Φt)t≥0 .

Let ϑ = inf{t : Φt < −1/2} . On [0, ϑ] , the drift of (3.1) is positive, hence, from [30,

Theorem 3.7 chapter IX] Φt ≥ Ψt where the positive process Ψ = (Ψt)t≥0 solves the stochastic

differential equation

dΨt = Ψt ρ dWt (3.2)

and Ψ0 = 0, i.e., Ψt = 0 for any t ≥ 0 (i.e., ϑ = ∞), and Φ is valued in R+ . The process

G = (Gt)t≥0 defined by Gt = 1/(1+Φt), for all t ≥ 0, solves the stochastic differential equation

dGt = −Gt λ(t) dt−Gt(1−Gt) ρ dWt (3.3)

and thus, it is a supermartingale valued in (0, 1] with initial condition G0 = 1.
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Note that the equation in (3.3) has the same structure as the appropriate stochastic differ-

ential equations for the posterior probability processes Π = (Πt)t≥0 such that Πt = 1 − Gt ,

∀t ≥ 0, in the quickest change-point detection problems for Wiener processes [?, Chapter IV,

Section 4] (see also [31, Chapter IV, Section 4] and [29, Chapter VI, Section 22]).

3.2 The multiplicative decomposition for the process G

In [23], starting from an F-supermartingale valued in [0, 1], the authors construct a large family

of F-martingales M(u), ∀u ≥ 0, valued in [0, 1], as solution of a stochastic differential equation

such that Mt(t) = Gt , ∀t ≥ 0, and u → Mt(u) is decreasing on [0,∞), ∀t ≥ 0 fixed, and

represent the F-conditional law of a random time τ (under the probability measure Q on

the extended probability space). Here, our construction is different, however, our solution is

included in [23, Section 4.2, Equation ♯ ]. As we explained in Section 2, our goal is to construct

τ such that Q(τ > t | Ft) = Gt , which implies that the density of τ is g and that the cumulative

distribution function is

F (t) = P(τ ≤ t) = 1− exp

(
−
∫ t

0

λ(s) ds

)
, ∀t ≥ 0 .

In order to provide the multiplicative decomposition for the supermartingale G , let us

introduce the process Y = (Yt)t≥0 by

Yt =

∫ t

0

g(s)

Zs

ds+
1− F (t)

Zt

, ∀t ≥ 0 , (3.4)

where the process Z = (Zt)t≥0 is defined by

Zt = exp

(
ρXt −

ρ2

2
t

)
, ∀t ≥ 0 , (3.5)

and the process X = (Xt)t≥0 is given by

Xt =

∫ t

0

(1−Gs) ρ ds+Wt, ∀t ≥ 0 , (3.6)

so that the inclusion F ′
t ⊆ Ft holds, ∀t ≥ 0, for the natural filtration F′ = (F ′

t)t≥0 of X defined

by F ′
t = σ(Xs | 0 ≤ s ≤ t), ∀t ≥ 0. Then, by applying Itô’s formula and the integration by

parts formula, we obtain from the expressions in (3.4)-(3.6) that the processes Z , 1/Z , and Y

admit the stochastic differentials

dZt = Zt ρ dXt = Zt ρ
(
(1−Gt) ρ dt+ dWt

)
(3.7)

d

(
1

Zt

)
= − 1

Zt

ρ
(
dXt − ρ dt

)
= − 1

Zt

ρ
(
dWt −Gt ρ dt

)
(3.8)
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and

dYt ≡ (1− F (t)) d

(
1

Zt

)
= −1− F (t)

Zt

ρ
(
dWt −Gt ρ dt

)
. (3.9)

Hence, by applying Itô’s formula and the integration by parts formula, we obtain from the

representations in (3.7)-(3.9) that the processes GZ , GZY , and GZY − (1 − F ) admit the

stochastic differentials

d
(
GtZt

)
= Gt dZt + Zt dGt + d⟨G,Z⟩t (3.10)

= −Gt Zt λ(t) dt+G2
t Zt ρ dWt

d
(
GtZtYt

)
=

(
GtZt

)
dYt + Yt d

(
GtZt

)
+ d⟨GZ, Y ⟩t (3.11)

= −GtZtYt λ(t) dt+
(
GtZtYt − (1− F (t))

)
Gt ρ dWt

and

d
(
GtZtYt − (1− F (t))

)
(3.12)

=
(
GtZtYt − (1− F (t))

) (
− λ(t) dt+ Gt ρ dWt

)
where we have F (0) = 0. Since the process GZY − (1−F ) starts at G0Z0Y0− (1−F (0)) = 0,

we may conclude from the geometric structure of the stochastic differential equation (3.12) that

GtZtYt − (1− F (t)) = 0, ∀t ≥ 0, and thus, the decomposition

Gt =
1− F (t)

ZtYt

, ∀t ≥ 0 , (3.13)

so that the process G is F′ -adapted. In this case, we also see from the expressions in (3.13)

and (3.4)-(3.6) that the inclusion Ft ⊆ F ′
t holds too, so that F ′

t = Ft , ∀t ≥ 0, and thus, we

have F′ ≡ F . Moreover, the expression in (3.13) gives the multiplicative decomposition with

the martingale part 1/(ZY ) and the predictable part 1− F (t), ∀t ≥ 0.

3.3 The set of strictly positive martingales M(u)

Let us now define a set of processes M(u) = (Mt(u))t≥0 by

Mt(u) =
1

Yt

∫ ∞

u

g(s)

Zs∧t
ds ≡ 1

Yt

(∫ u∨t

u

g(s)

Zs

ds+
1− F (u ∨ t)

Zt

)
, ∀t ≥ 0 , ∀u ≥ 0 . (3.14)

Then, taking into account the representations in (3.7)-(3.9), we obtain by means of standard

applications of Itô’s formula and the integration by parts formula that the processes 1/Y and

1/(ZY ) admit the stochastic differentials

d

(
1

Yt

)
=

1− F (t)

ZtY 2
t

ρ dWt =
Gt

Yt

ρ dWt (3.15)
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and

d

(
1

ZtYt

)
=

1

Zt

d

(
1

Yt

)
+

1

Yt

d

(
1

Zt

)
+ d

〈
1

Z
,
1

Y

〉
t

= −1−Gt

ZtYt

ρ dWt (3.16)

so that 1/Y and 1/(ZY ) are local martingales. Hence, by applying the integration by parts

formula to the expression in (3.14), we get that the process M(u) admits the stochastic differ-

ential

dtMt(u) =

(∫ t

u

g(s)

Zs

ds

)
d

(
1

Yt

)
+ (1− F (t)) d

(
1

ZtYt

)
+

1

ZtYt

d(1− F (t)) +
g(t)

ZtYt

dt (3.17)

for 0 ≤ u < t , which takes the form

dtMt(u) =

(
Gt

Yt

∫ t

u

g(s)

Zs

ds− (1− F (t))(1−Gt)

ZtYt

)
ρ dWt (3.18)

for 0 ≤ u < t . Thus, we conclude that M(u) is a local martingale, ∀u ≥ 0 fixed. It is also seen

from the expression in (3.14) that M(u) is strictly positive. Furthermore, it follows from the

fact that Mt(0) = 1 and the property that the mapping u 7→ Mt(u) is decreasing on [0,∞),

we obtain that the process M(u) is a martingale valued in (0, 1), ∀u ≥ 0 fixed. Observe from

the definition of the process M(u) in (3.14) and the decomposition in (3.13) that Mt(t) = Gt ,

∀t ≥ 0, as well as Mt(u) = (1 − F (u))/(ZtYt), ∀0 ≤ t ≤ u , ∀u ≥ 0 fixed. We also note that

the representation

dtMt(u) = Mt(u) (1− F (t)) d

(
1

ZtYt

)
+ dKt

holds, which represents the formula from [23, Section 4.2, Equation ♯(u)] with f ≡ 1, where

K = (Kt)t≥0 is an F-martingale which does not depend on u .

3.4 The set of conditional probability density processes p(u)

It therefore follows that, on an extended probability space, one can construct a random time

τ and a probability measure Q such that Q and P coincide on the filtration F = (Ft)t≥0 and

Q(τ > u | Ft) = Mt(u), ∀t ≥ 0, ∀u ≥ 0 fixed (see [23, Section 3] and [25]). Let us finally note

that the family of the conditional probability density processes p(u) = (pt(u))t≥0 defined by

pt(u) = 1/(Zu∧tYt), ∀t ≥ 0, ∀u ≥ 0 fixed, satisfies the equality

Mt(u) =

∫ ∞

u

pt(s) g(s) ds, ∀t ≥ 0 , ∀u ≥ 0 . (3.19)

Then, it follows from the expressions in (3.15) and (3.16) that the process p(u) admits the

stochastic differential

dtpt(u) ≡ dt

(
1

Zu∧tYt

)
=

(
11{u<t}

Gt

ZuYt

− 11{u≥t}
1−Gt

ZtYt

)
ρ dWt (3.20)

=
(
11{u<t}Gt − 11{u≥t} (1−Gt)

)
pt(u) ρ dWt
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so that the representation

pt(u) = exp

(∫ t

0

φs(u) dWs −
1

2

∫ t

0

φ2
s(u) ds

)
, ∀t ≥ 0 , ∀u ≥ 0 , (3.21)

holds with

φt(u) =
(
11{u<t}Gt − 11{u≥t} (1−Gt)

)
ρ =

(
11{u<t} − (1−Gt)

)
ρ, ∀t ≥ 0 , ∀u ≥ 0 . (3.22)

4 The case of Poissonian filtrations

In this section, we consider the case, where F is the filtration generated by a Poisson process

N . We use the notation of the framework described in Section 2.

4.1 The conditional survival probability process G

Suppose that there exists a Poisson process N = (Nt)t≥0 of the intensity λ0 > 0 generating

the reference filtration F = (Ft)t≥0 which is complete under the probability measure P . Let us
consider the stochastic differential equation

dΦt = (1 + Φt−)λ(t) dt+ Φt−

(
λ1

λ0

− 1

)(
dNt −

(1 + Φt−)λ
2
0

λ0 + Φt−λ1

dt

)
(4.1)

where λ1 > 0 is a given constant, λ = (λ(t);∀t ≥ 0) is a strictly positive function, and Φ0 = 0.

Since the coefficients of the stochastic differential equation in (4.1) are Lipschitz continuous

and of a linear growth, it follows from the result of [21, Chapter III, Theorem 2.32] that the

equation in (4.1) admits a pathwise unique (strong) solution process. Moreover, between two

jump times Tn−1 and Tn , for n ≥ 1, of the Poisson process N , the process Φ follows

dΦt

dt
= (1 + Φt)λ(t)− Φt−

(
λ1

λ0

− 1

)
(1 + Φt)λ

2
0

λ0 + Φt−λ1

∀t ≥ 0 . (4.2)

and introduce T = inf{t > 0 : Φt} = 0. Then at time T , the derivative of Φ is positive and

Φ remains non negative after time T till its second hitting time of 0. Adding that the jump

values of Φ are such that

ΦTn =
λ1

λ0

ΦTn−, ∀n ≥ 1 ,

we conclude that Φ is nonnegative. We may conclude that the candidate conditional survival

probability process G = (Gt)t≥0 defined by Gt = 1/(1+Φt), for all t ≥ 0, solves the stochastic

differential equation

dGt = −Gt− λ(t) dt− Gt−(1−Gt−)(λ1 − λ0)

λ0 + (1−Gt−)(λ1 − λ0)

(
dNt − λ0 dt

)
(4.3)

where λ1 > 0 is a given constant.
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Note that the equation in (4.3) has the same structure as the appropriate stochastic differ-

ential equations for the posterior probability processes Π = (Πt)t≥0 such that Πt = 1 − Gt ,

∀t ≥ 0, in the quickest change-point detection problems for Poisson processes [28] (see also [29,

Chapter VI, Section 24]).

4.2 The multiplicative decomposition for the process G

In order to provide a multiplicative decomposition for the supermartingale G , let us introduce

the process Y = (Yt)t≥0 as in (3.4), where the process Z = (Zt)t≥0 is defined by

Zt = exp

(
ln

(
λ1

λ0

)
Xt − (λ1 − λ0) t

)
, ∀t ≥ 0 , (4.4)

and the process X = (Xt)t≥0 is given by

Xt =

(
ln

(
λ1

λ0

))−1 ∫ t

0

(1−Gs−)(λ1 − λ0)
2

λ0 + (1−Gs−)(λ1 − λ0)
ds+Nt, ∀t ≥ 0 , (4.5)

so that the inclusion F ′
t ⊆ Ft holds, ∀t ≥ 0, for the natural filtration F′ = (F ′

t)t≥0 of X defined

by F ′
t = σ(Xs | 0 ≤ s ≤ t), ∀t ≥ 0. Then, by applying Itô’s formula and the integration by

parts formula for general semimartingales (see, e.g. [21, Chapter I, Theorem 4.57]) and taking

into account the fact that dNt = ∆Nt ≡ Nt −Nt− , ∀t ≥ 0, we obtain from the expressions in

(3.4) and (4.4)-(4.5) that the processes Z , 1/Z , and Y admit the stochastic differentials

dZt = Zt−

(
λ1

λ0

− 1

)
d
(
Xt − λ0 t

)
= Zt−

(
λ1

λ0

− 1

)(
dNt −

λ2
0

λ0 + (1−Gt−)(λ1 − λ0)
dt

)
(4.6)

d

(
1

Zt

)
=

1

Zt−

(
λ0

λ1

− 1

)(
dNt −

λ0λ1

λ0 +Πt−(λ1 − λ0)
dt

)
(4.7)

and

dYt ≡ (1− F (t)) d

(
1

Zt

)
=

1− F (t)

Zt−

(
λ0

λ1

− 1

)(
dNt −

λ0λ1

λ0 + (1−Gt−)(λ1 − λ0)
dt

)
. (4.8)

Hence, by applying Itô’s formula and the integration by parts formula, we obtain from the

representations in (4.6)-(4.8) that the processes GZ , GZY , and GZY − (1 − F ) admit the

stochastic differentials

d
(
GZt

)
= Gt− dZt + Zt− dGt +∆Gt ∆Zt (4.9)

= −Gt− Zt− λ(t) dt+Gt− Zt−
Gt−(λ1 − λ0)

λ0 + (1−Gt−)(λ1 − λ0)
d
(
Nt − λ0 t

)
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d
(
GtZtYt

)
=

(
Gt−Zt−

)
dYt + Yt− d

(
GtZt

)
+∆

(
GtZt

)
∆Yt (4.10)

= −Gt−Zt−Yt− λ(t) dt+
(
Gt−Zt−Yt− − (1− F (t))

) Gt−(λ1 − λ0)

λ0 + (1−Gt−)(λ1 − λ0)
d
(
Nt − λ0 t

)
and

d
(
GtZtYt − (1− F (t))

)
= −

(
Gt−Zt−Yt− − (1− F (t))

)
λ(t) dt (4.11)

+
(
Gt−Zt−Yt− − (1− F (t))

) Gt−(λ1 − λ0)

λ0 + (1−Gt−)(λ1 − λ0)
d
(
Nt − λ0 t

)
where we have F (0) = 0. Since the process GZY − (1−F ) starts at G0Z0Y0− (1−F (0)) = 0,

we may conclude from the geometric structure of the stochastic differential equation (4.11) that

GtZtYt − (1− F (t)) = 0, for all t ≥ 0, and thus, the decomposition as in (3.13) holds, so that

the process G is F′ -adapted. In this case, we also see from the expressions in (3.13) and (3.4)

with (4.4)-(4.5) that the inclusion Ft ⊆ F ′
t holds too, so that F ′

t = Ft , for all t ≥ 0, and thus,

we have F′ ≡ F . Moreover, the expression in (3.13) gives the multiplicative decomposition of

G with the martingale part 1/(ZY ) and the predictable part 1− F (t), ∀t ≥ 0.

4.3 The set of strictly positive martingales M(u)

Then, taking into account the representations in (4.6)-(4.8), we obtain by means of standard

applications of Itô’s formula and the integration by parts formula that the processes 1/Y and

1/(ZY ) admit the stochastic differentials

d

(
1

Yt

)
=

1

Yt−

Gt−(λ1 − λ0)

λ0 + (1−Gt−)(λ1 − λ0)
d
(
Nt − λ0 t

)
(4.12)

and

d

(
1

ZtYt

)
=

1

Zt−
d

(
1

Yt

)
+

1

Yt−
d

(
1

Zt

)
+∆

(
1

Zt

)
∆

(
1

Yt

)
(4.13)

= − 1

Zt−Yt−

(1−Gt−)(λ1 − λ0)

λ0 + (1−Gt−)(λ1 − λ0)
d
(
Nt − λ0 t

)
so that they are (local) martingales. Hence, by applying the integration by parts formula to

the expression as in (3.14), we get that the process M(u) admits the stochastic differential as

in (3.17), which takes the form

dtMt(u) =

(
Gt−

Yt−

∫ t

u

g(s)

Zs

ds− (1− F (t))(1−Gt−)

Zt−Yt−

)
(4.14)

× λ1 − λ0

λ0 + (1−Gt−)(λ1 − λ0)
d
(
Nt − λ0 t

)
for each 0 ≤ u < t fixed. Thus, we conclude that M(u) is a local martingale, for each

u ≥ 0 fixed. It is also seen from the expression as in (3.14) that M(u) is strictly positive.
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Furthermore, it follows from the fact that Mt(0) = 1 and the property that the mapping

u 7→ Mt(u) is decreasing on (0,∞), we obtain that the process M(u) is a martingale valued

in (0, 1). Observe from the definition of the process M(u) in (3.14) and the decomposition in

(3.13) that Mt(t) = Gt , ∀t ≥ 0, as well as Mt(u) = (1 − F (u))/(ZtYt), ∀0 ≤ t ≤ u , ∀u ≥ 0

fixed. We also note that the representation

dtMt(u) = Mt−(u) (1− F (t)) d

(
1

ZtYt

)
+ dKt

holds, which represents the formula from [23, Section 4.2, Equation ♯(u)] with f ≡ 1, where

K = (Kt)t≥0 is an F-martingale which does not depend on u .

4.4 The set of conditional probability density processes p(u)

It therefore follows that, on an extended probability space, one can construct a random time

τ and a probability measure Q such that Q and P coincide on the filtration F = (Ft)t≥0 and

Q(τ > u | Ft) = Mt(u), for all t ≥ 0 and each u ≥ 0 fixed (see [21, Section 3] and [25]). Let us

finally note that the family of the conditional probability density processes p(u) = (pt(u))t≥0

defined by pt(u) = 1/(Zu∧tYt), for all t ≥ 0 and each u ≥ 0 fixed, satisfies the equality as of

(3.19), for all t ≥ 0 and each u ≥ 0 fixed. Then, it follows from the expressions in (4.12) and

(4.13) that the process p(u) admits the stochastic differential

dtpt(u) ≡ dt

(
1

Zu∧tYt

)
(4.15)

=

(
11{u<t}

Gt−

ZuYt−
− 11{u≥t}

1−Gt−

Zt−Yt−

)
λ1 − λ0

λ0 + (1−Gt−)(λ1 − λ0)
d
(
Nt − λ0 t

)
=

(
11{u<t}Gt− − 11{u≥t} (1−Gt−)

) λ1 − λ0

λ0 + (1−Gt−)(λ1 − λ0)
pt−(u) d

(
Nt − λ0 t

)
so that the representation

pt(u) = exp

(∫ t

0

ln
(
1 + φs−(u)

)
dNs −

∫ t

0

φs−(u)λ0 ds

)
, ∀t ≥ 0 , ∀u ≥ 0 , (4.16)

holds with

φt−(u) =
(
11{u<t}Gt− − 11{u≥t} (1−Gt−)

) λ1 − λ0

λ0 + (1−Gt−)(λ1 − λ0)
(4.17)

=
(
11{u<t} − (1−Gt−)

) λ1 − λ0

λ0 + (1−Gt−)(λ1 − λ0)
, ∀t ≥ 0 , ∀u ≥ 0 .

5 The case of compound Poisson filtrations

In this section, we show that the previous constructions are equivalent to the ones in [12] and

[7] (see also [6] and other papers).
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5.1 The conditional probability process Π

Suppose that there exists a compound Poisson process (or a pure jump Lévy process) X =

(Xt)t≥0 with a Lévy measure ν0(dx) which is a positive σ -finite measure on B(R) satisfying

the conditions

ν0({0}) = 0,

∫ (
x2 ∧ 1

)
ν0(dx) < ∞ and

∫
|x| ν0(dx) < ∞. (5.1)

Assume that the process X generates the reference filtration F = (Ft)t≥0 which is complete

under the probability measure P . Note that, in the compound Poisson case of ν0(R) < ∞ , the

process X admits the representation Xt =
∑Nt

i=1 Ξi , where N = (Nt)t≥0 is a Poisson process

of intensity λ0 > 0 and (Ξi)i∈N is a sequence of independent identically distributed random

variables with the distribution ν0(dx)/λ0 , where N and (Ξi)i∈N are independent under P . Let
us consider the stochastic differential equation

dΦt = (1 + Φt−)λ(t) dt+ Φt−

∫ (
Υ(x)− 1

)(
µ(ds, dx)− 1 + Φt−

1 + Φt−Υ(x)
dt ν0(dx)

)
(5.2)

where Υ(x) is a given positive function, and Φ0 = 0. Since the coefficients of the stochastic

differential equation in (5.2) are Lipschitz continuous and of a linear growth, it follows from the

result of [21, Chapter III, Theorem 2.32] that the equation in (5.2) admits a pathwise unique

(strong) solution process Φ = (Φt)t≥0 .

The size of the jump of Φ at Tn is positive, due to the positiveness of Υ. Between two

jumps, the same argument than in subsection (see (4.1) and (4.2)) allows us to establish that

Φ remains non negative between two jumps. j’ai enlevé la suite

Hence, applying Itô’s formula to the process Φ = (Φt)t≥0 solving the stochastic differential

equation in (5.2), we may conclude that the candidate conditional survival probability process

G = (Gt)t≥0 defined by Gt = 1/(1+Φt), for all t ≥ 0, solves the stochastic differential equation

dGt = −Gt− λ(t) dt−
∫

Gt−(1−Gt−)(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
(5.3)

whith G0 = 1. Here, Υ(x), for x ∈ R , is a given (strictly) positive function satisfying the

condition ∫ (√
Υ(x)− 1

)2

ν0(dx) < ∞ (5.4)

and µ(dt, dx) is the measure of jumps of the process X defined by

µ
(
(0, t]× A

)
=

∑
0<s≤t

11{∆Xs∈A} (5.5)

for any Borel set A ∈ B(R), where we set ∆Xt = Xt − Xt− , for all t ≥ 0. Note that the

equation in (5.3) has the same structure as the appropriate stochastic differential equations

for the posterior probability processes in the quickest change-point detection problems for

compound Poisson processes [12], [7], and [6].
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5.2 The multiplicative decomposition for the process G

In order to provide a multiplicative decomposition for the supermartingale G , let us introduce

the process Y = (Yt)t≥0 as in (3.4), where the process Z = (Zt)t≥0 is defined by

Zt = exp

(∫ t

0

∫
ln
(
Υ(x)

)
µ(ds, dx)−

∫ t

0

∫
Υ(x)− 1

1 + (1−Gs−)(Υ(x)− 1)
ds ν0(dx)

)
(5.6)

so that the inclusion F ′
t ⊆ Ft holds, for all t ≥ 0, for the natural filtration F′ = (F ′

t)t≥0

of X defined by F ′
t = σ(Xs | 0 ≤ s ≤ t), for all t ≥ 0. Then, by applying Itô’s formula

and the integration by parts formula for general semimartingales (see, e.g. [21]), we obtain

from the expressions in (3.4) and (5.6) that the processes Z , 1/Z , and Y admit the stochastic

differentials

dZt = Zt−

∫ (
Υ(x)− 1

)
d

(
µ(dt, dx)− 1

1 + (1−Gt−)(Υ(x)− 1)
dt ν0(dx)

)
(5.7)

d

(
1

Zt

)
=

1

Zt−

∫ (
1

Υ(x)
− 1

)
d

(
µ(dt, dx)− 1

1 + (1−Gt−)(Υ(x)− 1)
dt ν1(dx)

)
(5.8)

and

dYt ≡ (1− F (t)) d

(
1

Zt

)
(5.9)

=
1− F (t)

Zt−

∫ (
1

Υ(x)
− 1

)
d

(
µ(dt, dx)− 1

1 + (1−Gt−)(Υ(x)− 1)
dt ν1(dx)

)
Hence, by applying Itô’s formula and the integration by parts formula, we obtain from the

representations in (5.7)-(5.9) that the processes GZ , GZY , and GZY − (1 − F ) admit the

stochastic differentials

d
(
GtZt

)
= Gt− dZt + Zt− dGt +∆Gt ∆Zt (5.10)

= −Gt− Zt− λ(t) dt+Gt− Zt−

∫
Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
d
(
GtZtYt

)
=

(
Gt−Zt−

)
dYt + Yt− d

(
GtZt

)
+∆

(
GtZt

)
∆Yt (5.11)

= −Gt−Zt−Yt− λ(t) dt

+
(
Gt−Zt−Yt− − (1− F (t))

) ∫
Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
and

d
(
GtZtYt − (1− F (t))

)
= −

(
Gt−Zt−Yt− − (1− F (t))

)
λ(t) dt (5.12)

+
(
Gt−Zt−Yt− − (1− F (t))

) ∫
Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
12



where we have F (0) = 0. Since the process GZY − (1−F ) starts at G0Z0Y0− (1−F (0)) = 0,

we may conclude from the geometric structure of the stochastic differential equation (5.12) that

GtZtYt − (1− F (t)) = 0, for all t ≥ 0, and thus, the decomposition as in (3.13) holds, so that

the process G is F′ -adapted. In this case, we also see from the expressions in (3.13) and (3.4)

with (5.6) that the inclusion Ft ⊆ F ′
t holds too, so that F ′

t = Ft , for all t ≥ 0, and thus, we

have F′ ≡ F .

5.3 The set of strictly positive martingales M(u)

Let us now define a set of processes M(u) = (Mt(u))t≥0 as in (3.14).

Then, taking into account the representations in (5.7)-(5.9), we obtain by means of standard

applications of Itô’s formula and the integration by parts formula that the processes 1/Y and

1/(ZY ) admit the stochastic differentials

d

(
1

Yt

)
=

1

Yt−

∫
Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
(5.13)

and

d

(
1

ZtYt

)
=

1

Zt−
d

(
1

Yt

)
+

1

Yt−
d

(
1

Zt

)
+∆

(
1

Zt

)
∆

(
1

Yt

)
(5.14)

= − 1

Zt−Yt−

∫
(1−Gt−)(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
so that they are (local) martingales. Hence, by applying the integration by parts formula to

the expression as in (3.14), we get that the process M(u) admits the stochastic differential as

in (3.17), which takes the form

dtMt(u) =

(
Gt−

Yt−

∫ t

u

g(s)

Zs

ds− (1−Gt−)(1− F (t))

Zt−Yt−

)
(5.15)

×
∫

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
for each 0 ≤ u < t fixed. Thus, we conclude that M(u) is a local martingale, for each

u ≥ 0 fixed. It is also seen from the expression as in (3.14) that M(u) is strictly positive.

Furthermore, it follows from the fact that Mt(0) = 1 and the property that the mapping

u 7→ Mt(u) is decreasing on (0,∞), we obtain that the process M(u) is a martingale valued in

(0, 1). We also note from the definition of the process M(u) as in (3.14) and the decomposition

as in (3.13) that Mt(t) = Gt , for all t ≥ 0. We also note that Mt(u) = (1− F (u))/(ZtYt), for

all 0 ≤ t ≤ u and each u ≥ 0 fixed.

5.4 The set of conditional probability density processes p(u)

It therefore follows that, on an extended probability space, one can construct a random time

τ and a probability measure Q such that Q and P coincide on the filtration F = (Ft)t≥0 and
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Q(τ > u | Ft) = Mt(u), for all t ≥ 0 and each u ≥ 0 fixed (see [21, Section 3] and [25]). Let us

finally note that the family of the conditional probability density processes p(u) = (pt(u))t≥0

defined by pt(u) = 1/(Zu∧tYt), for all t ≥ 0 and each u ≥ 0 fixed, satisfies the equality as of

(3.19), for all t ≥ 0 and each u ≥ 0 fixed. Then, it follows from the expressions in (4.12) and

(4.13) that the process p(u) admits the stochastic differential

dtpt(u) ≡ dt

(
1

Zu∧tYt

)
(5.16)

=

(
11{u<t}

Gt−

ZuYt−
− 11{u≥t}

1−Gt−

Zt−Yt−

) ∫
Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν0(dx)

)
=

(
11{u<t}Gt− − 11{u≥t} (1−Gt−)

) ∫
Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)
pt−(u)

(
µ(dt, dx)− dt ν0(dx)

)
so that the representation

pt(u) = exp

(∫ t

0

∫
ln
(
1 + φs−(u, x)

)
µ(ds, dx)−

∫ t

0

∫
φs−(u, x) ds ν0(dx)

)
(5.17)

holds with

φt−(u, x) =
(
11{u<t}Gt− − 11{u≥t} (1−Gt−)

) Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)
(5.18)

=
(
11{u<t} − (1−Gt−)

) Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

for all t ≥ 0 and each u ≥ 0 fixed.
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Springer (295–312).

[29] Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-Boundary Problems. Birkhäuser,
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