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, it is possible to construct the associated random times on some extended probability space. Hence, Jacod's equivalence hypothesis, that is, the existence of strictly positive conditional densities for the random times with respect to the reference filtration, is obviously satisfied.

Introduction

In this paper, we construct strictly positive conditional probability densities with respect to some reference filtration. In that case, one can apply the results obtained in Jeanblanc and Song [START_REF] Jeanblanc | Explicit model of default time with given survival probability[END_REF] to construct the associated random times on some extended probability spaces. These properties automatically lead to the satisfaction of Jacod's equivalence hypothesis, that is, to the existence of a strictly positive conditional density for the random time with respect to the reference filtration (see, e.g. Aksamit and Jeanblanc [START_REF] Aksamit | Enlargement of filtration with finance in view[END_REF] for further discussions on Jacod's hypothesis). We present a general framework for this model in Section 2, and then, under the assumption that the intensity is deterministic, consider the cases of Brownian reference filtrations in Section 3 as well as filtrations generated by (compound) Poisson processes in Sections 4-5. We also derive connections between our results and the models of quickest changepoint (or disorder) detection (see, e.g. Shiryaev [START_REF] Shiryaev | Stochastic Disorder Problems[END_REF] and the references therein).

The framework

We give a model for constructions of conditional probability densities with respect to a reference filtration. For this purpose, we assume that we work on a filtered probability space (Ω, G, F, P), where F is a given (reference) filtration. We call an F-conditional density any family of strictly positive F-martingales ((p t (u)) t≥0 ; ∀u ≥ 0), parameterised by u ∈ [0, ∞), such that ∞ 0 p t (u) g(u) du = 1, ∀t ≥ 0 , where g is a given density on R + and p 0 (u) = 1, ∀u ≥ 0.

There are very few examples in the literature (see, e.g. [1, chapter 4]). In this paper, we will investigate the inverse problem in two cases: when F is a Brownian filtration and when F is a (compound) Poisson filtration, and show how to construct such families. In the both cases, we start with a deterministic bounded strictly positive function λ = (λ(t); ∀t ≥ 0) satisfying ∞ 0 λ(s)ds = ∞ and a supermartingale G = (G t , t ≥ 0) valued in )0, 1] such that the process (G t e t 0 λ(s)ds ) t≥0 is a (strictly) positive F-local martingale. In this case, using the work of [START_REF] Jeanblanc | Explicit model of default time with given survival probability[END_REF], on the extended space

Ω × [0, ∞), one can construct a random variable τ (in fact τ (ω ′ , ω ′′ ) = ω ′′ ) and a probability Q (on G ⊗ B([0, ∞))) such that Q(τ > t | F t ) = G t and Q Ft = P Ft , ∀t ≥ 0 .
The Doob-Meyer decomposition of the F-supermartingale G has a predictable part equal to λ(t)G t-dt, hence (see Proposition 2.4 in [START_REF] Aksamit | Enlargement of filtration with finance in view[END_REF]), the process 1 1 {τ ≤t} -t∧τ 0 λ(s) ds, ∀t ≥ 0 , is a martingale in the progressive enlargement of F with τ , where 1 1 {•} denotes the indicator function, and λ is called the intensity of τ . This implies that

Q(τ ≤ t) = t 0 λ(s) Q(τ > s) ds, ∀t ≥ 0 ,
and hence,

Q(τ ≤ t) = 1 -exp - t 0 λ(s) ds , ∀t ≥ 0 ,
Note that Q(τ = 0) = 0, and G 0 = 1, and τ admits a density g given by

g(u) = λ(u) exp - u 0 λ(v) dv , ∀u ≥ 0 .
It follows from the deterministic character of the intensity function λ that the following Jacod's equivalence hypothesis holds, that is, the regular conditional distribution of τ given F t is equivalent to the distributional law of τ , that is expressed by

Q(τ ∈ • | F t ) ∼ Q(τ ∈ •) (Q-a.s.), ∀t ≥ 0 . (2.1)
We recall that Jacod's equivalence hypothesis holds if there exists a family p(u) of F-conditional densities p(u) = (p t (u); ∀t ≥ 0), ∀u ≥ 0, such that

Q(τ > u | F t ) = ∞ u p t (v) g(v) dv, ∀t ≥ 0, ∀u ≥ 0 .
The family of processes (p(u); ∀u ≥ 0) is then called the conditional density. The deterministic property of λ enables us to prove the existence of a conditional density in our model. A similar problem is studied in [START_REF] Jeanblanc | Explicit model of default time with given survival probability[END_REF] with a different method. We refer the reader to the seminal papers of Jacod [START_REF] Jacod | Grossissement initial, hypothèse (H ′ ) et théorème de Girsanov[END_REF], Grorud and Pontier [START_REF] Grorud | Insider trading in a continuous time market model[END_REF] and Amendinger [START_REF] Amendinger | Martingale representation theorems for initially enlarged filtrations[END_REF], and to the book [START_REF] Aksamit | Enlargement of filtration with finance in view[END_REF] for more details on Jacod's hypothesis. Note that the knowledge of the conditional density allows to give the decomposition of any martingale in the reference filtration as a semimartingale in the initial (and progressive) enlargement with τ (see [START_REF] Aksamit | Enlargement of filtration with finance in view[END_REF]).

The case of Brownian filtrations

In this section, we consider the case where F is the filtration generated by a standard Brownian motion W . We use the notation of the framework described in Section 2.

The conditional survival probability process G

Suppose that there exists a standard Brownian motion W = (W t ) t≥0 generating the reference filtration F = (F t ) t≥0 which is complete under the probability measure P. Let us consider the stochastic differential equation

dΦ t = (1 + Φ t ) λ(t) + Φ 2 t 1 + Φ t ρ 2 dt + Φ t ρ dW t (3.1)
where ρ > 0 is a given constant, λ = (λ(t); ∀t ≥ 0) is a strictly positive deterministic function, and Φ 0 = 0. Since the coefficients of the stochastic differential equation in ( and Ψ 0 = 0, i.e., Ψ t = 0 for any t ≥ 0 (i.e., ϑ = ∞), and Φ is valued in R + . The process G = (G t ) t≥0 defined by G t = 1/(1+Φ t ), for all t ≥ 0, solves the stochastic differential equation

dG t = -G t λ(t) dt -G t (1 -G t ) ρ dW t (3.3)
and thus, it is a supermartingale valued in (0, 1] with initial condition G 0 = 1.

Note that the equation in (3.3) has the same structure as the appropriate stochastic differential equations for the posterior probability processes Π = (Π t ) t≥0 such that Π t = 1 -G t , ∀t ≥ 0, in the quickest change-point detection problems for Wiener processes [?, Chapter IV, Section 4] (see also [31, Chapter IV, Section 4] and [29, Chapter VI, Section 22]).

The multiplicative decomposition for the process G

In [START_REF] Jeanblanc | Explicit model of default time with given survival probability[END_REF], starting from an F-supermartingale valued in [0, 1], the authors construct a large family of F-martingales M (u), ∀u ≥ 0, valued in [0, 1], as solution of a stochastic differential equation such that M t (t) = G t , ∀t ≥ 0, and u → M t (u) is decreasing on [0, ∞), ∀t ≥ 0 fixed, and represent the F-conditional law of a random time τ (under the probability measure Q on the extended probability space). Here, our construction is different, however, our solution is included in [23, Section 4.2, Equation ♯]. As we explained in Section 2, our goal is to construct

τ such that Q(τ > t | F t ) = G t ,
which implies that the density of τ is g and that the cumulative distribution function is

F (t) = P(τ ≤ t) = 1 -exp - t 0 λ(s) ds , ∀t ≥ 0 .
In order to provide the multiplicative decomposition for the supermartingale G, let us introduce the process Y = (Y t ) t≥0 by

Y t = t 0 g(s) Z s ds + 1 -F (t) Z t , ∀t ≥ 0 , (3.4) 
where the process Z = (Z t ) t≥0 is defined by

Z t = exp ρ X t - ρ 2 2 t , ∀t ≥ 0 , (3.5) 
and the process X = (X t ) t≥0 is given by

X t = t 0 (1 -G s ) ρ ds + W t , ∀t ≥ 0 , (3.6) 
so that the inclusion F ′ t ⊆ F t holds, ∀t ≥ 0, for the natural filtration

F ′ = (F ′ t ) t≥0 of X defined by F ′ t = σ(X s | 0 ≤ s ≤ t), ∀t ≥ 0.
Then, by applying Itô's formula and the integration by parts formula, we obtain from the expressions in (3.4)-(3.6) that the processes Z , 1/Z , and Y admit the stochastic differentials

dZ t = Z t ρ dX t = Z t ρ (1 -G t ) ρ dt + dW t (3.7) d 1 Z t = - 1 Z t ρ dX t -ρ dt = - 1 Z t ρ dW t -G t ρ dt (3.8)
and

dY t ≡ (1 -F (t)) d 1 Z t = - 1 -F (t) Z t ρ dW t -G t ρ dt . (3.9)
Hence, by applying Itô's formula and the integration by parts formula, we obtain from the representations in (3.7)-(3.9) that the processes GZ , GZY , and GZY -(1 -F ) admit the stochastic differentials

d G t Z t = G t dZ t + Z t dG t + d⟨G, Z⟩ t (3.10) = -G t Z t λ(t) dt + G 2 t Z t ρ dW t d G t Z t Y t = G t Z t dY t + Y t d G t Z t + d⟨GZ, Y ⟩ t (3.11) = -G t Z t Y t λ(t) dt + G t Z t Y t -(1 -F (t)) G t ρ dW t and d G t Z t Y t -(1 -F (t)) (3.12) = G t Z t Y t -(1 -F (t)) -λ(t) dt + G t ρ dW t
where we have

F (0) = 0. Since the process GZY -(1 -F ) starts at G 0 Z 0 Y 0 -(1 -F (0)) = 0,
we may conclude from the geometric structure of the stochastic differential equation (3.12) that G t Z t Y t -(1 -F (t)) = 0, ∀t ≥ 0, and thus, the decomposition

G t = 1 -F (t) Z t Y t , ∀t ≥ 0 , (3.13) 
so that the process G is F ′ -adapted. In this case, we also see from the expressions in (3.13) and (3.4)-(3.6) that the inclusion F t ⊆ F ′ t holds too, so that F ′ t = F t , ∀t ≥ 0, and thus, we have F ′ ≡ F. Moreover, the expression in (3.13) gives the multiplicative decomposition with the martingale part 1/(ZY ) and the predictable part 1 -F (t), ∀t ≥ 0.

The set of strictly positive martingales M (u)

Let us now define a set of processes M (u) = (M t (u)) t≥0 by

M t (u) = 1 Y t ∞ u g(s) Z s∧t ds ≡ 1 Y t u∨t u g(s) Z s ds + 1 -F (u ∨ t) Z t , ∀t ≥ 0 , ∀u ≥ 0 . (3.14)
Then, taking into account the representations in (3.7)-(3.9), we obtain by means of standard applications of Itô's formula and the integration by parts formula that the processes 1/Y and 1/(ZY ) admit the stochastic differentials

d 1 Y t = 1 -F (t) Z t Y 2 t ρ dW t = G t Y t ρ dW t (3.15)
and

d 1 Z t Y t = 1 Z t d 1 Y t + 1 Y t d 1 Z t + d 1 Z , 1 Y t = - 1 -G t Z t Y t ρ dW t (3.16)
so that 1/Y and 1/(ZY ) are local martingales. Hence, by applying the integration by parts formula to the expression in (3.14), we get that the process M (u) admits the stochastic differential

d t M t (u) = t u g(s) Z s ds d 1 Y t + (1 -F (t)) d 1 Z t Y t + 1 Z t Y t d(1 -F (t)) + g(t) Z t Y t dt (3.17)
for 0 ≤ u < t, which takes the form

d t M t (u) = G t Y t t u g(s) Z s ds - (1 -F (t))(1 -G t ) Z t Y t ρ dW t (3.18)
for 0 ≤ u < t. Thus, we conclude that M (u) is a local martingale, ∀u ≥ 0 fixed. It is also seen from the expression in (3.14) that M (u) is strictly positive. Furthermore, it follows from the fact that M t (0) = 1 and the property that the mapping u → M t (u) is decreasing on [0, ∞), we obtain that the process M (u) is a martingale valued in (0, 1), ∀u ≥ 0 fixed. Observe from the definition of the process M (u) in (3.14) and the decomposition in (3.13) that M t (t) = G t , ∀t ≥ 0, as well as M t (u) = (1 -F (u))/(Z t Y t ), ∀0 ≤ t ≤ u, ∀u ≥ 0 fixed. We also note that the representation

d t M t (u) = M t (u) (1 -F (t)) d 1 Z t Y t + dK t
holds, which represents the formula from [23, Section 4.2, Equation ♯(u)] with f ≡ 1, where K = (K t ) t≥0 is an F-martingale which does not depend on u.

The set of conditional probability density processes p(u)

It therefore follows that, on an extended probability space, one can construct a random time τ and a probability measure Q such that Q and P coincide on the filtration F = (F t ) t≥0 and [START_REF] Jeanblanc | Explicit model of default time with given survival probability[END_REF]Section 3] and [START_REF] Li | Random times and multiplicative systems[END_REF]). Let us finally note that the family of the conditional probability density processes p(u) = (p t (u)) t≥0 defined by p t (u) = 1/(Z u∧t Y t ), ∀t ≥ 0, ∀u ≥ 0 fixed, satisfies the equality

Q(τ > u | F t ) = M t (u), ∀t ≥ 0, ∀u ≥ 0 fixed (see
M t (u) = ∞ u p t (s) g(s) ds, ∀t ≥ 0 , ∀u ≥ 0 . (3.19)
Then, it follows from the expressions in (3.15) and (3.16) that the process p(u) admits the stochastic differential

d t p t (u) ≡ d t 1 Z u∧t Y t = 1 1 {u<t} G t Z u Y t -1 1 {u≥t} 1 -G t Z t Y t ρ dW t (3.20) = 1 1 {u<t} G t -1 1 {u≥t} (1 -G t ) p t (u) ρ dW t so that the representation p t (u) = exp t 0 φ s (u) dW s - 1 2 t 0 φ 2 s (u) ds , ∀t ≥ 0 , ∀u ≥ 0 , (3.21) 
holds with

φ t (u) = 1 1 {u<t} G t -1 1 {u≥t} (1 -G t ) ρ = 1 1 {u<t} -(1 -G t ) ρ, ∀t ≥ 0 , ∀u ≥ 0 . (3.22)

The case of Poissonian filtrations

In this section, we consider the case, where F is the filtration generated by a Poisson process N . We use the notation of the framework described in Section 2.

The conditional survival probability process G

Suppose that there exists a Poisson process N = (N t ) t≥0 of the intensity λ 0 > 0 generating the reference filtration F = (F t ) t≥0 which is complete under the probability measure P. Let us consider the stochastic differential equation

dΦ t = (1 + Φ t-) λ(t) dt + Φ t- λ 1 λ 0 -1 dN t - (1 + Φ t-)λ 2 0 λ 0 + Φ t-λ 1 dt (4.1)
where λ 1 > 0 is a given constant, λ = (λ(t); ∀t ≥ 0) is a strictly positive function, and Φ 0 = 0. Since the coefficients of the stochastic differential equation in (4.1) are Lipschitz continuous and of a linear growth, it follows from the result of [21, Chapter III, Theorem 2.32] that the equation in (4.1) admits a pathwise unique (strong) solution process. Moreover, between two jump times T n-1 and T n , for n ≥ 1, of the Poisson process N , the process Φ follows

dΦ t dt = (1 + Φ t ) λ(t) -Φ t- λ 1 λ 0 -1 (1 + Φ t )λ 2 0 λ 0 + Φ t-λ 1 ∀t ≥ 0 . (4.2)
and introduce T = inf{t > 0 : Φ t } = 0. Then at time T , the derivative of Φ is positive and Φ remains non negative after time T till its second hitting time of 0. Adding that the jump values of Φ are such that

Φ Tn = λ 1 λ 0 Φ Tn-, ∀n ≥ 1 ,
we conclude that Φ is nonnegative. We may conclude that the candidate conditional survival probability process G = (G t ) t≥0 defined by G t = 1/(1 + Φ t ), for all t ≥ 0, solves the stochastic differential equation

dG t = -G t-λ(t) dt - G t-(1 -G t-)(λ 1 -λ 0 ) λ 0 + (1 -G t-)(λ 1 -λ 0 ) dN t -λ 0 dt (4.3)
where λ 1 > 0 is a given constant.

Note that the equation in (4.3) has the same structure as the appropriate stochastic differential equations for the posterior probability processes Π = (Π t ) t≥0 such that Π t = 1 -G t , ∀t ≥ 0, in the quickest change-point detection problems for Poisson processes [START_REF] Peskir | Solving the Poisson disorder problem[END_REF] (see also [29, Chapter VI, Section 24]).

The multiplicative decomposition for the process G

In order to provide a multiplicative decomposition for the supermartingale G, let us introduce the process Y = (Y t ) t≥0 as in (3.4), where the process Z = (Z t ) t≥0 is defined by

Z t = exp ln λ 1 λ 0 X t -(λ 1 -λ 0 ) t , ∀t ≥ 0 , (4.4)
and the process X = (X t ) t≥0 is given by

X t = ln λ 1 λ 0 -1 t 0 (1 -G s-)(λ 1 -λ 0 ) 2 λ 0 + (1 -G s-)(λ 1 -λ 0 ) ds + N t , ∀t ≥ 0 , (4.5) 
so that the inclusion F ′ t ⊆ F t holds, ∀t ≥ 0, for the natural filtration

F ′ = (F ′ t ) t≥0 of X defined by F ′ t = σ(X s | 0 ≤ s ≤ t), ∀t ≥ 0.
Then, by applying Itô's formula and the integration by parts formula for general semimartingales (see, e.g. [21, Chapter I, Theorem 4.57]) and taking into account the fact that dN t = ∆N t ≡ N t -N t-, ∀t ≥ 0, we obtain from the expressions in (3.4) and (4.4)-(4.5) that the processes Z , 1/Z , and Y admit the stochastic differentials

dZ t = Z t- λ 1 λ 0 -1 d X t -λ 0 t = Z t- λ 1 λ 0 -1 dN t - λ 2 0 λ 0 + (1 -G t-)(λ 1 -λ 0 ) dt (4.6) d 1 Z t = 1 Z t- λ 0 λ 1 -1 dN t - λ 0 λ 1 λ 0 + Π t-(λ 1 -λ 0 ) dt (4.7)
and

dY t ≡ (1 -F (t)) d 1 Z t = 1 -F (t) Z t- λ 0 λ 1 -1 dN t - λ 0 λ 1 λ 0 + (1 -G t-)(λ 1 -λ 0 ) dt . (4.8)
Hence, by applying Itô's formula and the integration by parts formula, we obtain from the representations in (4.6)-(4.8) that the processes GZ , GZY , and GZY -(1 -F ) admit the stochastic differentials

d GZ t = G t-dZ t + Z t-dG t + ∆G t ∆Z t (4.9) = -G t-Z t-λ(t) dt + G t-Z t- G t-(λ 1 -λ 0 ) λ 0 + (1 -G t-)(λ 1 -λ 0 ) d N t -λ 0 t d G t Z t Y t = G t-Z t-dY t + Y t-d G t Z t + ∆ G t Z t ∆Y t (4.10) = -G t-Z t-Y t-λ(t) dt + G t-Z t-Y t--(1 -F (t)) G t-(λ 1 -λ 0 ) λ 0 + (1 -G t-)(λ 1 -λ 0 ) d N t -λ 0 t and d G t Z t Y t -(1 -F (t)) = -G t-Z t-Y t--(1 -F (t)) λ(t) dt (4.11) 
+ G t-Z t-Y t--(1 -F (t)) G t-(λ 1 -λ 0 ) λ 0 + (1 -G t-)(λ 1 -λ 0 ) d N t -λ 0 t
where we have

F (0) = 0. Since the process GZY -(1 -F ) starts at G 0 Z 0 Y 0 -(1 -F (0)) = 0,
we may conclude from the geometric structure of the stochastic differential equation (4.11) that

G t Z t Y t -(1 -F (t)) = 0
, for all t ≥ 0, and thus, the decomposition as in (3.13) holds, so that the process G is F ′ -adapted. In this case, we also see from the expressions in (3.13) and (3.4) with (4.4)-(4.5) that the inclusion F t ⊆ F ′ t holds too, so that F ′ t = F t , for all t ≥ 0, and thus, we have F ′ ≡ F. Moreover, the expression in (3.13) gives the multiplicative decomposition of G with the martingale part 1/(ZY ) and the predictable part 1 -F (t), ∀t ≥ 0.

The set of strictly positive martingales M (u)

Then, taking into account the representations in (4.6)-(4.8), we obtain by means of standard applications of Itô's formula and the integration by parts formula that the processes 1/Y and 1/(ZY ) admit the stochastic differentials

d 1 Y t = 1 Y t- G t-(λ 1 -λ 0 ) λ 0 + (1 -G t-)(λ 1 -λ 0 ) d N t -λ 0 t (4.12) 
and

d 1 Z t Y t = 1 Z t- d 1 Y t + 1 Y t- d 1 Z t + ∆ 1 Z t ∆ 1 Y t (4.13) = - 1 Z t-Y t- (1 -G t-)(λ 1 -λ 0 ) λ 0 + (1 -G t-)(λ 1 -λ 0 ) d N t -λ 0 t
so that they are (local) martingales. Hence, by applying the integration by parts formula to the expression as in (3.14), we get that the process M (u) admits the stochastic differential as in (3.17), which takes the form

d t M t (u) = G t- Y t- t u g(s) Z s ds - (1 -F (t))(1 -G t-) Z t-Y t- (4.14) × λ 1 -λ 0 λ 0 + (1 -G t-)(λ 1 -λ 0 ) d N t -λ 0 t
for each 0 ≤ u < t fixed. Thus, we conclude that M (u) is a local martingale, for each u ≥ 0 fixed. It is also seen from the expression as in (3.14) that M (u) is strictly positive.

Furthermore, it follows from the fact that M t (0) = 1 and the property that the mapping u → M t (u) is decreasing on (0, ∞), we obtain that the process M (u) is a martingale valued in (0, 1). Observe from the definition of the process M (u) in (3.14) and the decomposition in (3.13) that M t (t) = G t , ∀t ≥ 0, as well as M t (u) = (1 -F (u))/(Z t Y t ), ∀0 ≤ t ≤ u, ∀u ≥ 0 fixed. We also note that the representation

d t M t (u) = M t-(u) (1 -F (t)) d 1 Z t Y t + dK t
holds, which represents the formula from [23, Section 4.2, Equation ♯(u)] with f ≡ 1, where K = (K t ) t≥0 is an F-martingale which does not depend on u.

The set of conditional probability density processes p(u)

It therefore follows that, on an extended probability space, one can construct a random time τ and a probability measure Q such that Q and P coincide on the filtration F = (F t ) t≥0 and

Q(τ > u | F t ) = M t (u)
, for all t ≥ 0 and each u ≥ 0 fixed (see [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]Section 3] and [START_REF] Li | Random times and multiplicative systems[END_REF]). Let us finally note that the family of the conditional probability density processes p(u) = (p t (u)) t≥0 defined by p t (u) = 1/(Z u∧t Y t ), for all t ≥ 0 and each u ≥ 0 fixed, satisfies the equality as of (3.19), for all t ≥ 0 and each u ≥ 0 fixed. Then, it follows from the expressions in (4.12) and (4.13) that the process p(u) admits the stochastic differential

d t p t (u) ≡ d t 1 Z u∧t Y t (4.15) = 1 1 {u<t} G t- Z u Y t- -1 1 {u≥t} 1 -G t- Z t-Y t- λ 1 -λ 0 λ 0 + (1 -G t-)(λ 1 -λ 0 ) d N t -λ 0 t = 1 1 {u<t} G t--1 1 {u≥t} (1 -G t-) λ 1 -λ 0 λ 0 + (1 -G t-)(λ 1 -λ 0 ) p t-(u) d N t -λ 0 t so that the representation p t (u) = exp t 0 ln 1 + φ s-(u) dN s - t 0 φ s-(u) λ 0 ds , ∀t ≥ 0 , ∀u ≥ 0 , (4.16) 
holds with

φ t-(u) = 1 1 {u<t} G t--1 1 {u≥t} (1 -G t-) λ 1 -λ 0 λ 0 + (1 -G t-)(λ 1 -λ 0 ) (4.17) = 1 1 {u<t} -(1 -G t-) λ 1 -λ 0 λ 0 + (1 -G t-)(λ 1 -λ 0 )
, ∀t ≥ 0 , ∀u ≥ 0 .

The case of compound Poisson filtrations

In this section, we show that the previous constructions are equivalent to the ones in [START_REF] Gapeev | The disorder problem for compound Poisson processes with exponential jumps[END_REF] and [START_REF] Dayanik | Compound Poisson disorder problem[END_REF] (see also [START_REF] Dayanik | Compound Poisson disorder problems with nonlinear detection delay penalty cost functions[END_REF] and other papers).

where we have F (0) = 0. Since the process GZY -(1 -F ) starts at G 0 Z 0 Y 0 -(1 -F (0)) = 0, we may conclude from the geometric structure of the stochastic differential equation (5.12) that G t Z t Y t -(1 -F (t)) = 0, for all t ≥ 0, and thus, the decomposition as in (3.13) holds, so that the process G is F ′ -adapted. In this case, we also see from the expressions in (3.13) and (3.4) with (5.6) that the inclusion F t ⊆ F ′ t holds too, so that F ′ t = F t , for all t ≥ 0, and thus, we have F ′ ≡ F.

The set of strictly positive martingales M (u)

Let us now define a set of processes M (u) = (M t (u)) t≥0 as in (3.14).

Then, taking into account the representations in (5.7)-(5.9), we obtain by means of standard applications of Itô's formula and the integration by parts formula that the processes 1/Y and 1/(ZY ) admit the stochastic differentials

d 1 Y t = 1 Y t- G t-(Υ(x) -1) 1 + (1 -G t-)(Υ(x) -1) µ(dt, dx) -dt ν 0 (dx) (5.13) and d 1 Z t Y t = 1 Z t- d 1 Y t + 1 Y t- d 1 Z t + ∆ 1 Z t ∆ 1 Y t (5.14) = - 1 Z t-Y t- (1 -G t-)(Υ(x) -1) 1 + (1 -G t-)(Υ(x) -1)
µ(dt, dx) -dt ν 0 (dx) so that they are (local) martingales. Hence, by applying the integration by parts formula to the expression as in (3.14), we get that the process M (u) admits the stochastic differential as in (3.17), which takes the form

d t M t (u) = G t- Y t- t u g(s) Z s ds - (1 -G t-)(1 -F (t)) Z t-Y t- (5.15) × Υ(x) -1 1 + (1 -G t-)(Υ(x) -1)
µ(dt, dx) -dt ν 0 (dx)

for each 0 ≤ u < t fixed. Thus, we conclude that M (u) is a local martingale, for each u ≥ 0 fixed. It is also seen from the expression as in (3.14) that M (u) is strictly positive. Furthermore, it follows from the fact that M t (0) = 1 and the property that the mapping u → M t (u) is decreasing on (0, ∞), we obtain that the process M (u) is a martingale valued in (0, 1). We also note from the definition of the process M (u) as in (3.14) and the decomposition as in (3.13) that M t (t) = G t , for all t ≥ 0. We also note that M t (u) = (1 -F (u))/(Z t Y t ), for all 0 ≤ t ≤ u and each u ≥ 0 fixed.

The set of conditional probability density processes p(u)

It therefore follows that, on an extended probability space, one can construct a random time τ and a probability measure Q such that Q and P coincide on the filtration F = (F t ) t≥0 and Q(τ > u | F t ) = M t (u), for all t ≥ 0 and each u ≥ 0 fixed (see [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]Section 3] and [START_REF] Li | Random times and multiplicative systems[END_REF]). Let us finally note that the family of the conditional probability density processes p(u) = (p t (u)) t≥0 defined by p t (u) = 1/(Z u∧t Y t ), for all t ≥ 0 and each u ≥ 0 fixed, satisfies the equality as of (3.19), for all t ≥ 0 and each u ≥ 0 fixed. Then, it follows from the expressions in (4.12) and (4.13) that the process p(u) admits the stochastic differential

d t p t (u) ≡ d t 1 Z u∧t Y t (5.16) = 1 1 {u<t} G t- Z u Y t- -1 1 {u≥t} 1 -G t- Z t-Y t- Υ(x) -1 1 + (1 -G t-)(Υ(x) -1)
µ(dt, dx) -dt ν 0 (dx) for all t ≥ 0 and each u ≥ 0 fixed.

= 1 1 {u<t} G t--1 1 {u≥t} (1 -G t-) Υ(x) -1 1 + (1 -G t-)(Υ(x) -

0 ln 1 +

 01 1) p t-(u) µ(dt, dx) -dt ν 0 (dx) so that the representationp t (u) = exp t φ s-(u, x) µ(ds, dx) -t 0 φ s-(u, x) ds ν 0 (dx)(5.17)holds withφ t-(u, x) = 1 1 {u<t} G t--1 1 {u≥t} (1 -G t-) Υ(x) -1 1 + (1 -G t-)(Υ(x) -1) (5.18) = 1 1 {u<t} -(1 -G t-) Υ(x) -1 1 + (1 -G t-)(Υ(x) -1)
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The conditional probability process Π

Suppose that there exists a compound Poisson process (or a pure jump Lévy process) X = (X t ) t≥0 with a Lévy measure ν 0 (dx) which is a positive σ -finite measure on B(R) satisfying the conditions ν 0 ({0}) = 0,

x 2 ∧ 1 ν 0 (dx) < ∞ and |x| ν 0 (dx) < ∞.

(5.1)

Assume that the process X generates the reference filtration F = (F t ) t≥0 which is complete under the probability measure P. Note that, in the compound Poisson case of ν 0 (R) < ∞, the process X admits the representation X t = Nt i=1 Ξ i , where N = (N t ) t≥0 is a Poisson process of intensity λ 0 > 0 and (Ξ i ) i∈N is a sequence of independent identically distributed random variables with the distribution ν 0 (dx)/λ 0 , where N and (Ξ i ) i∈N are independent under P. Let us consider the stochastic differential equation

where Υ(x) is a given positive function, and Φ 0 = 0. Since the coefficients of the stochastic differential equation in (5.2) are Lipschitz continuous and of a linear growth, it follows from the result of [21, Chapter III, Theorem 2.32] that the equation in (5.2) admits a pathwise unique (strong) solution process Φ = (Φ t ) t≥0 .

The size of the jump of Φ at T n is positive, due to the positiveness of Υ. Between two jumps, the same argument than in subsection (see (4.1) and (4.2)) allows us to establish that Φ remains non negative between two jumps. j'ai enlevé la suite Hence, applying Itô's formula to the process Φ = (Φ t ) t≥0 solving the stochastic differential equation in (5.2), we may conclude that the candidate conditional survival probability process G = (G t ) t≥0 defined by G t = 1/(1+Φ t ), for all t ≥ 0, solves the stochastic differential equation

Here, Υ(x), for x ∈ R, is a given (strictly) positive function satisfying the condition

and µ(dt, dx) is the measure of jumps of the process X defined by

for any Borel set A ∈ B(R), where we set ∆X t = X t -X t-, for all t ≥ 0. Note that the equation in (5.3) has the same structure as the appropriate stochastic differential equations for the posterior probability processes in the quickest change-point detection problems for compound Poisson processes [START_REF] Gapeev | The disorder problem for compound Poisson processes with exponential jumps[END_REF], [START_REF] Dayanik | Compound Poisson disorder problem[END_REF], and [START_REF] Dayanik | Compound Poisson disorder problems with nonlinear detection delay penalty cost functions[END_REF].

The multiplicative decomposition for the process G

In order to provide a multiplicative decomposition for the supermartingale G, let us introduce the process Y = (Y t ) t≥0 as in (3.4), where the process Z = (Z t ) t≥0 is defined by

ds ν 0 (dx) (5.6) so that the inclusion F ′ t ⊆ F t holds, for all t ≥ 0, for the natural filtration

, for all t ≥ 0. Then, by applying Itô's formula and the integration by parts formula for general semimartingales (see, e.g. [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]), we obtain from the expressions in (3.4) and (5.6) that the processes Z , 1/Z , and Y admit the stochastic differentials

dt ν 0 (dx) (5.7)

and

Hence, by applying Itô's formula and the integration by parts formula, we obtain from the representations in (5.7)-(5.9) that the processes GZ , GZY , and GZY -(1 -F ) admit the stochastic differentials 

µ(dt, dx) -dt ν 0 (dx)