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Trifocal Tensor and Relative Pose Estimation from 8 Lines and Known
Vertical Direction

Banglei Guan1, Pascal Vasseur2 and Cédric Demonceaux3

Abstract— In this paper, we present a relative pose estimation
algorithm based on lines knowing the vertical direction associ-
ated to each image. We demonstrate that a closed-form solution
requiring only eight lines between three views is possible. As a
linear solution, it is shown that our approach outperforms the
standard trifocal estimation based on 13 triplets of lines and can
be efficiently inserted into an hypothesize-and-test framework
such as RANSAC. We also study our approach on different
singular configurations of lines. The method is evaluated on
both synthetic data and real-world sequences from KITTI and
the Zürich Urban Micro Aerial Vehicle datasets. Our method is
compared to 13 lines algorithm as well to points based methods
such as 7-points, 5-points and 3-points.

I. INTRODUCTION

Relative pose estimation between views is a fundamental
task in computer vision [1], [2], [3], [4], [5], [6], [7] and
constitutes an essential step in most of Structure from Motion
(SfM) and Simultaneous Localization And Mapping (SLAM)
pipelines [8]. This task is mainly carried out by approaches
based on points of interest extracted and matched across
couples of images [1], [2]. The relative pose estimation of
two views has been widely studied. In the non calibrated
case, at least seven or eight points are necessary in order
to estimate the fundamental matrix and consequently the
relative pose up to scale between two views [1]. If intrinsic
parameters of the camera are known, the essential matrix
is then sufficient to describe the relative pose and can be
estimated from five points [9]. Many other cases between two
views have been declined according to some prior knowledge
such as the vertical direction [10], [11], [12], the kind of
motion [13], [14], [15] or the nature of the environment [16],
[17], [18].

Trifocal relative pose has long been believed to augment
relative pose estimation from two views [19], [20], [21].
When the relative pose estimation of two views fails, the
trifocal relative pose can be considered as a fallback option.
But the trifocal relative pose estimation is usually considered
a more hard problem and requires a more expensive oper-
ation. For the uncalibrated case, the trifocal relative pose
can be represented by a 3×3×3 trifocal tensor, which has
18 degrees of freedom (DOFs) [1]. Six points are at least
required to estimate the trifocal relative pose [22]. However,
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Comté, France. cedric.demonceaux@u-bourgogne.fr

Fig. 1. Trifocal relative pose from a minimal number of eight lines with
known vertical direction. Line features are easily obtained in man-made
environments. The vertical direction of the camera is provided by an inertial
measurement unit (IMU) or detecting vanishing points.

in some scenes with less textures, point features may not be
available but line features are visible in large quantities, such
as the man-made environments. Even though the relative
pose of two views cannot be determined if only line features
exist, it has be proved that thirteen lines is sufficient to solve
the trinocular relative pose linearly [23]. In the calibrated
case, the estimation of trifocal relative pose requires the
determination of 11 DOFs, which include six unknowns for
each pair of views and less one for metric ambiguity [24].
The trinocular relative pose can be estimated from four
points [25], [20] or six lines [26], [27]. Futhermore, the
minimal problems for generic arrangements of points and
lines have been studied [28], [29], [24].

Reducing the number of requested matched or tracked
features between consecutive views allows to apply some
robust methods in order to discard outliers while limiting the
computation time [30], [31], [32]. The Random Sample Con-
sensus (RANSAC) is probably the most used techniques for
selecting the inliers for a final relative pose estimation [33].
It consists in randomly selecting the minimal number of
features in order to estimate a solution and to verify how
many other features check this solution within a margin
error [8]. Consequently, for a probability of success of 0.99
and a rate of outliers equal to 0.5, the number of RANSAC
trials is divided by 32, if eight features are used instead
of thirteen. In the case of a robust estimation based on
thirteen features, 37724 trials are necessary whereas 1177
are sufficient if only eight features are required.

In this paper, we propose to exploit the knowledge of the
vertical direction associated to each image into a relative pose
estimation algorithm based on lines, as shown in Figure 1.
We demonstrate that a closed-form solution requiring only



eight lines between three views is possible rather than the
thirteen required in the standard method [23]. The remainder
of the paper is organized as follows. First, we review related
work in Section II. In Section III, we propose our closed-
form solution for three-view relative motion estimation with
known vertical direction based on lines and we also study
degeneracy cases. We evaluate the performance of our eight
lines method using both synthetic and real-world datasets
in Section IV. Finally, we conclude with some remarks and
comments in Section V.

II. RELATED WORK

Straight lines are particularly well suited for indoor and
urban applications where structures are generally man made.
In case of low-textured scenarios, the point features are
insufficient and the points based pose estimation methods
are prone to fail. The pose estimation methods based on
line features can serve as ideal complements when there are
insufficient point features detected in the scene [34]. In the
following text, we focus on the solutions for the relative pose
estimation based on points and lines.

Point-based methods: For two-views relative pose esti-
mation, Hartley et al. proposed a minimal solver to estimate
the fundamental matrix of non-calibrated cameras by using
7 points [1]. Nistér et al. further presented a minimal solver
to estimate the essential matrix using 5 points when the
cameras are calibrated [9]. If the points are coplanar, 4
points is sufficient to estimate the homography matrix [1].
With assumptions about the camera motion, the number
of required points can be reduced. Choi et al. estimated
the planar motion of the cameras by using 2 points [14].
Scaramuzza et al. used a single point to recover the rel-
ative pose by taking into account the Ackermann motion
model [35]. When the vertical direction of the camera can
be provided by an IMU or detecting vanishing points, a
variety of algorithms utilizing this information have been
proposed. Fraundorfer et al. proposed a minimal solver to
estimate a simplified essential matrix with 3 points [10].
Sweeney et al. formulated the relative pose problem with
known vertical direction as quadratic eigenvalue problem,
and used 3 points to solve directly for relative rotation and
translation [11]. For the planar scene, Saurer et al. [16] and
Guan et al. [17] derived several simplified homographies
with known vertical direction, and solved them by using a
minimum of 2 points and 1.5 points, respectively. Recently, a
number of methods exploited the affine parameters between
the feature matches and estimated the relative pose with
affine correspondences [36], [37], [38], [39], [40], [41].

For trifocal relative pose estimation, Heyden showed that
a minimal number of 6 points is sufficient to solve the
trifocal relative pose for the uncalibrated case [22]. Ressl
proposed the parameterization of the trifocal tensor based on
algebraic constraints of the correlation slices, which involves
20 parameters and 2 constraints [42]. Nordberg parameter-
ized the trifocal tensor by three 3× 3 orthogonal matrices
which transform the original tensor into a sparse one, but
only valid for non-collinear centers of three views [43].

Ponce et al. introduced a analytical parameterization of
trifocal constraints, which yields a minimal parameterization
of trinocular geometry for cameras with non-collinear or
collinear pinholes [44]. Quan et al. showed that the tri-
focal relative pose has a unique solution with 4 points in
general when the cameras are calibrated [45]. Nistér et al.
parametrized the relative pose between two views as a curve
of degree ten which represents possible epipoles, and selected
the epipole that minimizes reprojection errors by using a third
view [25]. Since the problem about estimating the calibrated
trifocal relative pose from 4 points is notably difficult to
solve [45], [25], [46], a lot of theoretical work has been
studied [47], [48], [49], [50].

Line-based methods: From two views, lines do not pro-
vide any constraints on the relative pose estimation [23],
[51]. However, for lines in indoor and urban scenes, many
lines satisfy the structural information, such as parallelism,
orthogonality and coplanarity. By exploiting the constraints
of these structural information, a lot of algorithms have been
developed. Elqursh et al. presented an algorithm for the
computation of the relative pose between two views using a
minimal number of three lines, of which two of the lines par-
allel and orthogonal to the third [52]. Li et al. leveraged the
structural regularity of lines to estimate the relative pose and
proposed an two-step method to compute the rotation. They
estimated two DOFs of rotation by two image lines whose
associated 3D lines are aligned to two Manhattan frame (MF)
axes, and then estimate its third DOF by another image line
whose associated 3D line is aligned to any MF axis [53].
Zhang assumed that the matched lines are projected from
two overlapped 3D lines, and recovered the camera motion
from two views by using only line segments [54]. Montiel et
al. considered the image segment midpoints as correspondent
in the image optimization, and recovered the camera motion
from straight segment correspondences [55].

For trifocal relative pose estimation, Hartley et al. pro-
posed a linear algorithm to estimate the trifocal tensor with
measurements of 13 lines in three views [23]. Kuang et al.
utilized the nonlinear constraints on the trifocal tensor and
presented several linear solvers using 10 to 12 lines [56].
Larsson et al. proposed a minimal solver to estimate the
trifocal relative pose problem of the uncalibrated camera
using 9 lines [57]. Geppert et al. estimated the relative pose
of three gravity oriented views from vertical lines [4].

III. POSE ESTIMATION FROM LINES AND A
KNOWN DIRECTION

A. Trifocal Tensor for Lines

As shown in Figure 2, a straight line L visible in three
views gives the following relation [1]:

l1
i = l2TTil3 for i = 1,2,3, (1)

where l1
i represents the ith coordinate of the straight line

l1 = [l1
x , l1

y , l1
z ]

T in the view 1, l2 and l3 are the coordinates
of the same line in the view 2 and view 3, respectively. Ti
represents the ith matrix of the trifocal tensor.



Fig. 2. A straight line L is imaged as a triplet l1 ↔ l2 ↔ l3 in three views.
Conversely, the planes back-projected from the corresponding image lines
in each view all intersect in a single 3D line in space.

In the general case, we also have:

Ti = aibT
4 −a4bT

i , (2)

where a4 and b4 are respectively the epipoles of the first
camera into the second and the third views while ai and
bi are the ith columns of the second and third camera
projection matrices. Without loss of generality, if we consider
the cameras as intrinsically calibrated and consequently the
images as normalized (or expressed on the unitary sphere),
the projection matrix Pi can be expressed only with the
extrinsic parameters such as:

Pi =

1 0 0 0
0 1 0 0
0 0 1 0

[Ri −Riti
0 1

]
, (3)

where Ri and ti represent the rotations and translations
between the first view and the ith view, respectively. The
first view is located into an initial reference position such as
R1 = I3×3 and t1 = [0,0,0]T.

B. Closed-form Solution
We assume that the attitudes (roll and pitch angles) of

the views are known, which are obtained directly from the
IMU. The camera coordinate system can be aligned with the
known vertical direction. Then the rotation only depends on
the yaw angle around the known vertical direction as shown
in Figure 2. Consequently, we can write:

Ri =

 Ci
y 0 Si

y
0 1 0
−Si

y 0 Ci
y

 , (4)

where Ci
y and Si

y correspond respectively to cosine and sine
of the yaw angles θ i of the views (i = 2,3). The translation
can be represented as ti = [t i

x, t i
y, t i

z]
T. Thus, equation (3)

equals to:

Pi =

 Ci
y 0 Si

y −Ci
yt

i
x−Si

yt
i
z

0 1 0 −t i
y

−Si
y 0 Ci

y Si
yt

i
x−Ci

yt
i
z

 . (5)

If we consider the trifocal tensor equations in Eq. (2), we
can deduce the following three equalities:

T1 =

Q1 Q2 Q3
Q4 0 Q5
Q6 Q7 Q8

 , (6)

T2 =

 0 Q9 0
Q10 Q11 Q12

0 Q13 0

 , (7)

T3 =

Q14 −Q7 Q15
−Q5 0 Q4
Q16 Q2 Q17

 , (8)

with

Q1 =C3
y Q9 +C2

y Q10, Q2 =−C2
y t3

y ,

Q3 =C2
y Q12−S3

yQ9, Q4 =C3
y t2

y ,

Q5 =−S3
yt2

y , Q6 =−S2
yQ10 +C3

y Q13,

Q7 = S2
yt3

y , Q8 =−S2
yQ12−S3

yQ13,

Q9 =C2
y t2

x +S2
yt2

z , Q10 =−C3
y t3

x −S3
yt3

z ,

Q11 = t2
y − t3

y , Q12 = S3
yt3

x −C3
y t3

z ,

Q13 =C2
y t2

z −S2
yt2

x , Q14 = S3
yQ9 +S2

yQ10,

Q15 = S2
yQ12 +C3

y Q9, Q16 = S3
yQ13 +C2

y Q10,

Q17 =C2
y Q12 +C3

y Q13.

(9)

Equation (1) can then be reformulated as:

(l2T[T1,T2,T3]l3)[l1]× = 0, (10)

where the symbol [ ]× represents the skew-symmetric matrix
and consequently. Then we obtain:

[
l2
x l2

y l2
z
][

T1,T2,T3
]l3

x
l3
y

l3
z

 0 −l1
z l1

y
l1
z 0 −l1

x
−l1

y l1
x 0

= 0.

(11)
Two independent equations can be extracted from Eq. (11),

which means that 8 triplets of lines are sufficient to get the
16 equations required to fully solve the system, up to scale.
The equation system can be written as Aq= 0 with A being a
16×17 matrix and q a 17×1 vector containing all the entries
of the trifocal tensor. The scaling factor is imposed with
the constraint ‖q‖ = 1. All the relative poses can then be
retrieved from the estimated parameters of q. Similar to the
algorithms in [10], [58], the proposed solver can be used to
find a least squared solution to an over-constrained system if
more than 8 triplets of lines are used. Based on the formula
expression of Q8 and Q14 in Eq. (9), we can compute S2

y
and S3

y . Meanwhile, C2
y and C3

y can be also solved by using
the formula expression of Q1 and Q17 in Eq. (9). Thus,
the unique solution of the trifocal relative pose with known
vertical direction can be computed as follows:
• Yaw angle between views 1 and 2:

S2
y = (Q8Q9 +Q13Q14)/(Q10Q13−Q9Q12)

C2
y = (Q1Q13−Q9Q17)/(Q10Q13−Q9Q12)

θ
2 = arctan2(S2

y ,C
2
y )

• Translation between views 1 and 2:

t2 = [C2
y Q9−S2

yQ13, C3
y Q4−S3

yQ5, S2
yQ9 +C2

y Q13]
T

• Yaw angle between views 1 and 3:
S3

y =−(Q8 +S2
yQ12)/Q13

C3
y = (Q1−C2

y Q10)/Q9

θ
3 = arctan2(S3

y ,C
3
y )



Fig. 3. Degenerate case. When the planes through l1 and l2, namely π1

and π2, are coincident, i.e. in the case of epipolar planes, the line L in space
is clearly undefined in this condition.

• Translation between views 1 and 3:

t3 = [S3
yQ12−C3

y Q10, S2
yQ7−C2

y Q2, −S3
yQ10−C3

y Q12]
T

Finally, the trifocal relative pose between three views can
be further recovered by leveraging IMU measurement [41].

C. Degenerate Case

A degenerate case can appear when the planes passing
through the 3D line and the camera centers are coincident,
i.e. in the case of epipolar planes, see Figure 3. As expressed
in [1], while this degenerate configuration could appear
between two views, it is very unlikely that this will happen
between the three views. In this way, in the extreme majority
of cases, there will be a pair of views that can be used for the
trifocal tensor. However, in the case of lines in the trifocal
plane, the transfer between views is then always degenerate
and consequently undefined.

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed method using both synthetic and real-world data. The
proposed solver in Section III is referred to as 8Lines. The
8Lines method is compared with state-of-the-art methods,
which include the 13Lines-Hartley method [23], the
7pt-Hartley method [1], the 5pt-Nister method [9]
and the 3pt-Sweeney method [11]. The methods
13Lines-Hartley and 8Lines estimate the relative
motion of three views. The methods 7pt-Hartley,
5pt-Nister and 3pt-Sweeney estimate the relative
motion of two views. Since the points and lines are different
features and have their own advantages in different environ-
ments, the purpose of the following experiments is not to
outperform the points based methods. Instead, we illustrate
the feasibility and practicality of the proposed method in real
scenarios.

The rotation and translation errors are compared separately
in the experiments. The rotation error is computed as the
angle difference between the ground truth rotation and the
estimated rotation. Since the estimated translation is only
known up to scale, the translation error is also computed
as the angle difference between the ground truth translation
and the estimated translation. Specifically, the errors are
computed as follows:
• Rotation error: εR = arccos((trace(RgtRT )−1)/2)

TABLE I
RUN-TIME COMPARISON OF RELATIVE POSE SOLVERS (UNIT: ms).

Methods 7pt [1] 5pt [9] 3pt [11] 13Lines [23] 8Lines
Timings 0.26 0.12 0.18 0.75 0.24

-18 -16 -14 -12 -10 -8

Rotation error (log10)

0

0.5

1

1.5

D
e
n

s
it

y

7pt-Hartley

5pt-Nister

3pt-Sweeney

13Lines-Hartley

8Lines

(a)

-18 -16 -14 -12 -10 -8

Translation error (log10)

0

0.2

0.4

0.6

0.8

1

D
e
n

s
it

y

7pt-Hartley

5pt-Nister

3pt-Sweeney

13Lines-Hartley

8Lines

(b)
Fig. 4. Probability density functions over relative pose estimation errors in
the noise-free case (100,000 runs). The horizontal axis represents the log10
estimated errors and the vertical axis represents the empirical probability
density. (a) reports the rotation estimation error. (b) reports the translation
estimation error.

• Translation error: εt = arccos((tT
gt t)/(

∥∥tgt
∥∥ · ‖t‖))

where Rgt and R denote the ground truth and estimated
rotations, respectively. tgt and t denote the ground truth and
estimated translations, respectively.

A. Efficiency Comparison and Numerical Stability

The runtimes of our solver and the comparative solvers are
evaluated on an Intel(R) Core(TM) i7-8550U 1.80GHz using
MATLAB. All algorithms are implemented in Matlab, except
that the 5pt-Nister method is implemented in C by using
mex file. Table I summarizes the average run-times of the
solvers over 100,000 runs. The runtime of the 5pt-Nister
method is the lowest, because the mex file is used. The
3pt-Sweeney method solves the relative pose problem as
Quadratic Eigenvalue Problem that is also efficient. It can be
seen that the proposed 8Lines method is more efficient than
the methods 7pt-Hartley and 13Lines-Hartley.

The numerical stability of the solvers in the noise-free
case is shown in Figure 4. We repeat the procedure 100,000
times. The vertical axis represents the empirical probability
density functions, which are plotted as the function of the
log10 estimated errors. The 3pt-Sweeney method achieves
the best numerical stability. The methods 7pt-Hartley,
5pt-Nister and 8Lines have comparable numerical sta-
bility. It can also be seen that the proposed 8Lines method
has better numerical stability than the 13Lines-Hartley
method in both rotation and translation.

B. Experiments on Synthetic Data

To evaluate the algorithms on synthetic data we choose
the following setup. We simulate a monocular perspective
camera with a resolution of 640 × 480 pixels. The focal
length of the camera is set to 400 pixels and the principal
point is set to (320, 240).

In the synthetic experiments, we evaluate the performance
of the proposed 8Lines method with respect to the image
noise and IMU noise. A total of 10000 trials are carried
out in per noise step. The rotation and translation errors are
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Fig. 5. Rotation and translation error with varying image noise (unit:
degree). The left column reports the rotation error. The right column reports
the translation error.

assessed by the median of the errors in 10000 trials. In each
trial, the direction of the camera motion is set to random
motion and three views are captured by the camera. The
optical centers of the camera is in a cube of 10×10×10m.
The magnitudes of three rotation angles between views vary
from −10◦ to 10◦. A set of random 2D pairs of points is
generated on the image planes. Each pair defines a 2D line
which is at least 70 pixel long [59].

1) Accuracy with the magnitude of image noise: In
this scenario, we test the performance of our method for
increasing image noise. All tests are run with a set of
random image lines in three views, and 10000 tests per
noise step are performed. The endpoints of each image
line are disturbed by Gaussian noise with a standard de-
viation ranging from 0 to 2 pixels. This allows to mod-
ify both the position and direction of the image lines.
The proposed 8Lines method is compared against the
methods 13Lines-Hartley [23], 7pt-Hartley [1],
5pt-Nister [9] and 3pt-Sweeney [11]. For lines based
methods, 8 and 13 image lines in three views are generated
for the trifocal relative pose estimation methods 8Lines
and 13Lines-Hartley, respectively. For points based
methods, the 2D endpoints of the image lines are used
as input. Thus, 4, 3 and 2 image lines in two views are
generated for the methods 7pt-Hartley, 5pt-Nister
and 3pt-Sweeney, respectively.

Figure 5 shows the performance of the proposed method
with respect to the magnitude of image noise with per-
fect IMU data. We show the rotation and translation er-
rors, respectively. The 3pt-Sweeney method has better
performance than the other methods. It can be seen that
our 8Lines method performs obviously better than the
13Lines-Hartley method in both rotation and transla-
tion estimation. Moreover, the proposed method also pro-
vides better results than the 7pt-Hartley method in
rotation estimation.

2) Accuracy with the magnitude of IMU angle noise: In
this set of experiments, we evaluate the performance of our
method for increasing IMU angle noise. For the relative pose
estimation methods with known vertical direction, the roll
angle and pitch angle are assumed to be known with the IMU
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Fig. 6. Rotation and translation error with varying IMU angle noise (unit:
degree). The image noise is set to 1.0 pixel standard deviation. (a)(b): vary
pitch angle noise. (c)(d): vary roll angle noise. The left column reports the
rotation error. The right column reports the translation error.

sensor. Then the camera coordinate system can be aligned
with the known vertical direction. However, the roll angle
and pitch angle of the IMU sensor are prone to inaccuracies.
Currently, the angular accuracy of vertical direction in low
cost IMUs is about 0.5◦, and in high accuracy IMUs is less
than 0.02◦ [60], [61]. Thus, we add Gaussian noise with a
standard deviation ranging from 0◦ to 1◦ to both the roll
angle and the pitch angle.

Figure 6 shows the performance of the proposed method
with respect to the magnitude of IMU noise, while the image
noise is set to 1.0 pixel standard deviation. Since the calcula-
tion of the methods 13Lines-Hartley, 7pt-Hartley
and 5pt-Nister do not use the known vertical direction
as prior, these methods are not influenced by the noise of
the pitch angle and roll angle. The methods 5pt-Nister
and 3pt-Sweeney have better performance than the other
methods. It is interesting to see that the proposed 8Lines
method performs better than the 13Lines-Hartley
method, even though the noise of the rotation angles is 1.0◦.
In addition, the accuracy of our method is also better than
the 7pt-Hartley method in rotation estimation, when the
rotation angle noise stays below 0.7◦.

C. Experiments on Real Data

We evaluate the proposed method on both an autonomous
driving and unmanned aerial vehicle environment, which
include KITTI dataset [62] and AGZ dataset [63]. There are
two popular modern robot applications.

1) Experiments on KITTI Dataset: We evaluate the perfor-
mance of our 8Lines method using the KITTI dataset [62]
collected on outdoor autonomous vehicles. There are various
sequences in the visual odometry section of KITTI dataset.



1

2

3

4

56

78

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

52

53
54

55 56

57

58

59

60 61

62

63

64

65

66

67

68

69

(a) View 1

1

2

3

4

56

78

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49

50
51

52

53
54
55

56

57

58

59

60
61

62

63

64

65

66

67

6869

(b) View 2

1

2

3

4

56

78

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50 51

52

53
54
55 56

57

58

59

60
61

62

63

64

65

66

67

68

69

(c) View 3

Fig. 7. Matching lines of triple images on KITTI dataset. There are 69 matching lines in three consecutive images: image 1223 to image 1225.

TABLE II
ROTATION AND TRANSLATION ERROR OVER KITTI DATASET.

Methods 7pt [1] 5pt [9] 3pt [11] 13Lines [23] 8Lines
εR εt εR εt εR εt εR εt εR εt

Median error 0.37◦ 1.38◦ 0.26◦ 1.32◦ 0.10◦ 0.75◦ 1.40◦ 1.77◦ 0.22◦ 0.92◦

Mean error 0.50◦ 1.97◦ 0.38◦ 1.56◦ 0.19◦ 1.45◦ 2.01◦ 2.06◦ 0.36◦ 1.03◦

The KITTI dataset provides ground truth poses for the
sequences, which is directly provided from the output of
the built-in GPS/IMU units. A challenging subsequence with
two consecutive sharp turns are selected, which starts from
image 1223 to image 1276 in the sequence 00 [59]. These
54 images are taken place in an urban environment, which
contains a large number of line features. The matching lines
of triple images are obtained by LineSfM [64], see Figure 7.

Trifocal relative poses of the subsequence are estimated
from these matching lines between three views. The pitch
and roll angles provided by the GPS/IMU units are used
to obtain the known vertical direction and pre-rotate the
matching lines of the images. To ensure the fairness of the
experiment, the pitch and roll angles are also provided for the
3pt-Sweeney method [11], which uses the known vertical
direction as a prior. We compute rotation and translation
using our proposed 8Lines method and compare it to
the ground truth. The proposed method is also compared
with the methods 13Lines [23], 7pt-Hartley [1],
5pt-Nister [9] and 3pt-Sweeney [11]. All the solvers
are integrated within RANSAC to deal with outliers. The
median error and mean error for this subsequence are used
to evaluate the performance of all the methods. Table II
shows the results for the rotation and translation estimation
over KITTI dataset. It is shown that the proposed 8Lines
method provides better results than the 13Lines method,
the 7pt-Hartley method and the 5pt-Nister method.
Even though the 3pt-Sweeney method outperforms our
method, the 8Lines method has the advantage of robustness
over illumination changes. Because the line matching appears
more robust than point matching in the practical application.

To visualize the comparison results, Fig. 8 shows the
estimated trajectory of the 8Lines method and the KITTI
ground truth poses, as well as the estimated trajectory of
13Lines method which also estimate the trifocal relative
pose based on lines. Since the estimated translation is only
known up to scale with a monocular perspective camera, the
ground truth scale is used to plot the estimated trajectories.
It is to be noted that all the relative poses are independently
estimated. The estimated trajectories are plotted by directly
concatenating frame-to-frame relative pose measurements,
i.e. no post-refinement is not applied over the trajectory.
Compared with the 13Lines method, it can be seen that
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Fig. 8. Comparison between estimated trajectory and ground truth on
KITTI dataset. Relative pose measurements between consecutive images are
directly concatenated without any post-refinement (Best viewed in color).

the estimated trajectory obtained by our 8Lines method is
more consistent with the ground truth poses.

2) Experiments on AGZ Dataset: To validate the proposed
method in unmanned aerial vehicle environment, we test
the performance of our method using Zürich Urban Micro
Aerial Vehicle (AGZ) dataset [63]. The AGZ dataset is
recorded by a camera-equipped UAV, which flies within the
urban streets. For the evaluation, we utilize all the available
images which have ground truth poses and together consist of
2706 images. The ground truth poses are obtained by using
an photogrammetric 3D reconstruction. Fig. 9 shows the
matching lines of triple images obtained by LineSfM [64].

Table III shows the results for the rotation and translation
estimation over AGZ dataset. The 3pt-Sweeney method
achieves the best accuracy. It is shown that the proposed
8Lines method provides better results than the 13Lines
method and the 7pt-Hartley method. Meanwhile, our
method performs better than the 5pt-Nister method
in rotation estimation, and has slightly worse performance
in translation estimation. Fig. 10 compares the estimated
trajectory of the methods 8Lines and 13Lines method.
Even though both trajectories have a significant accumulation
of drift without any post-refinement, it can still be seen that
the estimated trajectory of our 8Lines method is more
consistent than the 13Lines method in comparison with
the ground truth poses.
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Fig. 9. Matching lines of triple images on AGZ dataset. There are 104 matching lines in three images: 00181, 00211 and 00241.

TABLE III
ROTATION AND TRANSLATION ERRORS OVER AGZ DATASET.

Methods 7pt [1] 5pt [9] 3pt [11] 13Lines [23] 8Lines
εR εt εR εt εR εt εR εt εR εt

Median error 0.78◦ 3.37◦ 0.76◦ 3.29◦ 0.46◦ 2.39◦ 3.86◦ 5.45◦ 0.53◦ 3.31◦

Mean error 1.34◦ 4.13◦ 1.32◦ 4.02◦ 1.15◦ 3.72◦ 4.72◦ 7.46◦ 1.10◦ 4.48◦
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Fig. 10. Comparison between estimated trajectory and ground truth on AGZ
dataset. The relative pose measurements between consecutive images are
directly concatenated without any post-refinement (Best viewed in color).

V. CONCLUSION

In this paper, we derived the linear solver for the trifocal
relative pose with the known vertical direction from line
correspondences. We showed that a closed-form solution
requiring only eight lines between three views is possible,
and gives on to a unique solution. The proposed solver is
well-suited for robust estimation with RANSAC framework.
We verified our method with both synthetic data and real-
world image data sets. The experimental results showed that
the proposed method provides better accuracy for trifocal
relative pose estimation in comparison to the standard trifocal
estimation based on thirteen triplets of lines. Moreover, our
method has better or comparable performance than the points
based methods. We demonstrated that the proposed method
is suitable for the scenes in which self-driving cars and
unmanned aerial vehicles operate.

ACKNOWLEDGMENT

This work has been partially funded by the ANR CLARA
project ANR-18-CE33-0004 and the National Natural Sci-
ence Foundation of China (Grant Nos. 11902349 and
11727804).

REFERENCES

[1] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge University Press, 2003.

[2] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-
d vision: from images to geometric models. Springer Science &
Business Media, 2012, vol. 26.

[3] S. Agarwal, H.-L. Lee, B. Sturmfels, and R. R. Thomas, “On the
existence of epipolar matrices,” International Journal of Computer
Vision, vol. 121, no. 3, pp. 403–415, 2017.

[4] M. Geppert, V. Larsson, P. Speciale, J. L. Schönberger, and M. Polle-
feys, “Privacy preserving structure-from-motion,” in European Con-
ference on Computer Vision. Springer, 2020, pp. 333–350.

[5] J. Zhao, “An efficient solution to non-minimal case essential matrix
estimation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[6] B. Guan, J. Zhao, D. Barath, and F. Fraundorfer, “Minimal cases for
computing the generalized relative pose using affine correspondences,”
in IEEE International Conference on Computer Vision, 2021, pp.
6068–6077.

[7] T. Huang, Y. Zheng, Z. Yu, R. Chen, Y. Li, R. Xiong, L. Ma, J. Zhao,
S. Dong, L. Zhu et al., “1000× faster camera and machine vision with
ordinary devices,” Engineering, 2022.

[8] D. Scaramuzza and F. Fraundorfer, “Visual odometry: The first 30
years and fundamentals,” IEEE Robotics & Automation Magazine,
vol. 18, no. 4, pp. 80–92, 2011.

[9] D. Nistér, “An efficient solution to the five-point relative pose prob-
lem,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 26, no. 6, pp. 756–777, 2004.

[10] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, “A minimal case
solution to the calibrated relative pose problem for the case of two
known orientation angles,” in European Conference on Computer
Vision. Springer, 2010, pp. 269–282.

[11] C. Sweeney, J. Flynn, and M. Turk, “Solving for relative pose with
a partially known rotation is a quadratic eigenvalue problem,” in
International Conference on 3D Vision, 2014, pp. 483–490.

[12] B. Guan, J. Zhao, Z. Li, F. Sun, and F. Fraundorfer, “Relative pose
estimation with a single affine correspondence,” IEEE Transactions on
Cybernetics, pp. 1–12, 2021.

[13] D. Ortı́n and J. M. M. Montiel, “Indoor robot motion based on
monocular images,” Robotica, vol. 19, no. 3, pp. 331–342, 2001.

[14] S. Choi and J.-H. Kim, “Fast and reliable minimal relative pose
estimation under planar motion,” Image and Vision Computing, vol. 69,
pp. 103–112, 2018.

[15] C.-C. Chou, Y. Seo, and C.-C. Wang, “A two-stage sampling for robust
feature matching,” Journal of Field Robotics, 2018.

[16] O. Saurer, P. Vasseur, R. Boutteau, C. Demonceaux, M. Pollefeys,
and F. Fraundorfer, “Homography based egomotion estimation with
a common direction,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 2, pp. 327–341, 2016.

[17] B. Guan, P. Vasseur, C. Demonceaux, and F. Fraundorfer, “Visual
odometry using a homography formulation with decoupled rotation
and translation estimation using minimal solutions,” in IEEE Interna-
tional Conference on Robotics and Automation, 2018, pp. 2320–2327.

[18] Y. Ding, J. Yang, J. Ponce, and H. Kong, “Homography-based
minimal-case relative pose estimation with known gravity direction,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 44, no. 1, pp. 196–210, 2020.

[19] A. Alzati and A. Tortora, “A geometric approach to the trifocal tensor,”
Journal of Mathematical Imaging and Vision, vol. 38, no. 3, pp. 159–
170, 2010.



[20] R. Fabbri and B. B. Kimia, “Multiview differential geometry of
curves,” International Journal of Computer Vision, vol. 120, no. 3,
pp. 324–346, 2016.

[21] E. V. Martyushev, “Necessary and sufficient polynomial constraints
on compatible triplets of essential matrices,” International Journal of
Computer Vision, vol. 128, no. 12, pp. 2781–2793, 2020.

[22] A. Heyden, “Reconstruction from image sequences by means of
relative depths,” International Journal of Computer Vision, vol. 24,
no. 2, pp. 155–161, 1997.

[23] R. Hartley, “A linear method for reconstruction from lines and points,”
in IEEE International Conference on Computer Vision, 1995, pp. 882–
887.

[24] R. Fabbri, T. Duff, H. Fan, M. H. Regan, D. d. C. d. Pinho,
E. Tsigaridas, C. W. Wampler, J. D. Hauenstein, P. J. Giblin, B. Kimia,
A. Leykin, and T. Pajdla, “Trplp - Trifocal relative pose from lines
at points,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2020, pp. 12 073–12 083.

[25] D. Nistér and F. Schaffalitzky, “Four points in two or three calibrated
views: Theory and practice,” International Journal of Computer Vision,
vol. 67, no. 2, pp. 211–231, 2006.

[26] T. S. Huang and A. N. Netravali, “Motion and structure from feature
correspondences: a review,” Proceedings of the IEEE, vol. 82, no. 2,
pp. 252–268, 1994.

[27] R. J. Holt and A. N. Netravali, “Motion and structure from line cor-
respondences: Some further results,” International Journal of Imaging
Systems and Technology, vol. 5, no. 1, pp. 52–61, 1994.

[28] J. Kileel, “Minimal problems for the calibrated trifocal variety,” SIAM
Journal on Applied Algebra and Geometry, vol. 1, no. 1, pp. 575–598,
2017.

[29] T. Duff, K. Kohn, A. Leykin, and T. Pajdla, “PLMP - point-line mini-
mal problems in complete multi-view visibility,” in IEEE International
Conference on Computer Vision, 2019.

[30] Z. Kukelova, M. Bujnak, and T. Pajdla, “Automatic generator of
minimal problem solvers,” in European Conference on Computer
Vision. Springer, 2008, pp. 302–315.

[31] M. Bujnak, Z. Kukelova, and T. Pajdla, “Making minimal solvers fast,”
in IEEE Conference on Computer Vision and Pattern Recognition,
2012, pp. 1506–1513.

[32] V. Larsson, M. Oskarsson, K. Aström, A. Wallis, Z. Kukelova,
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