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Trifocal Tensor and Relative Pose Estimation from 8 Lines and Known
Vertical Direction

Banglei Guah, Pascal Vassefirand Gdric Demonceati

Abstract— In this paper, we present a relative pose estimation
algorithm based on lines knowing the vertical direction associ-
ated to each image. We demonstrate that a closed-form solution
requiring only eight lines between three views is possible. As a
linear solution, it is shown that our approach outperforms the
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standard trifocal estimation based on 13 triplets of lines and can Vertical

be ef ciently inserted into an hypothesize-and-test framework direction

such as RANSAC. We also study our approach on different

singular con gurations of lines. The method is evaluated on Camera
both synthetic data and real-world sequences from KITTI and Z
the Zirich Urban Micro Aerial Vehicle datasets. Our method is

compared to 13 lines algorithm as well to points based methods v X

such as 7-points, 5-points and 3-points.

Fig. 1. Trifocal relative pose from a minimal number of eight lines with
l. INTRODUCTION known vertical direction. Line features are easily obtained in man-made

Relative pose estimation between views is a fundamentgilvironments. The vertical direction of the camera is provided by an inertial
task in computer vision [1], [2], [3], [4], [5], [6], [7] and measurement unit (IMU) or detecting vanishing points.
constitutes an essential step in most of Structure from Motion
(SfM) and Simultaneous Localization And Mapping (SLAM)in some scenes with less textures, point features may not be
pipelines [8]. This task is mainly carried out by approacheavailable but line features are visible in large quantities, such
based on points of interest extracted and matched acrgs the man-made environments. Even though the relative
couples of images [1], [2]. The relative pose estimation ofose of two views cannot be determined if only line features
two views has been widely studied. In the non calibrateéxist, it has be proved that thirteen lines is suf cient to solve
case, at least seven or eight points are necessary in ordfeg trinocular relative pose linearly [23]. In the calibrated
to estimate the fundamental matrix and consequently tli@se, the estimation of trifocal relative pose requires the
relative pose up to scale between two views [1]. If intrinsigletermination of 11 DOFs, which include six unknowns for
parameters of the camera are known, the essential matgirch pair of views and less one for metric ambiguity [24].
is then suf cient to describe the relative pose and can b€he trinocular relative pose can be estimated from four
estimated from ve points [9]. Many other cases between twgoints [25], [20] or six lines [26], [27]. Futhermore, the
views have been declined according to some prior knowledginimal problems for generic arrangements of points and
such as the vertical direction [10], [11], [12], the kind oflines have been studied [28], [29], [24].
motion [13], [14], [15] or the nature of the environment [16], Reducing the number of requested matched or tracked
[17], [18]. features between consecutive views allows to apply some

Trifocal relative pose has long been believed to augmendbust methods in order to discard outliers while limiting the
relative pose estimation from two views [19], [20], [21].computation time [30], [31], [32]. The Random Sample Con-
When the relative pose estimation of two views fails, thesensus (RANSAC) is probably the most used techniques for
trifocal relative pose can be considered as a fallback optioselecting the inliers for a nal relative pose estimation [33].
But the trifocal relative pose estimation is usually considered consists in randomly selecting the minimal number of
a more hard problem and requires a more expensive opéeatures in order to estimate a solution and to verify how
ation. For the uncalibrated case, the trifocal relative posmany other features check this solution within a margin
can be represented by a 3 3 trifocal tensor, which has error [8]. Consequently, for a probability of success of 0.99
18 degrees of freedom (DOFs) [1]. Six points are at leasind a rate of outliers equal to 0.5, the number of RANSAC
required to estimate the trifocal relative pose [22]. Howevetrials is divided by 32, if eight features are used instead

. _ . _ of thirteen. In the case of a robust estimation based on
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eight lines between three views is possible rather than thRonce et al. introduced a analytical parameterization of
thirteen required in the standard method [23]. The remaindéifocal constraints, which yields a minimal parameterization
of the paper is organized as follows. First, we review relatedf trinocular geometry for cameras with non-collinear or
work in Section Il. In Section lll, we propose our closed-collinear pinholes [44]. Quaret al. showed that the tri-
form solution for three-view relative motion estimation withfocal relative pose has a unique solution with 4 points in
known vertical direction based on lines and we also studgeneral when the cameras are calibrated [45].&Xist al.
degeneracy cases. We evaluate the performance of our eigarametrized the relative pose between two views as a curve
lines method using both synthetic and real-world datasets degree ten which represents possible epipoles, and selected
in Section 1V. Finally, we conclude with some remarks andhe epipole that minimizes reprojection errors by using a third
comments in Section V. view [25]. Since the problem about estimating the calibrated
trifocal relative pose from 4 points is notably dif cult to
Il. RELATED WORK solve [45], [25], [46], a lot of theoretical work has been
Straight lines are particularly well suited for indoor andstudied [47], [48], [49], [50].
urban applications where structures are generally man madeLine-based methods From two views, lines do not pro-
In case of low-textured scenarios, the point features akgde any constraints on the relative pose estimation [23],
insuf cient and the points based pose estimation method51]. However, for lines in indoor and urban scenes, many
are prone to fail. The pose estimation methods based tines satisfy the structural information, such as parallelism,
line features can serve as ideal complements when there ar¢hogonality and coplanarity. By exploiting the constraints
insuf cient point features detected in the scene [34]. In thef these structural information, a lot of algorithms have been
following text, we focus on the solutions for the relative poseleveloped. Elqurstet al. presented an algorithm for the
estimation based on points and lines. computation of the relative pose between two views using a
Point-based methods For two-views relative pose esti- minimal number of three lines, of which two of the lines par-
mation, Hartleyet al. proposed a minimal solver to estimateallel and orthogonal to the third [52]. l&t al. leveraged the
the fundamental matrix of non-calibrated cameras by usingiructural regularity of lines to estimate the relative pose and
7 points [1]. Nisér et al. further presented a minimal solver proposed an two-step method to compute the rotation. They
to estimate the essential matrix using 5 points when thestimated two DOFs of rotation by two image lines whose
cameras are calibrated [9]. If the points are coplanar, dssociated 3D lines are aligned to two Manhattan frame (MF)
points is suf cient to estimate the homography matrix [1].axes, and then estimate its third DOF by another image line
With assumptions about the camera motion, the numberhose associated 3D line is aligned to any MF axis [53].
of required points can be reduced. Cledi al. estimated Zhang assumed that the matched lines are projected from
the planar motion of the cameras by using 2 points [14}wo overlapped 3D lines, and recovered the camera motion
Scaramuzzeaet al. used a single point to recover the rel-from two views by using only line segments [54]. Montél|
ative pose by taking into account the Ackermann motioal. considered the image segment midpoints as correspondent
model [35]. When the vertical direction of the camera cain the image optimization, and recovered the camera motion
be provided by an IMU or detecting vanishing points, &rom straight segment correspondences [55].
variety of algorithms utilizing this information have been For trifocal relative pose estimation, Hartlet al. pro-
proposed. Fraundorfegt al. proposed a minimal solver to posed a linear algorithm to estimate the trifocal tensor with
estimate a simplied essential matrix with 3 points [10].measurements of 13 lines in three views [23]. Kuagl.
Sweeneyet al. formulated the relative pose problem withutilized the nonlinear constraints on the trifocal tensor and
known vertical direction as quadratic eigenvalue problenpresented several linear solvers using 10 to 12 lines [56].
and used 3 points to solve directly for relative rotation antlarssonet al. proposed a minimal solver to estimate the
translation [11]. For the planar scene, Sawtal. [16] and trifocal relative pose problem of the uncalibrated camera
Guanet al. [17] derived several simplied homographies using 9 lines [57]. Geppest al. estimated the relative pose
with known vertical direction, and solved them by using af three gravity oriented views from vertical lines [4].
minimum of 2 points and 1.5 points, respectively. Recently, a
number of methods exploited the af ne parameters between Ill. POSE ESTIMATION FROM LINES AND A
the feature matches and estimated the relative pose with KNOWN DIRECTION
af ne correspondences [36], [37], [38], [39], [40], [41]. A. Trifocal Tensor for Lines
For trifocal relative pose estimation, Heyden showed that
a minimal number of 6 points is sufcient to solve the
trifocal relative pose for the uncalibrated case [22]. Res
proposed the parameterization of the trifocal tensor based on 1= 12118 fori= 1,2;3; 1)
algebraic constraints of the correlation slices, which involves
20 parameters and 2 constraints [42]. Nordberg parametavhere I represents thé'™ coordinate of the straight line
ized the trifocal tensor by three 33 orthogonal matrices I*=[I; I}; I2]7 in the view 1,12 andI® are the coordinates
which transform the original tensor into a sparse one, buff the same line in the view 2 and view 3, respectivaly.
only valid for non-collinear centers of three views [43].represents thé" matrix of the trifocal tensor.

As shown in Figure 2, a straight line visible in three
iews gives the following relation [1]:
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In the general case, we also have: Qu=t t3 Qun= St Ct
Ti= ab] ab; ) Q3= Cgtz2 Sﬁté; Qu= Sy33Q9+ %%(310;
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where a4 and by are respectively the epipoles of the rst : Qis SS'ZQlZ Cy3Q9' Qi = §Qu3+ C§Quo;
camera into the second and the third views whijeand Q17= Q12+ Q13!
bi are thei" columns of the second and third camera Equation (1) can then be reformulated as:
projection matrices. Without loss of generality, if we consider (IZT[T ToT ]Ig)[ll] -0 (10)
1, 12,13 - Y

the cameras as intrinsically calibrated and consequently the
images as normalized (or expressed on the unitary spherajjere the symbdl] represents the skew-symmetric matrix
the projection matrixP; can be expressed only with the and consequently. Then we obtain:

extrinsic parameéers such as:3 3 2 0 1 |§ 3
1000 o Ry I 15 12 TuT2Ts 4'254@ 0o 1B=o
Pi:40 10 0 0' 1I| ; (3) IZ |§_ I)% 0
0 010 1)

h . : Two independent equations can be extracted from Eq. (11),
where R; and t; represent the rotations and translanon%vhi h : . .
: aho . ch means that 8 triplets of lines are suf cient to get the

between the rst view and thé&" view, respectively. The . .

o . L o 16 equations required to fully solve the system, up to scale.
rst view is located into an initial reference position such asr o equation system can be writte - 0 with A being a

= = U T -

Ri= 13 3 andt; =[0;0,0]", 16 17 matrix andg a 17 1 vector containing all the entries
B. Closed-form Solution of the trifocal tensor. The scaling factor is imposed with

We assume that the attitudes (roll and pitch angles) dhe constraintkgk = 1. All the relative poses can then be
the views are known, which are obtained directly from théetrieved from the estimated parametersjofSimilar to the
IMU. The camera coordinate system can be aligned with thigorithms in [10], [58], the proposed solver can be used to
known vertical direction. Then the rotation only depends orlld & least squared solution to an over-constrained system if
the yaw angle around the known vertical direction as showfore than 8 triplets of lines are used. Based on the formula
in Figure 2. Consequently, we can write: expression ofQg and Qu4 in Eq. (9), we can computé&

i : andS}. Meanwhile,C7 andC; can be also solved by using

|
_4 G 0 5. the formula expression of); and Q17 in Eq. (9). Thus,
R=40 1 05; 4) : : . : -
i 0 Ci the unique solution of the trifocal relative pose with known
_ _ %’ S vertical direction can be computed as follows:
whereC, and §, correspond respectively to cosine and sine  Yaw angle between views 1 and 2:
of the yaw angles' of the views {= 2;3). The translation 8 _ + .
can be represented as= [t}; tj; t]". Thus, equation (3) 2 Sg (QeQo+ QuaQua)H(QuoQus QoQuz)
equals to: S G =(QQiz QuQu17)=(QuoQiz  QoQ12)
I T " q7= arctantsj;c)
P=40 1 0  t 3 (5) Translation between views 1 and 2:
| ] 141
§ 0 G 38k G t2=[CjQo §Quz Qs §Qs; FQo+ CFQua"

If we consider the trifocal tensor equations in Eq. (2), W yaw angle between views 1 and 3:
can deduce the following three equalities: 8
>S= (Q+ SQ2)=Qus

T, = 48111 %2 8?5; 6) G =(Q GjQi0)=Qo

Qs Q7 Qs " g% = arctan2s};C)



TABLE |
RUN-TIME COMPARISON OFRELATIVE POSE SOLVERS (UNIT: mS).

Methods|| 7pt [1] | 5pt [9] | 3pt [11] | 13Lines [23]| 8Lines

Timings 0.26 0.12 0.18 0.75 0.24
Fig. 3. Degenerate case. When the planes thrddigind 12, namelyp?
andp?, are coincident, i.e. in the case of epipolar planes, thellirespace
is clearly unde ned in this condition.
Translation between views 1 and 3: @ (®)

Fig. 4. Probability density functions over relative pose estimation errors in

t3= [%"O}le C;Qlo; %%Q? C&in S\/?’Qlo C&QlZ]T the noise-free case (100,000 runs). The horizontal axis represents e log
Finally, the trifocal relative pose between three views Ca@ztlmated errors and the vertical axis represents the empirical probability

. nsity. (a) reports the rotation estimation error. (b) reports the translation
be further recovered by leveraging IMU measurement [41]estim§io(n)e”§r_ (b) rep

C. Degenerate Case .
g Translation errorg = arcco$(thjtt):( tge  ktk))

A degenerate Case can appear when the plane§ Passiitre Rgt and R denote the ground truth and estimated
through the 3D line and the camera centers are coincide tions, respectivelyg; andt denote the ground truth and

i.e. in the case of epipolar planes, see Figure 3. As expressed: - ~ted translations respectively
in [1], while this degenerate con guration could appear ’ '
between two views, it is very unlikely that this will happenA. Ef ciency Comparison and Numerical Stability
between the three views. In this way, in the extreme majority e ryntimes of our solver and the comparative solvers are
of cases, there will be a pair of views that can be used for thg, 5 |,ated on an Intel(R) Core(TM) i7-8550U 1.80GHz using
trifocal tensor. However, in the case of lines in the trifocaj\,ati AB. Al algorithms are implemented in Matlab, except
plane, the transfer between views is then always degenergte; theSpt-Nister method is implemented in C by using
and consequently unde ned. mex le. Table | summarizes the average run-times of the
IV. EXPERIMENTS solvers over 100,000 runs. The runtime of Bm-Nister
i ) method is the lowest, because the mex le is used. The
In this section, we evaluate the performance of the progni gyyeeney method solves the relative pose problem as

posed method using both synthetic and real-world data. TR aqratic Eigenvalue Problem that is also ef cient. It can be

proposed solver in Section Ill is referred to&lsnes . The  ggen that the proposé&tlines method is more ef cient than
8Lines method is compared with state-of-the-art methodsye method<pt-Hartley and 13Lines-Hartley

which include thel3Lines-Hartley — method [23], the  1he nymerical stability of the solvers in the noise-free
7pt-Hartley  method [1], the5pt-Nister  method [9]  age is shown in Figure 4. We repeat the procedure 100,000
and the 3pt-Sweeney ~ method [11]. The methods ines The vertical axis represents the empirical probability

13Lines-Hartley ~ and 8Lines estimate the relative gengity functions, which are plotted as the function of the
motion of three views. The methodgpt-Hartley . |oq, estimated errors. THept-Sweeney method achieves
Spt-Nister ~ and 3pt-Sweeney estimate the relative o pest numerical stability. The methodpt-Hartley |,

motion of two views. Since the points and lines are diﬁere%pt-Nister and8Lines have comparable numerical sta-
features and have their own advantages in different envirogmty_ It can also be seen that the propositdnes method

ments, the purpose of the following experiments is not ¢ petter numerical stability than théLines-Hartley
outperform the points based methods. Instead, we iIIustra,tﬁethod in both rotation and translation.

the feasibility and practicality of the proposed method in real
scenarios. B. Experiments on Synthetic Data

The rotation and translation errors are Compared Separatelyro evaluate the a|gorithms on Synthetic data we choose
in the experiments. The rotation error is computed as th@ie following setup. We simulate a monocular perspective
angle difference between the ground truth rotation and thgymera with a resolution of 640 480 pixels. The focal
estimated rotation. Since the estimated translation is onlgngth of the camera is set to 400 pixels and the principal
known up to scale, the translation error is also computegbint is set to (320, 240).
as the angle difference between the ground truth translation|n the synthetic experiments, we evaluate the performance
and the estimated translation. Speci cally, the errors argf the proposedLines method with respect to the image
computed as follows: noise and IMU noise. A total of 10000 trials are carried

Rotation error:er = arcc0$(trace(RgtRT) 1)=2) out in per noise step. The rotation and translation errors are



(a) er with image noise (b) & with image noise (a) er with pitch angle noise (b) & with pitch angle noise

Fig. 5. Rotation and translation error with varying image noise (unit:
degree). The left column reports the rotation error. The right column reports
the translation error.

assessed by the median of the errors in 10000 trials. In each
trial, the direction of the camera motion is set to random
motion and three views are captured by the camera. The
optical centers of the camera is in a cube of 10 10m.
The magnitudes of three rotation angles between views vary
from 10 to 10. A set of random 2D pairs of points is Fig. 6. Rotation and translation error with varying IMU angle noise (unit:
. . . degree). The image noise is set t0 pixel standard deviation. (a)(b): vary
generated on the image planes. Each pair de nes a 2D i

) " A r&ﬁch angle noise. (c)(d): vary roll angle noise. The left column reports the
which is at least 70 pixel long [59]. rotation error. The right column reports the translation error.

1) Accuracy with the magnitude of image noisén
this scenario, we test the performance of our method fafensor. Then the camera coordinate system can be aligned
increasing image noise. All tests are run with a set ofiith the known vertical direction. However, the roll angle
random image lines in three views, and 10000 tests panhd pitch angle of the IMU sensor are prone to inaccuracies.
noise step are performed. The endpoints of each imagurrently, the angular accuracy of vertical direction in low
line are disturbed by Gaussian noise with a standard deost IMUs is about & , and in high accuracy IMUs is less
viation ranging from 0 to 2 pixels. This allows to mod-than 002 [60], [61]. Thus, we add Gaussian noise with a
ify both the position and direction of the image lines.standard deviation ranging from Qo 1 to both the roll
The proposed8Lines method is compared against theangle and the pitch angle.
methods 13Lines-Hartley [23], 7pt-Hartley (1], Figure 6 shows the performance of the proposed method
Spt-Nister  [9] and3pt-Sweeney [11]. For lines based with respect to the magnitude of IMU noise, while the image
methods, 8 and 13 image lines in three views are generatggise is set to :D pixel standard deviation. Since the calcula-
for the trifocal relative pose estimation metho8kines tion of the methodd3Lines-Hartley  , 7pt-Hartley
and 13Lines-Hartley ~ , respectively. For points basedand5pt-Nister ~ do not use the known vertical direction
methods, the 2D endpoints of the image lines are useg prior, these methods are not in uenced by the noise of
as input. Thus, 4, 3 and 2 image lines in two views argne pitch angle and roll angle. The methdsjst-Nister
generated for the method¥pt-Hartley  , Spt-Nister and3pt-Sweeney have better performance than the other
and 3pt-Sweeney , respectively. methods. It is interesting to see that the propo8kihes
Figure 5 shows the performance of the proposed methadethod performs better than th&3Lines-Hartley
with respect to the magnitude of image noise with pemethod, even though the noise of the rotation anglesGs 1
fect IMU data. We show the rotation and translation erin addition, the accuracy of our method is also better than
rors, respectively. Th&pt-Sweeney method has better the 7pt-Hartley method in rotation estimation, when the
performance than the other methods. It can be seen thatation angle noise stays below70.
our 8Lines method performs obviously better than the
13Lines-Hartley method in both rotation and transla- C. Experiments on Real Data
tion estimation. Moreover, the proposed method also pro- We evaluate the proposed method on both an autonomous
vides better results than thépt-Hartley method in  driving and unmanned aerial vehicle environment, which
rotation estimation. include KITTI dataset [62] and AGZ dataset [63]. There are
2) Accuracy with the magnitude of IMU angle noisier  two popular modern robot applications.
this set of experiments, we evaluate the performance of our1l) Experiments on KITTI DataseWe evaluate the perfor-
method for increasing IMU angle noise. For the relative posmance of ouBLines method using the KITTI dataset [62]
estimation methods with known vertical direction, the rolicollected on outdoor autonomous vehicles. There are various
angle and pitch angle are assumed to be known with the IMEkequences in the visual odometry section of KITTI dataset.

(€) er with roll angle noise (d) & with roll angle noise



(a) View 1 (b) View 2 (c) View 3

Fig. 7. Matching lines of triple images on KITTI dataset. There are 69 matching lines in three consecutive images: image 1223 to image 1225.

TABLE I
ROTATION AND TRANSLATION ERROR OVERKITTI D ATASET.

7pt (] 5pt [9] 3pt[11] | I3Lines [23]] 8Lines
Methods & @& & & ) & & & &
Median error|| 0.37 1.38 | 0.26 1.32 | 0.10 0.75 | 1.40 1.77 | 0.22 0.92
Mean error || 050 1.97 | 0.38 1.56 | 0.19 1.45 | 2.01 2.06 | 0.36 1.03

The KITTI dataset provides ground truth poses for the
sequences, which is directly provided from the output of
the built-in GPS/IMU units. A challenging subsequence with
two consecutive sharp turns are selected, which starts from
image 1223 to image 1276 in the sequence 00 [59]. These
54 images are taken place in an urban environment, which
contains a large number of line features. The matching lines
of triple images are obtained by LineSfM [64], see Figure 7.

Trifocal relative poses of the subsequence are estimated
from these matching lines between three views. The pitch
and roll angles provided by the GPS/IMU units are used
to obtain the known vertical direction and pre-rotate the
matching lines of the images. To ensure the fairness of the
experiment, the pitch and roll angles are also provided for tHgd: 8.  Comparison between estimated trajectory and ground truth on

. . KITTI dataset. Relative pose measurements between consecutive images are

3pt-Sweeney method [11]’ which uses the known Vertlcaldirectly concatenated without any post-re nement (Best viewed in color).
direction as a prior. We compute rotation and translation
using our proposedLines method and compare it to
the ground truth. The proposed method is also compardde estimated trajectory obtained by @lines method is
with the methods13Lines [23], 7pt-Hartley [1], more consistent with the ground truth poses.
5pt-Nister [9] and 3pt-Sweeney [11]. All the solvers 2) Experiments on AGZ Datasetp validate the proposed
are integrated within RANSAC to deal with outliers. Themethod in unmanned aerial vehicle environment, we test
median error and mean error for this subsequence are uské performance of our method usingiriEh Urban Micro
to evaluate the performance of all the methods. Table Rerial Vehicle (AGZ) dataset [63]. The AGZ dataset is
shows the results for the rotation and translation estimatiaecorded by a camera-equipped UAV, which ies within the
over KITTI dataset. It is shown that the propos&ldnes urban streets. For the evaluation, we utilize all the available
method provides better results than th@lines method, images which have ground truth poses and together consist of
the 7pt-Hartley method and th&pt-Nister method. 2706 images. The ground truth poses are obtained by using
Even though the3pt-Sweeney method outperforms our an photogrammetric 3D reconstruction. Fig. 9 shows the
method, the8Lines method has the advantage of robustnessatching lines of triple images obtained by LineSfM [64].
over illumination changes. Because the line matching appearstaple |1l shows the results for the rotation and translation
more robust than point matching in the practical applicationastimation over AGZ dataset. TI8pt-Sweeney method

To visualize the comparison results, Fig. 8 shows thachieves the best accuracy. It is shown that the proposed
estimated trajectory of thBLines method and the KITTI 8Lines method provides better results than tt#l ines
ground truth poses, as well as the estimated trajectory ofethod and therpt-Hartley method. Meanwhile, our
13Lines method which also estimate the trifocal relativemethod performs better than thept-Nister method
pose based on lines. Since the estimated translation is oy rotation estimation, and has slightly worse performance
known up to scale with a monocular perspective camera, thre translation estimation. Fig. 10 compares the estimated
ground truth scale is used to plot the estimated trajectorietsajectory of the method8Lines and 13Lines method.
It is to be noted that all the relative poses are independentven though both trajectories have a signi cant accumulation
estimated. The estimated trajectories are plotted by directbf drift without any post-re nement, it can still be seen that
concatenating frame-to-frame relative pose measurementse estimated trajectory of ouBLines method is more
i.e. no post-re nement is not applied over the trajectoryconsistent than th&3Lines method in comparison with
Compared with thel3Lines method, it can be seen thatthe ground truth poses.



(a) View 1
Fig. 9. Matching lines of triple images on AGZ dataset. There are 104 matching lines in three images: 00181, 00211 and 00241.

(b) View 2

TABLE I
ROTATION AND TRANSLATION ERRORS OVERAGZ DATASET.
7pt (] 5pt [9] 3pt[11] | I3Lines [23]] 8Lines
Methods & @& & & ) ) & &
Median error|| 0.78 3.37 | 0.76 3.29 | 0.46 2.39 | 3.86 545 | 053 3.31
Mean error || 1.34 4.13 | 1.32 4.02 | 1.15 3.72 | 472 7.46 | 1.10 4.48

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

Fig. 10. Comparison between estimated trajectory and ground truth on AGZ -0, NO. . - ) )
dataset. The relative pose measurements between consecutive images Btk D. Nister, "An efcient solution to the ve-point relative pose prob-

directly concatenated without any post-re nement (Best viewed in color).

In this paper, we derived the linear solver for the trifocahl]
relative pose with the known vertical direction from line

V. CONCLUSION

(20]

correspondences. We showed that a closed-form solution

requiring only eight lines between three views is possiblé,lz]

and gives on to a unique solution. The proposed solver is

well-suited for robust estimation with RANSAC framework.[13]
We veri ed our method with both synthetic data and real-

world image data sets. The experimental results showed that
the proposed method provides better accuracy for trifocal

relative pose estimation in comparison to the standard trifocHP!
estimation based on thirteen triplets of lines. Moreover, oyig

method has better or comparable performance than the points

based methods. We demonstrated that the proposed method
is suitable for the scenes in which self-driving cars angh7

unmanned aerial vehicles operate.
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