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Trifocal Tensor and Relative Pose Estimation from 8 Lines and Known Vertical Direction

In this paper, we present a relative pose estimation algorithm based on lines knowing the vertical direction associated to each image. We demonstrate that a closed-form solution requiring only eight lines between three views is possible. As a linear solution, it is shown that our approach outperforms the standard trifocal estimation based on 13 triplets of lines and can be efficiently inserted into an hypothesize-and-test framework such as RANSAC. We also study our approach on different singular configurations of lines. The method is evaluated on both synthetic data and real-world sequences from KITTI and the Z ürich Urban Micro Aerial Vehicle datasets. Our method is compared to 13 lines algorithm as well to points based methods such as 7-points, 5-points and 3-points.

I. INTRODUCTION

Relative pose estimation between views is a fundamental task in computer vision [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], [START_REF] Ma | An invitation to 3d vision: from images to geometric models[END_REF], [START_REF] Agarwal | On the existence of epipolar matrices[END_REF], [START_REF] Geppert | Privacy preserving structure-from-motion[END_REF], [START_REF] Zhao | An efficient solution to non-minimal case essential matrix estimation[END_REF], [START_REF] Guan | Minimal cases for computing the generalized relative pose using affine correspondences[END_REF], [START_REF] Huang | 1000× faster camera and machine vision with ordinary devices[END_REF] and constitutes an essential step in most of Structure from Motion (SfM) and Simultaneous Localization And Mapping (SLAM) pipelines [START_REF] Scaramuzza | Visual odometry: The first 30 years and fundamentals[END_REF]. This task is mainly carried out by approaches based on points of interest extracted and matched across couples of images [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], [START_REF] Ma | An invitation to 3d vision: from images to geometric models[END_REF]. The relative pose estimation of two views has been widely studied. In the non calibrated case, at least seven or eight points are necessary in order to estimate the fundamental matrix and consequently the relative pose up to scale between two views [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. If intrinsic parameters of the camera are known, the essential matrix is then sufficient to describe the relative pose and can be estimated from five points [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF]. Many other cases between two views have been declined according to some prior knowledge such as the vertical direction [START_REF] Fraundorfer | A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles[END_REF], [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF], [START_REF] Guan | Relative pose estimation with a single affine correspondence[END_REF], the kind of motion [START_REF] Ortín | Indoor robot motion based on monocular images[END_REF], [START_REF] Choi | Fast and reliable minimal relative pose estimation under planar motion[END_REF], [START_REF] Chou | A two-stage sampling for robust feature matching[END_REF] or the nature of the environment [START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF], [START_REF] Guan | Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions[END_REF], [START_REF] Ding | Homography-based minimal-case relative pose estimation with known gravity direction[END_REF].

Trifocal relative pose has long been believed to augment relative pose estimation from two views [START_REF] Alzati | A geometric approach to the trifocal tensor[END_REF], [START_REF] Fabbri | Multiview differential geometry of curves[END_REF], [START_REF] Martyushev | Necessary and sufficient polynomial constraints on compatible triplets of essential matrices[END_REF]. When the relative pose estimation of two views fails, the trifocal relative pose can be considered as a fallback option. But the trifocal relative pose estimation is usually considered a more hard problem and requires a more expensive operation. For the uncalibrated case, the trifocal relative pose can be represented by a 3 × 3 × 3 trifocal tensor, which has 18 degrees of freedom (DOFs) [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. Six points are at least required to estimate the trifocal relative pose [START_REF] Heyden | Reconstruction from image sequences by means of relative depths[END_REF]. However, in some scenes with less textures, point features may not be available but line features are visible in large quantities, such as the man-made environments. Even though the relative pose of two views cannot be determined if only line features exist, it has be proved that thirteen lines is sufficient to solve the trinocular relative pose linearly [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF]. In the calibrated case, the estimation of trifocal relative pose requires the determination of 11 DOFs, which include six unknowns for each pair of views and less one for metric ambiguity [START_REF] Fabbri | Trplp -Trifocal relative pose from lines at points[END_REF]. The trinocular relative pose can be estimated from four points [START_REF] Nistér | Four points in two or three calibrated views: Theory and practice[END_REF], [START_REF] Fabbri | Multiview differential geometry of curves[END_REF] or six lines [START_REF] Huang | Motion and structure from feature correspondences: a review[END_REF], [START_REF] Holt | Motion and structure from line correspondences: Some further results[END_REF]. Futhermore, the minimal problems for generic arrangements of points and lines have been studied [START_REF] Kileel | Minimal problems for the calibrated trifocal variety[END_REF], [START_REF] Duff | PLMP -point-line minimal problems in complete multi-view visibility[END_REF], [START_REF] Fabbri | Trplp -Trifocal relative pose from lines at points[END_REF].

Reducing the number of requested matched or tracked features between consecutive views allows to apply some robust methods in order to discard outliers while limiting the computation time [START_REF] Kukelova | Automatic generator of minimal problem solvers[END_REF], [START_REF] Bujnak | Making minimal solvers fast[END_REF], [START_REF] Larsson | Beyond Gröbner bases: Basis selection for minimal solvers[END_REF]. The Random Sample Consensus (RANSAC) is probably the most used techniques for selecting the inliers for a final relative pose estimation [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF]. It consists in randomly selecting the minimal number of features in order to estimate a solution and to verify how many other features check this solution within a margin error [START_REF] Scaramuzza | Visual odometry: The first 30 years and fundamentals[END_REF]. Consequently, for a probability of success of 0.99 and a rate of outliers equal to 0.5, the number of RANSAC trials is divided by 32, if eight features are used instead of thirteen. In the case of a robust estimation based on thirteen features, 37724 trials are necessary whereas 1177 are sufficient if only eight features are required.

In this paper, we propose to exploit the knowledge of the vertical direction associated to each image into a relative pose estimation algorithm based on lines, as shown in Figure 1. We demonstrate that a closed-form solution requiring only eight lines between three views is possible rather than the thirteen required in the standard method [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF]. The remainder of the paper is organized as follows. First, we review related work in Section II. In Section III, we propose our closedform solution for three-view relative motion estimation with known vertical direction based on lines and we also study degeneracy cases. We evaluate the performance of our eight lines method using both synthetic and real-world datasets in Section IV. Finally, we conclude with some remarks and comments in Section V.

II. RELATED WORK

Straight lines are particularly well suited for indoor and urban applications where structures are generally man made. In case of low-textured scenarios, the point features are insufficient and the points based pose estimation methods are prone to fail. The pose estimation methods based on line features can serve as ideal complements when there are insufficient point features detected in the scene [START_REF] Li | A monocular slam system leveraging structural regularity in manhattan world[END_REF]. In the following text, we focus on the solutions for the relative pose estimation based on points and lines.

Point-based methods: For two-views relative pose estimation, Hartley et al. proposed a minimal solver to estimate the fundamental matrix of non-calibrated cameras by using 7 points [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. Nistér et al. further presented a minimal solver to estimate the essential matrix using 5 points when the cameras are calibrated [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF]. If the points are coplanar, 4 points is sufficient to estimate the homography matrix [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. With assumptions about the camera motion, the number of required points can be reduced. Choi et al. estimated the planar motion of the cameras by using 2 points [START_REF] Choi | Fast and reliable minimal relative pose estimation under planar motion[END_REF]. Scaramuzza et al. used a single point to recover the relative pose by taking into account the Ackermann motion model [START_REF] Scaramuzza | Real-time monocular visual odometry for on-road vehicles with 1-point ransac[END_REF]. When the vertical direction of the camera can be provided by an IMU or detecting vanishing points, a variety of algorithms utilizing this information have been proposed. Fraundorfer et al. proposed a minimal solver to estimate a simplified essential matrix with 3 points [START_REF] Fraundorfer | A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles[END_REF]. Sweeney et al. formulated the relative pose problem with known vertical direction as quadratic eigenvalue problem, and used 3 points to solve directly for relative rotation and translation [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF]. For the planar scene, Saurer et al. [START_REF] Saurer | Homography based egomotion estimation with a common direction[END_REF] and Guan et al. [START_REF] Guan | Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions[END_REF] derived several simplified homographies with known vertical direction, and solved them by using a minimum of 2 points and 1.5 points, respectively. Recently, a number of methods exploited the affine parameters between the feature matches and estimated the relative pose with affine correspondences [START_REF] Bentolila | Conic epipolar constraints from affine correspondences[END_REF], [START_REF] Raposo | Theory and practice of structurefrom-motion using affine correspondences[END_REF], [START_REF] Eichhardt | Affine correspondences between central cameras for rapid relative pose estimation[END_REF], [START_REF] Barath | Efficient recovery of essential matrix from two affine correspondences[END_REF], [START_REF] Hajder | Relative planar motion for vehicle-mounted cameras from a single affine correspondence[END_REF], [START_REF] Guan | Minimal solutions for relative pose with a single affine correspondence[END_REF].

For trifocal relative pose estimation, Heyden showed that a minimal number of 6 points is sufficient to solve the trifocal relative pose for the uncalibrated case [START_REF] Heyden | Reconstruction from image sequences by means of relative depths[END_REF]. Ressl proposed the parameterization of the trifocal tensor based on algebraic constraints of the correlation slices, which involves 20 parameters and 2 constraints [START_REF] Ressl | A minimal set of constraints and a minimal parameterization for the trifocal tensor[END_REF]. Nordberg parameterized the trifocal tensor by three 3 × 3 orthogonal matrices which transform the original tensor into a sparse one, but only valid for non-collinear centers of three views [START_REF] Nordberg | A minimal parameterization of the trifocal tensor[END_REF].

Ponce et al. introduced a analytical parameterization of trifocal constraints, which yields a minimal parameterization of trinocular geometry for cameras with non-collinear or collinear pinholes [START_REF] Ponce | Trinocular geometry revisited[END_REF]. Quan et al. showed that the trifocal relative pose has a unique solution with 4 points in general when the cameras are calibrated [START_REF] Quan | Some results on minimal euclidean reconstruction from four points[END_REF]. Nistér et al. parametrized the relative pose between two views as a curve of degree ten which represents possible epipoles, and selected the epipole that minimizes reprojection errors by using a third view [START_REF] Nistér | Four points in two or three calibrated views: Theory and practice[END_REF]. Since the problem about estimating the calibrated trifocal relative pose from 4 points is notably difficult to solve [START_REF] Quan | Some results on minimal euclidean reconstruction from four points[END_REF], [START_REF] Nistér | Four points in two or three calibrated views: Theory and practice[END_REF], [START_REF] Fabbri | Multiview differential geometry in application to computer vision[END_REF], a lot of theoretical work has been studied [START_REF] Aholt | The ideal of the trifocal variety[END_REF], [START_REF] Leonardos | A metric parametrization for trifocal tensors with non-colinear pinholes[END_REF], [START_REF] Martyushev | On some properties of calibrated trifocal tensors[END_REF], [START_REF] Oeding | The quadrifocal variety[END_REF].

Line-based methods: From two views, lines do not provide any constraints on the relative pose estimation [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF], [START_REF] Weng | Motion and structure from line correspondences; closed-form solution, uniqueness, and optimization[END_REF]. However, for lines in indoor and urban scenes, many lines satisfy the structural information, such as parallelism, orthogonality and coplanarity. By exploiting the constraints of these structural information, a lot of algorithms have been developed. Elqursh et al. presented an algorithm for the computation of the relative pose between two views using a minimal number of three lines, of which two of the lines parallel and orthogonal to the third [START_REF] Elqursh | Line-based relative pose estimation[END_REF]. Li et al. leveraged the structural regularity of lines to estimate the relative pose and proposed an two-step method to compute the rotation. They estimated two DOFs of rotation by two image lines whose associated 3D lines are aligned to two Manhattan frame (MF) axes, and then estimate its third DOF by another image line whose associated 3D line is aligned to any MF axis [START_REF] Li | Line-based absolute and relative camera pose estimation in structured environments[END_REF]. Zhang assumed that the matched lines are projected from two overlapped 3D lines, and recovered the camera motion from two views by using only line segments [START_REF] Zhang | Estimating motion and structure from correspondences of line segments between two perspective images[END_REF]. Montiel et al. considered the image segment midpoints as correspondent in the image optimization, and recovered the camera motion from straight segment correspondences [START_REF] Montiel | Structure and motion from straight line segments[END_REF].

For trifocal relative pose estimation, Hartley et al. proposed a linear algorithm to estimate the trifocal tensor with measurements of 13 lines in three views [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF]. Kuang 

III. POSE ESTIMATION FROM LINES AND A KNOWN DIRECTION

A. Trifocal Tensor for Lines

As shown in Figure 2, a straight line L visible in three views gives the following relation [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]:

l 1 i = l 2T T i l 3 for i = 1, 2, 3, (1) 
where l 1 i represents the i th coordinate of the straight line

l 1 = [l 1
x , l 1 y , l 1 z ] T in the view 1, l 2 and l 3 are the coordinates of the same line in the view 2 and view 3, respectively. T i represents the i th matrix of the trifocal tensor. In the general case, we also have:

T i = a i b T 4 -a 4 b T i , (2) 
where a 4 and b 4 are respectively the epipoles of the first camera into the second and the third views while a i and b i are the i th columns of the second and third camera projection matrices. Without loss of generality, if we consider the cameras as intrinsically calibrated and consequently the images as normalized (or expressed on the unitary sphere), the projection matrix P i can be expressed only with the extrinsic parameters such as:

P i =   1 0 0 0 0 1 0 0 0 0 1 0   R i -R i t i 0 1 , (3) 
where R i and t i represent the rotations and translations between the first view and the i th view, respectively. The first view is located into an initial reference position such as R 1 = I 3×3 and t 1 = [0, 0, 0] T .

B. Closed-form Solution

We assume that the attitudes (roll and pitch angles) of the views are known, which are obtained directly from the IMU. The camera coordinate system can be aligned with the known vertical direction. Then the rotation only depends on the yaw angle around the known vertical direction as shown in Figure 2. Consequently, we can write:

R i =   C i y 0 S i y 0 1 0 -S i y 0 C i y   , (4) 
where C i y and S i y correspond respectively to cosine and sine of the yaw angles θ i of the views (i = 2, 3). The translation can be represented as t i = [t i

x , t i y , t i z ] T . Thus, equation (3) equals to:

P i =   C i y 0 S i y -C i y t i x -S i y t i z 0 1 0 -t i y -S i y 0 C i y S i y t i x -C i y t i z   . (5) 
If we consider the trifocal tensor equations in Eq. ( 2), we can deduce the following three equalities:

T 1 =   Q 1 Q 2 Q 3 Q 4 0 Q 5 Q 6 Q 7 Q 8   , (6) 
T 2 =   0 Q 9 0 Q 10 Q 11 Q 12 0 Q 13 0   , (7) 
T 3 =   Q 14 -Q 7 Q 15 -Q 5 0 Q 4 Q 16 Q 2 Q 17   , (8) 
with

                                 Q 1 = C 3 y Q 9 +C 2 y Q 10 , Q 2 = -C 2 y t 3 y , Q 3 = C 2 y Q 12 -S 3 y Q 9 , Q 4 = C 3 y t 2 y , Q 5 = -S 3 y t 2 y , Q 6 = -S 2 y Q 10 +C 3 y Q 13 , Q 7 = S 2 y t 3 y , Q 8 = -S 2 y Q 12 -S 3 y Q 13 , Q 9 = C 2 y t 2 x + S 2 y t 2 z , Q 10 = -C 3 y t 3 x -S 3 y t 3 z , Q 11 = t 2 y -t 3 y , Q 12 = S 3 y t 3 x -C 3 y t 3 z , Q 13 = C 2 y t 2 z -S 2 y t 2 x , Q 14 = S 3 y Q 9 + S 2 y Q 10 , Q 15 = S 2 y Q 12 +C 3 y Q 9 , Q 16 = S 3 y Q 13 +C 2 y Q 10 , Q 17 = C 2 y Q 12 +C 3 y Q 13 . (9) 
Equation ( 1) can then be reformulated as:

(l 2T [T 1 , T 2 , T 3 ]l 3 )[l 1 ] × = 0, (10) 
where the symbol [ ] × represents the skew-symmetric matrix and consequently. Then we obtain:

l 2 x l 2 y l 2 z T 1 , T 2 , T 3   l 3 x l 3 y l 3 z     0 -l 1 z l 1 y l 1 z 0 -l 1 x -l 1 y l 1 x 0   = 0.
(11) Two independent equations can be extracted from Eq. ( 11), which means that 8 triplets of lines are sufficient to get the 16 equations required to fully solve the system, up to scale. The equation system can be written as Aq = 0 with A being a 16×17 matrix and q a 17×1 vector containing all the entries of the trifocal tensor. The scaling factor is imposed with the constraint q = 1. All the relative poses can then be retrieved from the estimated parameters of q. Similar to the algorithms in [START_REF] Fraundorfer | A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles[END_REF], [START_REF] Ding | An efficient solution to the relative pose estimation with a common direction[END_REF], the proposed solver can be used to find a least squared solution to an over-constrained system if more than 8 triplets of lines are used. Based on the formula expression of Q 8 and Q 14 in Eq. ( 9), we can compute S 2 y and S 3 y . Meanwhile, C 2 y and C 3 y can be also solved by using the formula expression of Q 1 and Q 17 in Eq. ( 9). Thus, the unique solution of the trifocal relative pose with known vertical direction can be computed as follows:

• Yaw angle between views 1 and 2:

     S 2 y = (Q 8 Q 9 + Q 13 Q 14 )/(Q 10 Q 13 -Q 9 Q 12 ) C 2 y = (Q 1 Q 13 -Q 9 Q 17 )/(Q 10 Q 13 -Q 9 Q 12 ) θ 2 = arctan2(S 2
y ,C 2 y ) • Translation between views 1 and 2:

t 2 = [C 2 y Q 9 -S 2 y Q 13 , C 3 y Q 4 -S 3 y Q 5 , S 2 y Q 9 +C 2 y Q 13 ] T • Yaw angle between views 1 and 3:      S 3 y = -(Q 8 + S 2 y Q 12 )/Q 13 C 3 y = (Q 1 -C 2 y Q 10 )/Q 9 θ 3 = arctan2(S 3
y ,C 3 y ) Fig. 3. Degenerate case. When the planes through l 1 and l 2 , namely π 1 and π 2 , are coincident, i.e. in the case of epipolar planes, the line L in space is clearly undefined in this condition.

• Translation between views 1 and 3:

t 3 = [S 3 y Q 12 -C 3 y Q 10 , S 2 y Q 7 -C 2 y Q 2 , -S 3 y Q 10 -C 3 y Q 12 ]
T Finally, the trifocal relative pose between three views can be further recovered by leveraging IMU measurement [START_REF] Guan | Minimal solutions for relative pose with a single affine correspondence[END_REF].

C. Degenerate Case

A degenerate case can appear when the planes passing through the 3D line and the camera centers are coincident, i.e. in the case of epipolar planes, see Figure 3. As expressed in [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], while this degenerate configuration could appear between two views, it is very unlikely that this will happen between the three views. In this way, in the extreme majority of cases, there will be a pair of views that can be used for the trifocal tensor. However, in the case of lines in the trifocal plane, the transfer between views is then always degenerate and consequently undefined.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed method using both synthetic and real-world data. The proposed solver in Section III is referred to as 8Lines. The 8Lines method is compared with state-of-the-art methods, which include the 13Lines-Hartley method [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF], the 7pt-Hartley method [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], the 5pt-Nister method [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF] and the 3pt-Sweeney method [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF]. The methods 13Lines-Hartley and 8Lines estimate the relative motion of three views. The methods 7pt-Hartley, 5pt-Nister and 3pt-Sweeney estimate the relative motion of two views. Since the points and lines are different features and have their own advantages in different environments, the purpose of the following experiments is not to outperform the points based methods. Instead, we illustrate the feasibility and practicality of the proposed method in real scenarios.

The rotation and translation errors are compared separately in the experiments. The rotation error is computed as the angle difference between the ground truth rotation and the estimated rotation. Since the estimated translation is only known up to scale, the translation error is also computed as the angle difference between the ground truth translation and the estimated translation. Specifically, the errors are computed as follows:

• Rotation error: ε R = arccos((trace(R gt R T ) -1)/2) Methods 7pt [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] 5pt [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF] 3pt [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF] 13Lines [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF] 8Lines Timings 0.26 0.12 0.18 0.75 0.24 • Translation error: ε t = arccos((t T gt t)/( t gt • t )) where R gt and R denote the ground truth and estimated rotations, respectively. t gt and t denote the ground truth and estimated translations, respectively.

A. Efficiency Comparison and Numerical Stability

The runtimes of our solver and the comparative solvers are evaluated on an Intel(R) Core(TM) i7-8550U 1.80GHz using MATLAB. All algorithms are implemented in Matlab, except that the 5pt-Nister method is implemented in C by using mex file. Table I summarizes the average run-times of the solvers over 100,000 runs. The runtime of the 5pt-Nister method is the lowest, because the mex file is used. The 3pt-Sweeney method solves the relative pose problem as Quadratic Eigenvalue Problem that is also efficient. It can be seen that the proposed 8Lines method is more efficient than the methods 7pt-Hartley and 13Lines-Hartley.

The numerical stability of the solvers in the noise-free case is shown in Figure 4. We repeat the procedure 100,000 times. The vertical axis represents the empirical probability density functions, which are plotted as the function of the log 10 estimated errors. The 3pt-Sweeney method achieves the best numerical stability. The methods 7pt-Hartley, 5pt-Nister and 8Lines have comparable numerical stability. It can also be seen that the proposed 8Lines method has better numerical stability than the 13Lines-Hartley method in both rotation and translation.

B. Experiments on Synthetic Data

To evaluate the algorithms on synthetic data we choose the following setup. We simulate a monocular perspective camera with a resolution of 640 × 480 pixels. The focal length of the camera is set to 400 pixels and the principal point is set to (320, 240).

In the synthetic experiments, we evaluate the performance of the proposed 8Lines method with respect to the image noise and IMU noise. A total of 10000 trials are carried out in per noise step. The rotation and translation errors are assessed by the median of the errors in 10000 trials. In each trial, the direction of the camera motion is set to random motion and three views are captured by the camera. The optical centers of the camera is in a cube of 10×10×10m. The magnitudes of three rotation angles between views vary from -10 • to 10 • . A set of random 2D pairs of points is generated on the image planes. Each pair defines a 2D line which is at least 70 pixel long [START_REF] Lecrosnier | Vision based vehicle relocalization in 3d line-feature map using perspective-n-line with a known vertical direction[END_REF].

1) Accuracy with the magnitude of image noise: In this scenario, we test the performance of our method for increasing image noise. All tests are run with a set of random image lines in three views, and 10000 tests per noise step are performed. The endpoints of each image line are disturbed by Gaussian noise with a standard deviation ranging from 0 to 2 pixels. This allows to modify both the position and direction of the image lines. The proposed 8Lines method is compared against the methods 13Lines-Hartley [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF], 7pt-Hartley [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], 5pt-Nister [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF] and 3pt-Sweeney [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF]. For lines based methods, 8 and 13 image lines in three views are generated for the trifocal relative pose estimation methods 8Lines and 13Lines-Hartley, respectively. For points based methods, the 2D endpoints of the image lines are used as input. Thus, 4, 3 and 2 image lines in two views are generated for the methods 7pt-Hartley, 5pt-Nister and 3pt-Sweeney, respectively.

Figure 5 shows the performance of the proposed method with respect to the magnitude of image noise with perfect IMU data. We show the rotation and translation errors, respectively. The 3pt-Sweeney method has better performance than the other methods. It can be seen that our 8Lines method performs obviously better than the 13Lines-Hartley method in both rotation and translation estimation. Moreover, the proposed method also provides better results than the 7pt-Hartley method in rotation estimation.

2) Accuracy with the magnitude of IMU angle noise: In this set of experiments, we evaluate the performance of our method for increasing IMU angle noise. For the relative pose estimation methods with known vertical direction, the roll angle and pitch angle are assumed to be known with the IMU sensor. Then the camera coordinate system can be aligned with the known vertical direction. However, the roll angle and pitch angle of the IMU sensor are prone to inaccuracies. Currently, the angular accuracy of vertical direction in low cost IMUs is about 0.5 • , and in high accuracy IMUs is less than 0.02 • [START_REF] Kukelova | Closed-form solutions to minimal absolute pose problems with known vertical direction[END_REF], [START_REF] Ding | Minimal solutions to relative pose estimation from two views sharing a common direction with unknown focal length[END_REF]. Thus, we add Gaussian noise with a standard deviation ranging from 0 • to 1 • to both the roll angle and the pitch angle.

Figure 6 shows the performance of the proposed method with respect to the magnitude of IMU noise, while the image noise is set to 1.0 pixel standard deviation. Since the calculation of the methods 13Lines-Hartley, 7pt-Hartley and 5pt-Nister do not use the known vertical direction as prior, these methods are not influenced by the noise of the pitch angle and roll angle. The methods 5pt-Nister and 3pt-Sweeney have better performance than the other methods. It is interesting to see that the proposed 8Lines method performs better than the 13Lines-Hartley method, even though the noise of the rotation angles is 1.0 • . In addition, the accuracy of our method is also better than the 7pt-Hartley method in rotation estimation, when the rotation angle noise stays below 0.7 • .

C. Experiments on Real Data

We evaluate the proposed method on both an autonomous driving and unmanned aerial vehicle environment, which include KITTI dataset [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF] and AGZ dataset [START_REF] Majdik | The Zurich urban micro aerial vehicle dataset[END_REF]. There are two popular modern robot applications.

1) Experiments on KITTI Dataset: We evaluate the performance of our 8Lines method using the KITTI dataset [START_REF] Geiger | Vision meets robotics: The KITTI dataset[END_REF] collected on outdoor autonomous vehicles. There are various sequences in the visual odometry section of KITTI dataset. The KITTI dataset provides ground truth poses for the sequences, which is directly provided from the output of the built-in GPS/IMU units. A challenging subsequence with two consecutive sharp turns are selected, which starts from image 1223 to image 1276 in the sequence 00 [START_REF] Lecrosnier | Vision based vehicle relocalization in 3d line-feature map using perspective-n-line with a known vertical direction[END_REF]. These 54 images are taken place in an urban environment, which contains a large number of line features. The matching lines of triple images are obtained by LineSfM [START_REF] Salaün | Robust and accurate lineand/or point-based pose estimation without manhattan assumptions[END_REF], see Figure 7.

Trifocal relative poses of the subsequence are estimated from these matching lines between three views. The pitch and roll angles provided by the GPS/IMU units are used to obtain the known vertical direction and pre-rotate the matching lines of the images. To ensure the fairness of the experiment, the pitch and roll angles are also provided for the 3pt-Sweeney method [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF], which uses the known vertical direction as a prior. We compute rotation and translation using our proposed 8Lines method and compare it to the ground truth. The proposed method is also compared with the methods 13Lines [START_REF] Hartley | A linear method for reconstruction from lines and points[END_REF], 7pt-Hartley [START_REF] Hartley | Multiple view geometry in computer vision[END_REF], 5pt-Nister [START_REF] Nistér | An efficient solution to the five-point relative pose problem[END_REF] and 3pt-Sweeney [START_REF] Sweeney | Solving for relative pose with a partially known rotation is a quadratic eigenvalue problem[END_REF]. All the solvers are integrated within RANSAC to deal with outliers. The median error and mean error for this subsequence are used to evaluate the performance of all the methods. Table II shows the results for the rotation and translation estimation over KITTI dataset. It is shown that the proposed 8Lines method provides better results than the 13Lines method, the 7pt-Hartley method and the 5pt-Nister method. Even though the 3pt-Sweeney method outperforms our method, the 8Lines method has the advantage of robustness over illumination changes. Because the line matching appears more robust than point matching in the practical application.

To visualize the comparison results, Fig. 8 shows the estimated trajectory of the 8Lines method and the KITTI ground truth poses, as well as the estimated trajectory of 13Lines method which also estimate the trifocal relative pose based on lines. Since the estimated translation is only known up to scale with a monocular perspective camera, the ground truth scale is used to plot the estimated trajectories. It is to be noted that all the relative poses are independently estimated. The estimated trajectories are plotted by directly concatenating frame-to-frame relative pose measurements, i.e. no post-refinement is not applied over the trajectory. Compared with the 13Lines method, it can be seen that the estimated trajectory obtained by our 8Lines method is more consistent with the ground truth poses.

2) Experiments on AGZ Dataset: To validate the proposed method in unmanned aerial vehicle environment, we test the performance of our method using Zürich Urban Micro Aerial Vehicle (AGZ) dataset [START_REF] Majdik | The Zurich urban micro aerial vehicle dataset[END_REF]. The AGZ dataset is recorded by a camera-equipped UAV, which flies within the urban streets. For the evaluation, we utilize all the available images which have ground truth poses and together consist of 2706 images. The ground truth poses are obtained by using an photogrammetric 3D reconstruction. Fig. 9 shows the matching lines of triple images obtained by LineSfM [START_REF] Salaün | Robust and accurate lineand/or point-based pose estimation without manhattan assumptions[END_REF].

Table III shows the results for the rotation and translation estimation over AGZ dataset. The 3pt-Sweeney method achieves the best accuracy. It is shown that the proposed 8Lines method provides better results than the 13Lines method and the 7pt-Hartley method. Meanwhile, our method performs better than the 5pt-Nister method in rotation estimation, and has slightly worse performance in translation estimation. Fig. 10 compares the estimated trajectory of the methods 8Lines and 13Lines method. Even though both trajectories have a significant accumulation of drift without any post-refinement, it can still be seen that the estimated trajectory of our 8Lines method is more consistent than the 13Lines method in comparison with the ground truth poses. 

V. CONCLUSION

In this paper, we derived the linear solver for the trifocal relative pose with the known vertical direction from line correspondences. We showed that a closed-form solution requiring only eight lines between three views is possible, and gives on to a unique solution. The proposed solver is well-suited for robust estimation with RANSAC framework. We verified our method with both synthetic data and realworld image data sets. The experimental results showed that the proposed method provides better accuracy for trifocal relative pose estimation in comparison to the standard trifocal estimation based on thirteen triplets of lines. Moreover, our method has better or comparable performance than the points based methods. We demonstrated that the proposed method is suitable for the scenes in which self-driving cars and unmanned aerial vehicles operate.

Fig. 1 .

 1 Fig. 1. Trifocal relative pose from a minimal number of eight lines with known vertical direction. Line features are easily obtained in man-made environments. The vertical direction of the camera is provided by an inertial measurement unit (IMU) or detecting vanishing points.

  et al. utilized the nonlinear constraints on the trifocal tensor and presented several linear solvers using 10 to 12 lines [56]. Larsson et al. proposed a minimal solver to estimate the trifocal relative pose problem of the uncalibrated camera using 9 lines [57]. Geppert et al. estimated the relative pose of three gravity oriented views from vertical lines [4].

Fig. 2 .

 2 Fig. 2. A straight line L is imaged as a triplet l 1 ↔ l 2 ↔ l 3 in three views. Conversely, the planes back-projected from the corresponding image lines in each view all intersect in a single 3D line in space.

Fig. 4 .

 4 Probability density functions over relative pose estimation errors in the noise-free case (100,000 runs). The horizontal axis represents the log 10 estimated errors and the vertical axis represents the empirical probability density. (a) reports the rotation estimation error. (b) reports the translation estimation error.

Fig. 5 .

 5 Fig. 5. Rotation and translation error with varying image noise (unit: degree). The left column reports the rotation error. The right column reports the translation error.

  Fig. 6. Rotation and translation error with varying IMU angle noise (unit: degree). The image noise is set to 1.0 pixel standard deviation. (a)(b): vary pitch angle noise. (c)(d): vary roll angle noise. The left column reports the rotation error. The right column reports the translation error.

Fig. 7 .

 7 Fig. 7. Matching lines of triple images on KITTI dataset. There are 69 matching lines in three consecutive images: image 1223 to image 1225.

Fig. 8 .

 8 Fig. 8. Comparison between estimated trajectory and ground truth on KITTI dataset. Relative pose measurements between consecutive images are directly concatenated without any post-refinement (Best viewed in color).

Fig. 9 .

 9 Fig. 9. Matching lines of triple images on AGZ dataset. There are 104 matching lines in three images: 00181, 00211 and 00241.

Fig. 10 .

 10 Fig. 10. Comparison between estimated trajectory and ground truth on AGZ dataset. The relative pose measurements between consecutive images are directly concatenated without any post-refinement (Best viewed in color).

TABLE I RUN

 I -TIME COMPARISON OF RELATIVE POSE SOLVERS (UNIT: ms).

TABLE II ROTATION

 II AND TRANSLATION ERROR OVER KITTI DATASET. • 1.38 • 0.26 • 1.32 • 0.10 • 0.75 • 1.40 • 1.77 • 0.22 • 0.92 • Mean error 0.50 • 1.97 • 0.38 • 1.56 • 0.19 • 1.45 • 2.01 • 2.06 • 0.36 • 1.03 •

	Methods	7pt [1] εR εt	5pt [9] εR εt	3pt [11] εR εt	13Lines [23] εR εt	8Lines εR εt
	Median error	0.37				

TABLE III ROTATION

 III AND TRANSLATION ERRORS OVER AGZ DATASET. Median error 0.78 • 3.37 • 0.76 • 3.29 • 0.46 • 2.39 • 3.86 • 5.45 • 0.53 • 3.31 • Mean error 1.34 • 4.13 • 1.32 • 4.02 • 1.15 • 3.72 • 4.72 • 7.46 • 1.10 • 4.48 •

	Methods	7pt [1] εR εt	5pt [9] εR εt	3pt [11] εR εt		13Lines [23] εR εt	8Lines εR εt
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