
HAL Id: hal-03740812
https://hal.science/hal-03740812

Preprint submitted on 30 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TORUS ACTIONS ON AFFINE VARIETIES OVER
CHARACTERISTIC ZERO FIELDS

Pierre-Alexandre Gillard

To cite this version:
Pierre-Alexandre Gillard. TORUS ACTIONS ON AFFINE VARIETIES OVER CHARACTERISTIC
ZERO FIELDS. 2022. �hal-03740812�

https://hal.science/hal-03740812
https://hal.archives-ouvertes.fr


TORUS ACTIONS ON AFFINE VARIETIES
OVER CHARACTERISTIC ZERO FIELDS

PIERRE-ALEXANDRE GILLARD

Abstract. Using Galois descent tools, we extend the Altmann-Hausen presentation of normal
affine algebraic varieties endowed with an effective torus action over an algebraically closed field
of characteristic zero to the case where the ground field is an arbitrary field of characteristic
zero. In this context, the acting torus may have non-trivial torsors and we need additional data
to encode such varieties. Finally, we focus on affine varieties endowed with a two-dimensional
torus action and we provide a method for determining when a torsor is trivial, in which case the
Altmann-Hausen presentation simplifies.
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1. Introduction

1.1. Aims and scope. Normal affine algebraic varieties endowed with a torus action over an
algebraically closed field of characteristic zero admit a geometrico-combinatorial presentation due
to Altmann and Hausen in [3]. In this context, an n-dimensional torus is an algebraic group T
isomorphic to Gnm,k. Over a non closed field k, a k-torus is defined as an algebraic group T such
that, for some n ∈ N∗,

Tk := T ×Spec(k) Spec(k) ∼= Gn
m,k.

Over k all tori are split, i.e. isomorphic to Gn
m,k for some n ∈ N∗, but over k a torus may be

non-split and may have non-trivial torsors. The existence of non split tori and non-trivial torsors
imply to insert additional data in the geometrico-combinatorial presentation over non closed fields.

Over the past few years, using Galois descent methods, the Altmann-Hausen presentation
was extended in different directions. In 2015, Langlois in [28, 29] extended it for complexity
one torus actions over an arbitrary field in any characteristic using a specific construction. In
the C/R setting, an R-torus is a product of copies of the split torus Gm,R, of the real circle
S1 = Spec(R[x, y]/(x2 + y2 − 1)), and of the Weil restriction RC/R(Gm,C). Contrary to Gm,R and
RC/R(Gm,C), the circle S1 has a non-trivial torsor, namely Spec(R[x, y]/(x2 + y2 + 1)). In 2018,
Dubouloz, Liendo and Petitjean focused on normal affine R-varieties endowed with S1-actions in
[15, 16], and they observed that an additional datum is needed to encode these varieties because of
the existence of the non-trivial S1-torsor. More generally, a geometrico-combinatorial presentation
of normal affine R-varieties endowed with an arbitrary R-torus action based on [3] was established
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2 PIERRE-ALEXANDRE GILLARD

in 2021 by the author in [22]. These three presentations agree in the sense that they use a similar
language and that we recover the first two presentations from the last one in the C/R setting.

As noted in [22], it is natural and reasonable to expect that a general presentation of normal
affine varieties endowed with torus actions over arbitrary fields of characteristic zero can be obtained
by combining Altmann-Hausen theory for split torus actions together with appropriate Galois
descent methods: this is precisely the goal of this article and this is the reason why we work
over characteristic zero fields. We extend the Altmann-Hausen presentation to arbitrary fields of
characteristic zero using a similar approach to the one adopted in [22]. However, in this context,
the Galois extension k/k may be infinite and the description of k-tori is more involved (except in
dimension 1). We give a complete description of normal affine varieties endowed with a torus action
over arbitrary fields of characteristic zero, and we recover the one given in [22] by letting k = R.

1.2. Overview of the article.

Altmann-Hausen presentation. For the convenience of the reader, we briefly recall the Altmann-
Hausen presentation over an algebraically closed field k of characteristic zero. Let T ∼= Gnm,k be
a k-torus with character lattice M . Let ω be a full dimensional cone in MQ := M ⊗Z Q, let N
be the dual lattice of M , let Y be a normal semi-projective k-variety (i.e. H0(Y,OY ) is a finitely
generated k-algebra and the affinization morphism Y → Spec(H0(Y,OY )) is projective), and let
D :=

∑
∆i ⊗ Di be a proper ω∨-polyhedral divisor. This means that the Di are prime divisors

on Y and the coefficients ∆i are convex polyhedra in NQ having ω∨ as tail cone. Then, for every
m ∈ ω∩M , we can evaluate D in m to obtain a Weil Q-divisor D(m) :=

∑
min{〈m|∆i〉}⊗Di. The

proper condition on D means that, for all m ∈ ω∩M , D(m) is a semi-ample Cartier Q-divisor, and
for all m ∈ Relint(ω) ∩M , D(m) is big. From the triple (ω, Y,D), Altmann and Hausen construct
an M -graded k-algebra:

A[Y,D] :=
⊕

m∈ω∩M
H0(Y,OY (D(m))) ⊂ k(Y )[M ].

The main results of [3] can be summarized as follows:

Theorem AH ([3, Theorems 3.1 and 3.4]). Let T be a k-torus.
(i) The scheme X[Y,D] := Spec(A[Y,D]) is a normal k-variety endowed with an effective T-action.
(ii) Let X be an affine normal k-variety endowed with an effective T-action. There exists a datum

(ω∨, Y,D) as above such that X ∼= X[Y,D] as T-varieties.

As we will see in Proposition 4.10, this presentation extends mutatis mutandis for split k-torus
actions over any field k of characteristic zero. In contrast, if the acting k-torus T is non-split, we
need to insert additional data in the geometrico-combinatorial presentation. Namely, the linear
Galois action on the character lattice of Tk, and a datum that encodes a certain T -torsor.

Galois descent tools. To extend the Altmann-Hausen presentation over an arbitrary field of char-
acteristic zero, we use the language of k-structures on k-varieties. Let Γ := Gal(k/k) be endowed
with the Krull topology. Roughly, a k-structure on an algebraic k-variety X is a continuous action
Γ×X → X such that the following diagram commutes for all γ ∈ Γ (see Definition 3.1):

X X

Spec(k) Spec(k)

σγ

Spec(γ)

A k-group structure τ on an algebraic k-group G is a k-structure on G that preserves the group
structure ofG (see Definition 3.4). Let us note that a k-group structure τ on a k-torus T corresponds
to a linear Γ-action τ̃ on its character lattice M . There is an equivalence of categories between
the category of quasi-projective algebraic k-varieties (resp. algebraic k-groups) and the category of
quasi-projective algebraic k-varieties endowed with a k-structure (resp. algebraic k-groups endowed
with a k-group structure); see Proposition 3.2 for a precise statement. Therefore we will often write
(X,σ) to refer to a k-variety and (T, τ) to refer to a k-torus.
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Generalized Altmann-Hausen presentation. Let (T, τ) be a k-torus and let M be the character
lattice of T. One of the main result of this article is the following one; it is the analog of Theorem
AH over an arbitrary field k of characteristic zero. This result is based on a Galois-equivariant
version of a method mentioned in [3, §11] (see Proposition 4.5).

Theorem A (see Theorem 4.3). Let (T, τ) be a k-torus.
(i) Let (ω∨, Y,D) be an AH-datum over k. If there exists a k-structure σY on Y and a map

h : Γ→ Hom(ω ∩M,k(Y )∗) such that

∀m ∈ ω ∩M, ∀γ ∈ Γ, σY
∗
γ(D(m)) = D(τ̃γ(m)) + divY (hγ(τ̃γ(m))); and

∀m ∈ ω ∩M, ∀γ1, γ2 ∈ Γ, hγ1(m)σY ]γ1
(hγ2(τ̃−1

γ1
(m))) = hγ1γ2(m),

then X[Y,D] admits a k-structure σX[Y,D] such that (T, τ) acts on (X[Y,D], σX[Y,D]).
(ii) Let (X,σ) be a normal affine k-variety endowed with a (T, τ)-action. There exists an AH-

datum (ω∨, Y,D) together with a k-structure σY on Y and a map h : Γ→ Hom(ω∩M,k(Y )∗)
satisfying the above conditions, such that (X,σ) ∼= (X[Y,D], σX[Y,D]) as (T, τ)-varieties.

The geometrico-combinatorial presentation over an arbitrary field of characteristic zero con-
tains a cocycle h. This cocycle encodes a torsor (see Remark 4.2 for a precise statement). Therefore,
this presentation simplifies, that is we can take h = 1, if there are no non-trivial torsors; it is the
case for instance for quasi-trivial torus actions (see Definition 3.8 and Proposition 4.8). In the C/R
setting, this simplification occurs when the acting torus does not contain S1-factors. Furthermore,
if the acting torus is split, then we recover mutatis mutandis the Altmann-Hausen presentation of
[3] (see Proposition 4.10).

From the Altmann-Hausen presentation of split k-torus actions, we get as expected an effective
method to compute an AH-datum of a T -action on a k-variety X (see Corollary 4.11). We consider
a finite Galois extension k′/k that splits T . Then, we determine an AH-datum for the Tk′ -action
on Xk′ using a Gal(k′/k)-equivariant embedding Xk′ in some Ank′ (see Proposition 4.5), and then
we deduce an AH-datum for the T action on a X.

Two-dimensional torus actions. Tori of dimension n over an arbitrary field k are classified by the
conjugacy classes of finite subgroup of GLn(Z). Therefore, a one-dimensional k-torus, up to isomor-
phism, is either a split k-torus or a norm one k-torus (see Definition 3.8). For instance, if k = R,
the norm one R-torus is S1. The classification of the conjugacy classes of finite subgroup of GL2(Z)
is well known and there is an explicit description of two-dimensional k-tori given by Voskresenski
in [40] (see Proposition 5.4). Based on this classification, there is a complete description of the
Galois cohomology set that classify torsors appearing in Theorem A in [17, Theorems 5.3 & 5.5]
(see Theorem 5.5).

In Section 5, using birational geometry tools for surfaces, we relate the torsor encoded by h
to a certain Del Pezzo surface. Let (T, τ) be a two-dimensional k-torus, and let (T, σ) be a (T, τ)-
torsor (see Remark 3.13). Then, applying a (T, τ)-equivariant MMP to a (T, τ)-equivariant smooth
compactification of (T, σ), we obtain the following proposition.

Proposition B (Proposition 5.10). Let (T, τ) be a two-dimensional k-torus and let (T, σ) be a
(T, τ)-torsor. There is a minimal toric Del Pezzo k-surface X birational to (T, σ) that contains
(T, σ) as a (T, τ)-stable dense open subset. Moreover, we have the following possibilities for X:
(i) X is a k-form of P2

k; or
(ii) X is a k-form of the Del Pezzo k-surface of degree 6; or
(iii) X is a k-form of P1

k × P1
k.

Finally, in the Appendices, we give some technical results used to prove the main results of
this article.

Acknowledgments. The author is grateful to Adrien Dubouloz and Ronan Terpereau. He thanks
them for their valuable help and for proofreading this article.
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2. Notation

2.1. Setting. In this paper, all fields have characteristic zero. Let k be an arbitrary field.
Throughout the paper, we call k-variety a separated and geometrically integral scheme of finite
type over k, and an algebraic k-group is a finite type group scheme over k. The group of regular
automorphisms of a k-variety X is denoted by Aut(X), and the group of regular group automor-
phisms of an algebraic k-group G is denoted by Autgr(G). If a k-torus acts on an affine variety, we
always assume that the torus action is effective.

Let k be a fixed algebraic closure of k; the field extension k/k is Galois. The Galois group
Gal(k/k) is a profinite group endowed with the Krull topology, which is defined as follows (see [33,
Chapter IV, §17]). A subset S of Gal(k/k) is open if S = ∅ or if S =

⋃
i γiGal(ki/k) for some

γi ∈ Gal(k/k) and for some finite Galois extensions ki/k in k′.
In this article, we consider a non-necessarily finite Galois extension k′/k in k, and we denote

Γ := Gal(k′/k) its Galois group. Most of the results are stated in this general setting, but sometimes
we specify k′ = k or k′/k to be a finite Galois extension. Recall that the set of finite Galois extension
ki/k in k′ equipped with the inclusion is a directed partially ordered set, and that Γ ∼= lim Gal(ki/k),
where the limit is taken over all finite Galois extension ki/k in k′ (see [1, §0BMI], or [4, §I.2.4]).

2.2. Convex geometry. From here on, N denotes a lattice, i.e. a finitely generated free abelian
group, and M := HomZ(N,Z) denotes its dual lattice. The associated Q-vector spaces are denoted
by NQ := N ⊗Z Q and MQ := M ⊗Z Q respectively, and the the corresponding pairing by

M ×N → Z, (u, v) 7→ 〈u, v〉 := u(v).
Let us recall some results of [21, §1.2]. A subset ωN ⊂ NQ is called a convex polyhedral cone if
there exists a finite set S ⊂ NQ such that

ωN = Cone(S) :=
{∑

λvv
∣∣∣ v ∈ S, λv ∈ Q≥0

}
⊂ NQ.

A cone ωN is pointed if it contains no line. For us, a cone in NQ is always a convex polyhedral
cone. The dual cone of ωN is defined by ω∨N := {u ∈MQ | ∀v ∈ ωN , 〈u|v〉 ≥ 0}; it is a cone in
MQ. Let ωN be a cone in NQ. A face τN of ωN is given by τN = ωN ∩ u⊥, for some u ∈ ω∨N , where
u⊥ := {v ∈ ωN | ∀u ∈ ω∨N , 〈u, v〉 = 0}. Recall that a face of a cone is a cone. The relative interior
Relint(ωN ) of a cone ωN is obtained by removing all proper faces from ωN .

A quasifan Λ in NQ (or in MQ) is a finite collection of cones in NQ (or in MQ) such that, for
any λ ∈ Λ, all the faces of λ belong to Λ, and for any λ1, λ2 ∈ Λ, the intersection λ1 ∩ λ2 is a face
of both λi. The support of a quasifan is the union of all its cones. A quasifan is called a fan if all
its cones are pointed.

3. Galois descent and algebraic tori

In this section, k is an arbitrary field, k′/k is a non-necessarily finite Galois extension in k,
and Γ := Gal(k′/k) is the corresponding Galois group. We recall basic definitions and well-known
facts about k-structures on k′-varieties and k-group structures on algebraic k′-groups in view of
studying torus actions on k-varieties.

3.1. Galois descent. Let us briefly recall the classical correspondence between quasi-projective k-
varieties and quasi-projective k′-varieties endowed with a k-structure. For finite Galois extensions,
this correspondence is a direct consequence of étale descent, and for infinite Galois extension, it is
a consequence of fpqc descent (see [2]).

Let k′/k be a finite Galois extension. A descent datum on a quasi-projective k′-variety X
corresponds to a k-structure on X, that is an algebraic semilinear Γ-action σ : Γ → Aut(X/k).
For a translation of the language of descent used in [2] to the language of k-structure, see [6, §6.2
Example B]. This translation is based on the following k′-algebra isomorphism

k′ ⊗k k′ →
∏
Γ

k′; a⊗ b 7→ (aγ(b))γ∈Γ .

If k′/k is an infinite Galois extension, this k′-algebra morphism is an injective morphism that
is not surjective. Therefore, in this context, a descent datum on a quasi-projective k′-variety
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X corresponds to a k-structure on X as defined in Definition 3.1 (see [7], [13, 2.4 Cohomologie
galoisienne], and [5, Lemme 2.12]).

Every k′-variety X can be viewed as a k-scheme via the composition of its structure morphism
X → Spec(k′) with the morphism Spec(k′)→ Spec(k) induced by the inclusion k ↪→ k′. We denote
this scheme by X/k. The Galois group Γ acts on Spec(k′), where the action is induced by the field
automorphisms (γ : k′ → k′) ∈ Γ.

Definition 3.1. (i) A k-form of a k′-variety X is a k-variety X0 together with an isomorphism
(X0)k′ := X0 ×Spec(k) Spec(k′) ∼= X of k′-varieties. By abuse of notation we will often write:
X0 is a k-form of X instead of (X0,∼=).

(ii) A k-structure σ on a k′-variety X is a (continuous) algebraic semilinear Γ-action σ : Γ →
Aut(X/k), γ 7→ σγ satisfying σγ1γ2 = σγ2 ◦ σγ1 for all γ1, γ2 ∈ Γ, which means that:
• for each γ ∈ Γ, the following diagram commutes:

X X

Spec(k′) Spec(k′)

σγ

Spec(γ)

• there exists a finite Galois extension k1/k in k′, and a k1-form X1 of X such that the
restriction of σ to Gal(k′/k1) coincides with the natural Gal(k′/k1)-action on (X1)k′ ∼= X.

(iii) Two k-structures σ and σ′ on X are equivalent if there exists ϕ ∈ Aut(X) such that σ′γ =
ϕ ◦ σγ ◦ ϕ−1 for all γ ∈ Γ.

(iv) A k-morphism between two k′-varieties X and X ′ with k-structures σ and σ′ is a morphism
of k′-varieties f : X → X ′ such that σ′γ ◦ f = f ◦σγ , as morphisms of k-schemes, for all γ ∈ Γ.

Observe that, if k′/k is a finite Galois extension, the definition of a k-structure of Definition
3.1 coincides with the usual one for finite Galois extension. We refer to the Appendix A for more
details on the link between infinite and finite Galois theory.

If X is a k-variety, then Xk′ is endowed with a canonical k-structure given by γ ∈ Γ 7→
id× Spec(γ). Furthermore, if X ′ is another k-variety and f : X → X ′ is a morphism of k-varieties,
then f × id : Xk′ → X ′k′ is a morphism of k′-varieties. The next proposition is a reformulation of
the effectiveness of fpqc descent in the category of quasi-projective varieties [2, Corollaire 7.9].

Proposition 3.2. The functor X 7→ (Xk′ , σ), where σγ := id × Spec(γ) for all γ ∈ Γ, induces
an equivalence of categories between the category of pairs (X,σ) consisting of a quasi-projective k′-
variety X endowed with a k-structure σ, and the category of quasi-projective k-varieties. Moreover,
equivalent k-structures on X correspond to isomorphic k-forms of X.

Using this equivalence, we denote (X,σ) 7→ X/Γ the corresponding inverse functor, and by
abuse of notation we write (X,σ) to refer to an algebraic k-variety.

Once we know the existence of a k-structure σ on a k′-variety X, a Galois cohomology set can
be used to parametrize the equivalence classes of k-structure on X. First, note that Aut(X) is a
discrete topological abstract group equipped with a continuous Γ-action

γ · ϕ := σ−1
γ ◦ ϕ ◦ σγ , ∀γ ∈ Γ and ∀ϕ ∈ Aut(X).

Here continuous means: for all ϕ ∈ Aut(X), the set StabΓ(ϕ) := {γ ∈ Γ | γ · ϕ = ϕ} is an open
subgroup of Γ. Then, assume there exists another k-structure σ′ on X. Observe that the map
c : Γ → Aut(X) defined for all γ ∈ Γ by cγ := σ′γ ◦ σ−1

γ is cocycle; that is a continuous map such
that for all γ1, γ2 ∈ Γ, cγ1γ2 = cγ1 ◦ (γ1 · cγ2). Two cocycles c and c′ are equivalent if there exists
ϕ ∈ Aut(X) such that for all γ ∈ Γ, c′γ = ϕ−1 ◦ cγ ◦ (γ · ϕ). The set of cocycles modulo this
equivalence relation is the first pointed set of Galois cohomology H1

cont(Γ,Aut(X)), and we have an
isomorphism of pointed set

H1
cont (Γ,Aut(X)) ∼= colim H1 (Gal(ki/k),Aut(X/Gal(k′/ki))) ,

where the colimit is taken over all finite Galois extensions ki/k in k′ (see [39, §I.2.2, Proposition
8], see also [4, Theorems I.2.8, II.3.33 and Lemma II.3.3]).
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Proposition 3.3 ([39, §III.1.3, Proposition 5], also [24, Theorem 14.91]). Let X be a k′-variety
equipped with a k-structure σ. There is a bijection

H1
cont (Γ,Aut(X)) ' {equivalence classes of k-structure on X}; (γ 7→ cγ) 7→ (γ 7→ cγ ◦ σγ)

that sends the trivial cocycle γ 7→ id to the equivalence class of σ.

We have similar definitions and properties for algebraic groups, those are always quasi-projective
varieties from Chevalley’s theorem (see [11, Corollary 1.2]). These similar definitions and properties
are consequences of fpqc descent in the category of algebraic groups (see [2, Corollaires 7.7 et 7.9]).

Definition 3.4. (i) Let G be an algebraic k′-group. An algebraic k-group G0 together with an
isomorphism (G0)k′ := G0 ×Spec(k) Spec(k′) ∼= G is called a k-form of G.

(ii) A k-group structure τ on an algebraic k′-group G is a k-structure τ : G → G such that the
multiplication G×G→ G, the inverse G→ G and the unity Spec(k′)→ G are k-morphisms.

(iii) Two k-group structures τ and τ ′ on G are equivalent if there exists ϕ ∈ Autgr(G) such that
τ ′γ = ϕ ◦ τγ ◦ ϕ−1 for all γ ∈ Γ.

(iv) A k-morphism between two algebraic k′-groups G and G′ with k-structures τ and τ ′ is a
morphism of algebraic k′-groups f : G → G′ such that τ ′γ ◦ f = f ◦ τγ as morphisms of
k-schemes for all γ ∈ Γ.

There is an equivalence of categories between the category of pairs (G, τ) consisting of an
algebraic k′-group endowed with a k-group structure, and the category of algebraic k-groups. This
equivalence induces a one-to-one correspondence between the k-forms of G, up to isomorphism in the
category of algebraic k-groups, and the equivalence classes of k-group structures on G. Furthermore,
if τ is a given k-group structure on G, then k-forms of G are classified by H1

cont(Γ,Autgr(G)) (see
[39, §III.1.3, Corollary of Proposition 5]).

3.2. Tori. See for instance [32, §30.3.3] for a survey of the theory of tori and of torsors. We give
here the essential results for this article. See the Appendix B for more details on k-tori.

Definition 3.5. A k-torus T is an algebraic k-group such that Tk ∼= Gn
m,k for some integer n. It

is called a split k-torus if T ∼= Gnm,k for some integer n.

Since the k-algebra k[T ] of any k-torus T is finitely generated, there exists a finite Galois
extension k1/k in k such that Tk1 is a split torus (see [35, Proposition 1.2.1], or [1, Lemmas 0EXM
and 09DT]).

Observe that there is a one-to-one correspondence between n-dimensional split k-tori and
rank n lattices. Indeed, to a lattice M ∼= Zn is associated the split torus Spec(k[M ]), where
k[M ] := {

∑
finite amχ

m | am ∈ k,m ∈ M} is a k-algebra such that χm+m′ = χmχm
′ . Conversely,

to a split torus T is associated its character lattice Homgr(T,Gm,k) ∼= Zn. In the rest of the paper,
we will write T = Spec(k[M ]) to refer to a split k-torus.

Remark 3.6 (Γ-action on the character lattice). Let τ be a k-group structure on T = Spec(k′[M ]).
Then τ induces a Γ-representation τ̃ : Γ → GL(M), and a dual Γ-representation τ̂ : Γ → GL(N),
such that τ̃γ1γ2 = τ̃γ1 ◦ τ̃γ2 and τ̂γ1γ2 = τ̂γ2 ◦ τ̂γ1 for all γ1, γ2 ∈ Γ. Indeed, one can shows that

τ ] : Γ→ Autk (k′[M ]) , γ 7→
(
amχ

m 7→ γ(am)χτ̃γ(m)
)
.

Fix a Z-basis of M . We get isomorphisms M ∼= Zn, GL(M) ∼= GLn(Z), and T ∼= Gnm,k, for some
n ∈ N∗. Two Γ-representations ρ and ρ′ on GLn(Z) are equivalent if there exists P ∈ GLn(Z) such
that ρ′(γ) = P ◦ ρ(γ) ◦ P−1 for all γ ∈ Γ. There is a one-to-one correspondence between k-group
structures on Gnm,k′ and faithful Γ-representations in GLn(Z). Furthermore, equivalent classes of k-
group structures on Gnm,k′ correspond to equivalent classes of Γ-representations in GLn(Z). Finally,
note that n-dimensional k-tori are classified by H1

cont(Gal(k/k),Autgr(Gnm,k)).

Example 3.7. The split k-torus Gnm,k = Spec(k[M ]) corresponds to (Gnm,k′ , τ0), where τ0 is the
k-group structure on Gnm,k′ = Spec(k′[M ]) such that the induced Γ-action on M is trivial:

τ ]0 : Γ→ Autk (k′[M ]) ; γ 7→ (amχm 7→ γ(am)χm) .
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Definition 3.8 ([9, III.3], [10, §2]). (i) A k-torus T is a Weil restriction k-torus if there exists a
finite Galois extension k′/k in k such that T ∼= Rk′/k(Gnm,k′) (see for instance [6, §7.6] and [12,
§A.5]).

(ii) Let T be k-torus that splits over a finite Galois extension k1/k. It is called a quasi-trivial
k-torus if there exits a basis of the character lattice M of Tk1

∼= Gnm,k1
that is permuted by

Gal(k1/k). A quasi-trivial k-torus is isomorphic to a product of tori Rk′/k(Gnm,k′), where k′

are finite Galois extensions of k in k. Note that a split k-torus is a quasi-trivial k-torus.
(iii) Let k′/k be a finite Galois extension of degree d. There is a surjective k-group morphism

Nk′/k : Rk′/k(Gm,k′) → Gm,k. The kernel is a torus of dimension d − 1 that splits over k′,
called the norm one torus and denoted by R(1)

k′/k(Gm,k′). That is, the following sequence is
exact:

1 −→ R(1)
k′/k (Gm,k′) −→ Rk′/k (Gm,k′) −→ Gm,k −→ 1.

A k-torus T is a norm one k-torus if there exists a finite Galois extension k′/k in k such that
T ∼= R(1)

k′/k(Gnm,k′).

These tori are also the building blocks of any R-torus and of any two-dimensional k-torus (see
Proposition 5.4).

Example 3.9. Let k′/k be a finite Galois extension of degree d. Then Nk′/k(k) : (k′)∗ → k∗
corresponds to the usual norm map of a field extension (see for instance [27, Chapter VI §5]).
As usual, if ω1, . . . , ωd is k-basis of k′, we denote Ξ := ω1x1 + · · · + ωnxd ∈ k′[x1, . . . , xd] and
Nk′/k(Ξ) ∈ k[x1, . . . , xd] be the induced form of degree d (see [19]). Then,

R(1)
k′/k (Gm,k′) = Spec

(
k[x1, . . . , xd]/(Nk′/k(Ξ)− 1)

)
.

For instance, the real circle S1 := Spec(R[x, y]/(x2 + y2 − 1)) is the norm one R-torus.

Example 3.10. Let k := C(t) and k′ := k[u]/(u3 − t). The extension k′/k is Galois with Galois
group Γ ∼= Z/3Z. We obtain:

Rk′/k (Gm,k′) = Spec
(

k[x1, y1, z1, x2, y2, z2]
(x1x2 + ty1z2 + tz1y2 − 1, x1y2 + x2y1 + tz1z2, x1z2 + x1z2 + x2z1)

)
.

The corresponding norm one torus of dimension 2 is

R(1)
k′/k (Gm,k′) = Spec(k[x, y, z]/(x3 + ty3 + t2z3 − 3txyz − 1)).

Example 3.11 (Biquadratic field extension). Recall that k′/k is a Galois extension with Galois
group isomorphic to the Klein group Z/2Z × Z/2Z if and only if k′ = k(

√
(a),

√
(b)) for some

a, b ∈ k such that none of a, b, or ab is a square in k. So, let a, b ∈ k satisfying this property.
Then, {1,

√
a,
√
b,
√
ab} is a k-basis of k′ and the Galois group is {id, γ1, γ2, γ1γ2}, where γ1 :

√
a 7→

−
√
a,
√
b 7→
√
b and γ2 :

√
a 7→

√
a,
√
b 7→ −

√
b. Then, Nk′/k(Ξ) =

∏
γ∈Γ(x+ γ(

√
a)y + γ(

√
b)z +

γ(
√
ab)w). Therefore, the norm one k-torus R(1)

k′/k(Gm,k′) of dimension 3 is defined by the equation:

x4+a2y4+b2z4+a2b2w4−2ax2y2−2bx2z2−2ab(x2w2+y2z2)−2a2by2w2−2ab2z2w2+8abxyzw = 1.

3.3. Torsors and toric varieties. Split toric k-varieties, that is k-varieties endowed with an
action of a split k-torus T = Spec(k[M ]) having a dense open orbit isomorphic to T itself, are
determined by a fan in NQ; the Q-vector space associated to the cocharacter lattice of T (see for
instance [17, §2.1]). If the acting torus is a non-necessarily split k-torus, we cannot define such
lattices, and the definition of toric k-varieties we use in this paper involves the notion of torsor.

Definition 3.12. Let T be a k-torus. A T -torsor is a k-variety V together with a left action
µ : T × V → V such that the map (µ, pr2) : T × V → V × V is an isomorphism. Two T -torsors
V and V ′ are isomorphic if there exists a T -equivariant isomorphism V → V ′ of k-varieties. A
T -torsor is trivial if it is isomorphic to T acting on itself by translation.
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A T -torsor V is trivial if and only if the set V (k) of k-points is not empty. In particular,
any torsor over an algebraically closed field is trivial. Furthermore, by Hilbert’s 90 Theorem, any
Gnm,k-torsor is trivial, and by [9, III.3], a quasi-trivial torus has no non-trivial torsors (see [10, §2,
§5]).

Remark 3.13. In our setting, there is an equivalent definition of a T -torsor. A T -torsor is a
k-variety V such that Tk ∼= Vk and such that the action µk : Tk×Vk → Vk corresponds to the action
by translation on Tk. Since any Gnm,k′ -torsor is trivial, a (Gnm,k′ , τ)-torsor is a k-variety (Gnm,k′ , σ)
endowed with a (Gnm,k′ , τ)-action, where σ is a k-structure on Gnm,k′ .

Since a (Gnm,k′ , τ)-torsor is a k-form of Gnm,k′ viewed as a Gnm,k′-variety for the usual action by
translation, from Proposition 3.3 and Remark 3.13 we obtain the following result.

Proposition 3.14. Let (T = Spec(k′[M ]), τ) be a k-torus. Consider the continuous Γ-action on
the group AutT(T) of T-equivariant k′-automorphisms of T given by γ · ϕ = τ−1

γ ◦ ϕ ◦ τγ . There is
a functorial bijection

H1
cont

(
Γ,AutT(T)

)
' {isomorphism classes of T -torsors};

(γ 7→ ϕγ) 7→
(
T, (γ 7→ ϕγ ◦ σγ)

)
that sends the trivial cocycle to a trivial (T = Spec(k′[M ]), τ)-torsor.

Torsors of norm one tori are described by the next lemma.

Lemma 3.15 ([9, III.3], [10, §2]). Let k′/k be a finite Galois extension, and let T ∼= R(1)
k′/k(Gm,k′).

Then
H1
(

Γ,AutTk′ (Tk′)
)
∼= k∗/Im

(
Nk′/k(k)

)
,

where Nk′/k(k) : Rk′/k(Gm,k′)(k) = (k′)∗ → Gm,k(k) = k∗ is the norm map obtained from the
functor Nk′/k mentioned in Definition 3.8. Furthermore (see [23, Corollary 4.4.10]), if the extension
k′/k is cyclic, there is a canonical isomorphism

k∗/Im
(
Nk′/k(k)

) ∼= Br(k′/k),
where Br(k′/k) is the kernel of the morphism Br(k)→ Br(k′) and Br(k) is the Brauer group of k.

Example 3.16. We pursue Example 3.9. Let α ∈ k∗. Then, the k-variety defined by the equation
Nk′/k(Ξ) = α is a R(1)

k′/k(Gm,k′)-torsor, and any R(1)
k′/k(Gm,k′)-torsor has this form. By Lemma 3.15,

this torsor is trivial if and only if α ∈ Im(Nk′/k(k)). For instance:
(i) If k′ = C and k = R, then −1 /∈ Im(Nk′/k(k)) and Spec(R[x, y]/(x2 + y2 + 1)) is, up to

isomorphism, the only non-trivial S1-torsor (see [15, Proposition 3.1]);
(ii) If k′ = k(

√
13,
√

17) and k = Q, then for instance −1; 25; 49 /∈ Im(Nk′/k(k) (see Example 3.11
and [8, Example 5.3]);

Example 3.17. We pursue Example 3.10. Since k is an extension of C of transcendence degree
one, then Br(k) = {1} (see [38, Chapter X, §7]). Therefore R(1)

k′/k(Gm,k′) has no non-trivial torsors.

Definition 3.18. A toric k-variety is a normal k-variety V such that there exits a k-torus T acting
effectively on V with a dense open orbit U . Note that U is a T -torsor.
A toric k-variety V is called a split toric k-variety if T is a split k-torus (i.e. T ∼= T = Spec(k[M ])).
In this case, since there is no non-trivial torsors (by Hilbert’s 90 Theorem), T acts on V with a
dense open orbit U ∼= T and there exists a fan Λ in NQ such that V ∼= VΛ (see [17, §2.1]).

4. Altmann-Hausen presentation over arbitrary fields

In this section, we extend the Altmann-Hausen presentation of torus actions on affine varieties
over algebraically closed fields to arbitrary fields (see Theorem 4.3). We show that the cocycle
appearing in the presentation over non closed fields encodes a torsor, and a simpler presentation is
possible when this torsor is trivial. Theorem 4.3 generalizes [22, Theorems 4.3 & 4.6], those treat
the C/R case, and [28, Theorem 5.10] that focus on complexity one torus actions (see Remark 4.13).
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4.1. Altmann-Hausen presentation over an arbitrary field. The Altmann-Hausen presen-
tation is introduced in [3]. See also [22, §3 & §4] for a detailed summary of the Altmann-Hausen
presentation.

Let k be an arbitrary field, let k′ = k, and let Γ := Gal(k/k). Let T = Spec(k[M ]) be a
k-torus, let N be the dual lattice of M , and let X be an affine k-variety endowed with a T-action
µ. The T-action on X corresponds to an M -grading of its coordinate ring,

k[X] =
⊕
m∈M

k[X]m,

the spaces k[X]m consisting of semi-invariant regular functions on X, that is k[X]m := {f ∈
k[X] | µ](f) = χm ⊗ f}, where χm : T→ Gm,k is the character associated to m ∈ M . The weight
cone of the T-action is the cone ωM of MQ := M ⊗Z Q spanned by the set {m ∈M | k[X]m 6= 0}.

Let ωN be a pointed cone in NQ = N ⊗Z Q, let Y be a normal semi-projective k-variety, and
let D :=

∑
∆i⊗Di be a proper ωN -polyhedral divisor (see Section 1.2). From the triple (ωN , Y,D)

(called an AH-datum), Altmann and Hausen construct an M -graded k-algebra:

A[Y,D] :=
⊕

m∈ω∨
N
∩M

H0(Y,OY (D(m))) ⊂ k(Y )[M ].

By [3, Theorems 3.1], the affine scheme X[Y,D] := Spec(A[Y,D]) is a normal k-variety endowed
with a T-action of weight cone ω∨N (see Theorem AH).

We will state one of the main results of this article. We extend the Altmann-Hausen presen-
tation over an arbitrary field. In this setting, the acting torus is non-necessarily split. In the next
definition, we adapt the notion of AH-datum to our setting.

Definition 4.1 (Generalized AH-datum). Let T = Spec(k[M ]) be a k-torus and let τ be a k-group
structure on T. A generalized AH-datum (ωN , Y,D, σY , h) over k is an AH-datum (ωN , Y,D) over
k together with a k-structure σY on Y and with a map h : Γ→ Hom(ω∨N ∩M, k(Y )∗) such that

∀m ∈ ω∨M ∩M, ∀γ ∈ Γ, σY
∗
γ(D(m)) = D(τ̃γ(m)) + divY (hγ (τ̃γ(m))) , and (1)

∀m ∈ ω∨M ∩M, ∀γ1, γ2 ∈ Γ, hγ1(m)σY ]γ1

(
hγ2

(
τ̃−1
γ1

(m)
))

= hγ1γ2(m). (2)

Remark 4.2. Let (T = Spec(k[M ]), τ) be a k-torus, let (ωN , Y,D, σY , h) be a generalized AH-
datum, let L := k(Y ), and let K = LΓ. By Lemma 4.6, the extension L/K is Galois with Galois
group Γ. Let G := Homgr(M,L∗) be endowed with the continuous Γ-action γ · f := σY

]
γ ◦ f ◦ τ̃−1

γ .
Note that the map h mentioned in Theorem 4.3 is a cocycle, that is h ∈ H1

cont(Γ, G). Let TL :=
Spec(L[M ]) be the L-torus associated to M , and let τL be the K-group structure on TL induced by
τ̃ . The cocycle h encodes a (TL, τL)-torsor. Indeed, one can easily shows that

H1
cont(Γ, G) ∼= H1

cont

(
Γ,AutTL (TL)

)
.

From a generalized AH-datum over k, we can easily construct an affine k-variety endowed with
a (T, τ)-action (see the proof of the next theorem in Section 4.2).

Theorem 4.3 (Torus actions on normal affine varieties over arbitrary fields). Let k be a field, and
let Γ := Gal(k/k). Let T = Spec(k[M ]) be a k-torus, and let τ be a k-group structure on T.
(i) Let (ωN , Y,D, σY , h) be a generalized AH-datum over k. The affine T-variety X[Y,D] admits

a k-structure σX[Y,D] such that (T, τ) acts on (X[Y,D], σX[Y,D]).
(ii) Let (X,σ) be a normal affine k-variety endowed with a (T, τ)-action. There exists a generalized

AH-datum (ωN , Y,D, σY , h) such that (X,σ) ∼= (X[Y,D], σX[Y,D]) as (T, τ)-varieties.

Example 4.4. Let (X,σ) be an affine (T, τ)-toric variety, where T = Spec(k[M ]). Let ωM be the
weight cone of the T-action on X. In this case, Y = Spec(k) is endowed with the k-structure γ 7→
Spec(γ), D is trivial, and h : Γ→ Hom(ωM ∩M, k∗). Therefore, the Altman-Hausen presentation
is given by ωM (that encodes the toric T-variety X since k[X] ∼= A[Y,D] = k[ωM ∩M ]), and by h
(that encodes the k-structure σ on X compatible with τ). Let γ ∈ Γ, we will see in the proof of
Theorem 4.3 that σ]γ : k[ωM ∩M ]→ k[ωM ∩M ]; amχm 7→ γ(am)hγ(τ̃γ(m))χτ̃γ(m). Moreover, note
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that σγ(XT) = XT for all γ ∈ Γ, where XT ∼= T is the dense open orbit of the toric k-variety X.
Hence, σ induces a k-structure σT on XT and (XT, σT) is a (T, τ)-torsor.

4.2. Proof of Theorem 4.3. The next result, which generalizes [22, Proposition 4.1], is a key
ingredient to construct an AH-datum from a T -action on a k-variety. Here, k′/k is a non-necessarily
finite Galois extension in k of Galois group Γ. The next proposition will be used with k′ = k in the
proof of Theorem 4.3, but with a finite Galois extension k′/k in Corollary 4.11.

Proposition 4.5 (Downgrading torus action). Let X be an affine k′-variety endowed with an
action of the d-dimensional torus T = Spec(k′[M ]). Let σ be a k-structure on X and let τ be a
k-group structure on T. If the k-torus (T, τ) acts on (X,σ), then there is n ∈ N, n ≥ d such that:
(i) There is a k-group structure τ ′ on Gnm,k′ that extends to a k-structure σ′ on Ank′ ;
(ii) (T, τ) is a closed subgroup of (Gnm,k′ , τ ′); and
(iii) (X,σ) is a closed subvariety of (Ank′ , σ′), and (X,σ) ↪→ (Ank′ , σ′) is (T, τ)-equivariant. More-

over, X intersects the dense open orbit of Ank′ for the natural Gnm,k′-action, and the weight
cone of Ank′ is the weight cone of X.

Proof. Let k1/k be a finite Galois extension in k′ that splits the k-torus (T, τ). We have a tower
of Galois extension k ⊂ k1 ⊂ k′. Let H := Gal(k′/k1). By the Galois correspondence [1, Theorem
0BML], H is a normal subgroup of Γ and Γ/H ∼= Gal(k1/k). The k-structure σ on X restricts to a
k1-structure σH := σ|H on X, and the k-group structure τ on T restricts to a k1-group structure
τH := τ |H on T. Let X1 := X/H and T1 := T/H be the associated k1-varieties (see Proposition
3.2). We obtain an induced k-structure σ1 on X1 and a k-group structure τ1 on T1 such that
X1/Gal(k1/k) ∼= X/Γ and T1/Gal(k1/k) ∼= T/Γ (see Lemmas A.1 and A.2). Moreover (T1, τ1) acts
on (X1, σ1). Since k1 is a splitting field of T/Γ, T1 ∼= Gnm,k1

, the H-action on M is trivial and
k′[M ]H = k1[M ] (see Appendix B.1).

(i) The algebra k1[X1] = k′[X]H is finitely generated, so we can write k1[X1] = k1[g̃1, . . . , g̃k]
with g̃i ∈ k1[X1]\{0}. Since the split torus T1 ∼= Spec(k1[M ]) acts on X1, the k1-algebra k1[X1]
is M -graded, that is k1[X1] =

⊕
m∈M k1[X1]m. So, there exists homogeneous elements g̃i,j such

that g̃i = g̃i,1 + · · · + g̃i,ki . Note that k1[X1] is generated as a k1-algebra by {g̃i,j , σ1
]
γ(g̃i,j) | γ ∈

Gal(k1/k)}. Moreover, by Lemma C.2, an homogeneous element is send to an homogeneous element
by σ1

]
γ for all γ ∈ Gal(k1/k). Hence, we can assume there exists n ∈ N and homogeneous elements

gi of degree mi ∈ M , such that k1[X1] = k1[g1, . . . , gn] and such that the set {gi | 1 ≤ i ≤ n} is
stable under the Gal(k1/k)-action σ1

] on k1[X1].
We obtain a Γ-equivariant isomorphism k′[X]H ⊗k1 k′ ∼= k′[X], where the Γ-action on the left

hand side is given by γ 7→ σ1
]
γ ⊗ γ for all γ ∈ Γ, and where the Γ-action on k′[X] is given by σ]

(see Lemma A.1). Therefore, we can write k′[X] = k′[g1, . . . , gn], where the set {gi | 1 ≤ i ≤ n} is
stable under the Γ-action σ].

Let γ ∈ Γ, let τ ′γ and let σ′γ be the maps induced by the antilinear maps τ ′]γ(xi) =
xj , and σ′

]
γ(xi) = xj , where σ]γ(gi) = gj . This induces a k-group structure τ ′ on Gnm,k′ =

Spec(k′[x±1
1 , . . . , x±1

n ]) and a k-structure σ′ on Ank′ = Spec(k′[x1, . . . , xn]).
(ii) The k′-algebra morphism ψ : k′[x±1

1 , . . . , x±1
n ] → k′[M ], xi 7→ χmi is surjective since

the T-action on X is effective. Since (T, τ) acts on (X,σ), ψ is Γ-equivariant. So, the k-algebra
morphism ψΓ : k′[x±1

1 , . . . , x±1
n ]Γ → k′[M ]Γ is well defined and surjective. Hence, (T, τ) is a closed

subgroup of (Gnm,k′ , τ ′).
(iii) The k′-algebra morphism ϕ : k′[x1, . . . , xn]→ k′[X1], xi 7→ gi is surjective and induces a

k′-algebra isomorphism k′[g1, . . . , gn] ∼= k′[x1, . . . , xn]/a, with a = Ker(ϕ). Moreover, the morphism
ϕ is Γ-equivariant. So, the k-algebra morphism ϕΓ : k′[x1, . . . , xn]Γ → k′[X1]Γ is well defined and
surjective. Hence, (X,σ) is a closed subvariety of (Ank′ , σ′).

Note that ϕ is T-equivariant, so the closed immersion X ↪→ Ank′ is T-equivariant. Moreover,
the comorphism of the T-action on Ank′ is given by:

µ̃] : k′[x1, . . . , xn]→ k′[M ]⊗ k′[x1, . . . , xn], xi 7→ χmi ⊗ xi

Then, the following diagram commutes for all γ ∈ Γ:
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k′[Ank′ ] k′[M ]⊗ k′[Ank′ ]

k′[Ank′ ] k′[M ]⊗ k′[Ank′ ]

k′[X] k′[M ]⊗ k′[X]

k′[X] k′[M ]⊗ k′[X]

µ̃]

µ̃]

µ]

µ]

τ ]γ × σ′
]
γ

τ ]γ × σ]γ
σ]γ

σ′
]
γ

ϕ

ϕ id× ϕ

id× ϕ

Hence, the morphism ϕ is (T, τ)-equivariant, so (X,σ) is a closed subvariety of (Ank′ , σ′), and
(X,σ) ↪→ (Ank′ , σ′) is (T, τ)-equivariant. Finally, note that for all i ∈ {1, . . . , n}, xi /∈ a, hence X
intersects the dense open orbit of Gnm,k′ . It follows that the weight cone of Ank′ is the weight cone
of X. �

The next lemma is another key ingredient.

Lemma 4.6. Let Y be a quasi-projective k′-variety, let σ be a k-strucure on Y , and let L := k′(Y ).
Then, σ induces a faithful Γ-action on L by field automorphisms, and L/LΓ is a Galois extension
of absolute Galois group Gal(L/LΓ) ∼= Γ. Moreover, LΓ = k(Y/Γ).

Proof. (Compare with [20, Lemma 1.3.2]) Since Y is an integral scheme, for any Γ-stable affine
open subset U ⊂ Y , the ring OY (U) is integral and L := k′(Y ) = Frac(OY (U)). Hence, σ induces
a group homomorphism ϕ : Γ→ Autk(L), γ 7→ ϕγ := σ]γ .

Let k1/k and let k2/k be finite Galois extensions in k′. Since there exists a finite Galois
extension k3/k that contains k1 and k2 [1, Lemmas 0EXM and 09DT], we can assume that k2/k
is a finite Galois extension such that k ⊂ k1 ⊂ k2 ⊂ k′. By the Galois correspondence [1, Theorem
0BML], H2 := Gal(k′/k2) is a normal subgroup of H1 := Gal(k′/k1). Consider the k1-variety Y1 :=
Y/H1 and the k2-variety Y2 := Y/H2. We have Y/Γ ∼= Y1/Gal(k1/k) ∼= Y2/Gal(k2/k) (see Lemmas
A.1 and A.2). Moreover, since Gal(k2/k1) is a finite group, then k1(Y1)Gal(k1/k) = k2(Y2)Gal(k2/k).
Denote K := k1(Y1)Gal(k1/k), this field does not depend on the finite Galois extension k1/k. By
[27, Theorem 1.8 (Artin)], the field extension k1(Y1)/K is a finite Galois extension of Galois group
Gal(k1(Y1)/K) ∼= Gal(k1/k). Furthermore, the field L := k′(Y ) is the union of all above k1(Y1).
Then (see [1, Lemma 0BU2]), Gal(k′/k) = lim Gal(ki/k) ∼= lim Gal(ki(Yi)/K) = Gal(L/K), where
the limits are over all finite Galois extension ki/k in k′. �

Proof of Theorem 4.3. (i) Let (ωN , Y,D, σY , h) be a generalized AH-datum over k. By [3, Theorem
3.1], X[Y,D] := Spec(A[Y,D]) is a normal affine k-variety endowed with a T-action, of weight cone
ω∨N . This action is obtained from the following comorphism:

µ] : A[Y,D]→ k[M ]⊗A[Y,D], fXm 7→ χm ⊗ fXm.

We now construct a k-structure on X[Y,D] such that (T, τ) acts on (X[Y,D], σX[Y,D]). Let γ ∈ Γ.
By Condition (1), we obtain isomorphisms of A[Y,D]0-modules:

αγm : H0(Y,OY (D(m)))Xm → H0(Y,OY (D(τ̃γ(m))))Xτ̃γ(m)

fXm 7→ σY
]
γ(f)hγ(τ̃γ(m))Xτ̃γ(m).

These isomorphisms collect into an isomorphism of A[Y,D]0-modules ⊕m∈ω∨
N
∩Mαm on A[Y,D]. By

Condition (2), the latter isomorphism corresponds to a k-structure σX[Y,D] on X[Y,D]. Finally,
(T, τ) acts on (X[Y,D], σX[Y,D]) since the following diagram commutes for all γ ∈ Γ:
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A[Y,D] k[M ]⊗A[Y,D]

A[Y,D] k[M ]⊗A[Y,D]

µ]

µ]

σ]X[Y,D]γ τ ]γ ⊗ σ]X[Y,D]γ

(ii) The structure of the proof is the same as in [22], but we give a sketch since the setting and
the notation differ. To determine a generalized AH-datum, we can proceed by a Galois-equivariant
version of toric downgrading (introduced in [3, §11]) as in [22]. We embed T × Γ-equivariantly X
into some Ank′ such that T is a subtorus of Gn

m,k (see Proposition 4.5). Denote by TY := Gn
m,k/T the

quotient torus. Let M (resp. M ′, MY ) be the character lattice of T (resp. Gn
m,k, TY ). We obtain

the exact sequences of lattices of Appendix B.2. Then, it is basically the same proof as in [22],
adding γ in index everywhere and using [25, Proposition 1.19], which can be extended to infinite
Galois extension. �

4.3. Galois cohomology, torsors and Altmann-Hausen presentation. In the non-necessarily
split version of the Altmann-Hausen construction (Theorem 4.3), a cocycle h appears in the combi-
natorial presentation. We will see that Theorem 4.3 simplifies (i.e we can take h = 1) if this cocycle
is equivalent to the trivial one.

Let k be a field, let T = Spec(k[M ]) be a k-torus, and let τ be a k-group structure on T.
Let (X,σ) be a normal affine variety endowed with an action of (T, τ), and let (Y, σY ) be the
k-variety of Theorem 4.3. Let G := Homgr(M, k(Y )∗) be endowed with the continuous Γ-action
γ · f := σY

]
γ ◦ f ◦ τ̃−1

γ (see Remark 4.2). In this setting, we get the next result.

Lemma 4.7. If H1
cont(Γ, G) = {1}, then there exists an ωN -pp divisor D on Y such that

∀m ∈ ωM ∩M, ∀γ ∈ Γ, σY ∗γ(D(m)) = D(τ̃γ(m)),
and such that the varieties (X,σ) and (X[Y,D], σX[Y,D]) are (T, τ)-equivariantly isomorphic.

Proof. By Theorem 4.3, there exists a generalized AH-datum (ωN , Y,D, σY , h) such that the vari-
eties (X,σX) and (X[Y,D′], σX[Y,D′]) are (T, τ)-equivariantly isomorphic. Since H1

cont(Γ, G) = {1},
the trivial cocycle is equivalent to h, so there exists g ∈ G such that hγ(m) = g−1(m)σY ]γ(g(τ̃γ(m))).
Let m ∈ ωM ∩M and γ ∈ Γ, then:
σY
∗
γ(D(m)) = D(τ̃γ(m)) + divY (hγ(τ̃γ(m))) = D(τ̃γ(m)) + σY

∗
γdivY (g(m))− divY (g(τ̃γ(m)))

⇐⇒ σY
∗
γ (D(m)− divY (g(m))) = D(τ̃γ(m))− divY (g(τ̃γ(m))).

So, if D′ is the pp-divisor defined by D′(m) := D(m)−divY (g(m)), then σY ∗γ(D′(m)) = D′(τ̃γ(m)),
and theM -graded algebras A[Y,D] and A[Y,D′] are isomorphic with respect to σ]X[Y,D] and σ

]
X[Y,D′].

Hence the varieties (X,σX) and (X[Y,D′], σX[Y,D′]) are (T, τ)-equivariantly isomorphic. �

Quasi-trivial k-tori have no non-trivial torsors (see [10, §2, §5]). Therefore, the Altmann-
Hausen presentation simplifies for quasi-trivial k-torus actions on normal affine varieties.

Proposition 4.8 (Quasi-trivial torus actions on normal affine varieties over arbitrary fields). Let
k be a field, and denote Γ := Gal(k/k). Let (T = Spec(k[M ]), τ) be a quasi-trivial k-torus.
(i) Let (ωN , Y,D, σY , h = 1) be a generalized AH-datum over k. Then the affine T-variety X[Y,D]

admits a k-structure σX[Y,D] such that (T, τ) acts on (X[Y,D], σX[Y,D]).
(ii) Let (X,σ) be a normal affine k-variety endowed with a (T, τ)-action. Then there exists a gen-

eralized AH-datum (ωN , Y,D, σY , h = 1) such that there is an isomorphism of (T, τ)-varieties
(X,σ) ∼= (X[Y,D], σX[Y,D]).

Proof. If (T, τ) is a quasi-trivial k-torus acting on a normal affine variety, then the K-torus (TL, τL)
is still quasi-trivial (see Remark 4.2). Therefore, H1

cont(Γ, G) = {1}. �

Remark 4.9. In the C/R case, this simplification is always possible when the acting torus is quasi-
trivial, that is it has no S1-factors ([22, Lemma 4.12]). Recall that any real torus is isomorphic to
a torus of the form Gn0

m,R × (S1)n1 ×Rn2
C/R(Gm,C), with n0, n1, n2 ∈ N [34, Proposition 1.5].
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4.4. Split k-torus actions. A consequence of Hilbert’s 90 Theorem (see [4, Proposition III.8.24])
on Theorem 4.3, and on Proposition 4.8, is that the Altmann-Hausen presentation of [3] extends
mutatis mutandis to split torus action on normal affine varieties over an arbitrary field.

Proposition 4.10 (Split torus actions on normal affine varieties over arbitrary fields). Let k be a
field, and let T = Spec(k[M ]) be a split k-torus.
(i) Let (ωN , Y,D) be an AH-datum over k. The affine scheme X[Y,D] := Spec(A[Y,D]) is a

normal k-variety endowed with a T-action.
(ii) Let X be an affine normal k-variety endowed with a T-action. There exists an AH-datum

(ωN , Y,D) over k such that there is an isomorphism of T-varieties X ∼= X[Y,D].

Proof. Let τ := τ0 be the natural k-structure on Tk = Spec(k[M ]) defined in Example 3.7. One
can shows that in our setting, a generalized AH-datum (ωN , Y ′,D′, σY , h = 1) over k corresponds
to an AH-datum (ωN , Y,D) over k. �

Proposition 4.10 has a useful consequence on Theorem 4.3: we can replace the infinite Galois
extension k/k by any finite Galois extension that splits the acting torus.

Corollary 4.11 (Torus actions on normal affine varieties over arbitrary fields). Let k′/k be a finite
Galois extension of Galois group Γ. Let (T = Spec(k′[M ]), τ) be a k-torus.
(i) Let (ωN , Y,D, σY , h) be a generalized AH-datum over k′. Then the affine T-variety X[Y,D]

admits a k-structure σX[Y,D] such that (T, τ) acts on (X[Y,D], σX[Y,D]).
(ii) Let (X,σ) be a normal affine k-variety endowed with a (T, τ)-action. Then there exists a

generalized AH-datum (ωN , Y,D, σY , h) such that there is an isomorphism of (T, τ)-varieties
(X,σ) ∼= (X[Y,D], σX[Y,D]).

Proof. In the proof of Theorem 4.3, we use the Altmann-Hausen presentation over an algebraically
closed field given in [3] combined with a toric downgrading (see Proposition 4.5). By Proposition
4.10, this presentation extends over any field. Hence, combining Proposition 4.10 together with
Proposition 4.5, we obtain the desired result. �

Slogan 4.12. By Corollary 4.11, we obtain an effective method to compute an AH-datum of a
T -action on a k-variety X. We consider a finite Galois extension k′/k that splits T . Then, we
determine an AH-datum for the Tk′ -action on Xk′ using a Gal(k′/k)-equivariant embedding Xk′ in
some Ank′ (Proposition 4.5), and then we deduce an AH-datum for the T action on a X.

Remark 4.13. Corollary 4.11 generalizes a result of Langlois (see [28, Theorem 5.10] and [29]) that
focuses on k-torus actions of complexity one, where k is an arbitrary field. Indeed, the geometrico-
combinatorial presentation described in [28] is over a splitting field k′ of the k-torus (so k′/k is a
finite Galois extension).

5. Two-dimensional torus actions

In this last section, we focus on two-dimensional torus actions on normal affine varieties.
Given an affine variety endowed with a two-dimensional torus action, we provide in Section 5.1 a
sufficient condition to have a presentation as in Lemma 4.7 (see Example 5.7). In Section 5.2, using
birational geometry tools, we relate the torsor described in Remark 4.2 to certain Del Pezzo surface
(see Proposition 5.10).

5.1. Two-dimensional tori and finite subgroups of GL2(Z). In this section, we have compiled
results from the literature. We describe the set of two-dimensional tori in Proposition 5.2 and we
give a description of the Galois-cohomology set classifying T -torsors in Theorem 5.5: it is exactly
the result we need to determine if the Altmann-Hausen presentation simplifies in the case of two-
dimensional torus actions on normal affine varieties.

Let k′/k be a non-necessarily finite Galois extension and denote by Γ its Galois group. Let
(Gnm,k′ , τ) be a k-torus. Recall that τ induces a Γ-action τ̃ on the character lattice M ∼= Zn
satisfying τ̃γ1γ2 = τ̃γ1 ◦ τ̃γ2 , and a dual Γ-action τ̂ on the cocharacter lattice N ∼= Zn satisfying
τ̂γ1γ2 = τ̂γ2 ◦ τ̂γ1 (see Remark 3.6).
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The image of a Γ-representation is a finite subgroup G of GLn(Z) (see Appendix B.1). More-
over, if τ ′ is a k-group structure on Gnm,k′ equivalent to τ , then the associated finite subgroups of
GLn(Z) are conjugated. The converse is false (see Example 5.1), except in dimension 1. Therefore,
since GL1(Z) = {1,−1}, a one-dimensional k-torus is, up to isomorphism, either a split k-torus or
a norm one k-torus.

Example 5.1 (Inequivalent Γ-representation on GL2(Z) having same image G6 in GL2(Z)). Let
k′/k be a finite Galois extension of degree 4 such that Gal(k′/k) ∼= C2 × C2 = {(1; 1), (1;−1),
(−1; 1), (−1;−1)}. Consider ρ, ρ′ be two representations of Γ in GL2(Z) defined by:

ρ : Γ→ GL2(Z); (1; 1) 7→ I; (1;−1) 7→ s; (−1; 1) 7→ −s; (−1;−1) 7→ −I;
ρ′ : Γ→ GL2(Z); (1; 1) 7→ I; (1;−1) 7→ s; (−1; 1) 7→ −I; (−1;−1) 7→ −s,

where s is the matrix defined in Proposition 5.2. The representations ρ and ρ′ are inequivalent.

In the next proposition, we give the classification of finite subgroups of GL2(Z) up to conjugacy.

Proposition 5.2 ([30, §1.10.1]). Let Dn (resp. Cn) be the dihedral (resp. cyclic) group of order
n, and let Sn be the group of permutations of a set with n elements. Let

d :=
[
−1 0
0 1

]
; s :=

[
0 1
1 0

]
; and x :=

[
1 −1
1 0

]
.

The non-trivial conjugacy classes of finite subgroups of GL2(Z) are:

Label Order Generators Isomorphism type
G1 12 x, s D12 ∼= S3 × C2
G2 8 d, s D8
G3 6 x2, s D6 ∼= S3
G4 6 x2,−s D6 ∼= S3
G5 4 d,−d C2 × C2
G6 4 s,−s C2 × C2

Label Order Generators Isomorphism type
G7 6 x C6
G8 4 ds C4
G9 3 x2 C3
G10 2 x3 = −id C2
G11 2 d C2
G12 2 s C2

The following diagrams represents the inclusions of normal subgroups (the number is the index):

〈id〉

〈x2〉 〈−id〉

〈x2,−s〉 〈x2, s〉 〈x〉

G1 = 〈x, s〉

3 2

2 2 3

2 2

〈id〉

〈d〉 〈−d〉 〈−id〉 〈−s〉 〈s〉

〈d,−d〉 〈ds〉 〈s,−s〉

G2 = 〈d, s〉

2 2 2

2

4

2

2 2

Example 5.3. Using inverse Galois theory, we can realize each of the conjugacy classes Gi by a
Q-torus that splits over a finite Galois extension k′/k, such that Gal(k′/k) ∼= Gi.

Label Galois extension of Q of Galois group Gi
G1 Q

(
3
√

1 +
√

2
)

[18, Exercise 8.9]
G2 Q

(
4√2, i

)
[18, §8.7.3]

G3 Q
(

3√2, j
)

[18, §8.3]
G4 Q

(
3√2, j

)
G5 Q(

√
2,
√

3) (see Example 3.11)
G6 Q(

√
2,
√

3)

Label Galois extension of Q of Galois group G
G7 Q

(
e

2iπ
7

)
[18, §9.5]

G8 Q
(
e

2iπ
5

)
[18, §9.5]

G9 Q
(
cos
(

2π
7

))
G10 Q(i)
G11 Q(i)
G12 Q(i)

Based on Proposition 5.2, a classification of two-dimensional k-tori is obtained in [40].



TORUS ACTIONS ON AFFINE VARIETIES OVER CHARACTERISTIC ZERO FIELDS 15

Proposition 5.4 ([40]). Let T be a two-dimensional k-torus, and let τ be the corresponding k-group
structure on Tk. Let k

′ be a splitting field of T such that Gal(k′/k) ∼= G, where G is the image of τ̃ .
Then, T is isomorphic to one of the following tori.

Gal(k′/k) Corresponding k-tori

G1 = 〈x, s〉 Rk1/k

(
R(1)

k′/k1
(Gm,k′)

)
∩ Rk2/k

(
R(1)

k3/k2
(Gm,k3 )

)
, where k1 = k′〈x

2〉 is a Galois extension of k of

degree 4, where k2 = k′〈x
is,−xis〉, and where k3 = k′〈x

is〉 for i ∈ {0, . . . , 5} (k3/k2 is Galois).
G2 = 〈d, s〉 Rk2/k

(
R(1)

k1/k2
(Gm,k1 )

)
, where k1 = k′〈d〉 and k2 = k′〈d,−d〉, or k1 = k′〈s〉 and k2 = k′〈s,−s〉.

G3 = 〈x2, s〉 Rk1/k

(
R(1)

k′/k1
(Gm,k′)

)
∩ Rk2/k (Gm,k2 ), where k1 = k′〈x

2〉, and where k2 goes through the cubic

subfields k′〈s〉, k′〈x
2s〉, and k′〈x

4s〉.
G4 = 〈x2,−s〉 Rk1/k

(
R(1)

k′/k1
(Gm,k′)

)
∩ Rk2/k

(
R(1)

k′/k2
(Gm,k′)

)
, where k1 = k′〈x

2〉, and where k2 goes through the

cubic subfields k′〈−s〉, k′〈−x
2s〉, and k′〈−x

4s〉.
G5 = 〈d,−d〉 R(1)

k1/k (Gm,k1 )× R(1)
k2/k (Gm,k2 ), where k1k2 = k′.

G6 = 〈s,−s〉 Rk1/k

(
R(1)

k′/k1
(Gm,k′)

)
, where k1 goes through the Galois extensions k′〈s〉, k′〈−s〉, and k′〈−id〉 of k.

G7 = 〈x〉 Rk2/k

(
R(1)

k′/k2
(Gm,k′)

)
∩ Rk1/k

(
R(1)

k′/k1
(Gm,k′)

)
, where k1 = k′〈x

2〉 and k2 = k′〈−id〉.

G8 = 〈ds〉 Rk1/k

(
R(1)

k′/k1
(Gm,k′)

)
, where k1 = k′〈−id〉.

G9 = 〈x2〉 R(1)
k′/k (Gm,k′).

G10 = 〈−id〉 R(1)
k′/k (Gm,k′)× R(1)

k′/k (Gm,k′).
G11 = 〈d〉 R(1)

k′/k (Gm,k′)×Gm,k.
G12 = 〈s〉 Rk′/k (Gm,k′).

We have described the two-dimensional tori, now we describe their torsors. In [17, §5], there
is a complete description of the Galois-cohomology set used to classify T -torsors, where T is a two-
dimensional k-torus. To each Galois extension k′/k such that Gal(k′/k) ∼= G is a finite subgroup
of GL2(Z) (see [17, Proposition 3.7]), an expression of H1(G,AutTk′ (Tk′)) depending on a Brauer
group is obtained. In order to state results of [17, §5], we briefly introduce some notations.

Let (T = Spec(k′[M ]), τ) be a two-dimensional k-torus. By [17, Proposition 3.7], we can as-
sume that k′/k is a finite Galois extension such that the Γ-representation τ̃ : Γ→ GL(M) ∼= GL2(Z)
is injective. Denote its image by G ∼= Γ = Gal(k′/k). In [17, §5], to compute H1(G,AutTk′ (Tk′)),
the authors distinguish if G has an element of order 3 or not. If G does not have an element of
order 3, then, up to conjugacy, G is a subgroup of G2. If G has an element of order 3, then, up to
conjugacy, G is one of the following subgroup of G1: G1, G3, G4, G7 or G9. In this context, we obtain
subextensions of k′/k

k1

k k3 k′,
k2

where k1 := k′G∩G6 , k2 := k′G∩G3 , and k3 := k′G∩G6∩G3 . Consider the homomorphism β :
Br(k1/k) → Br(k3/k2) obtained by base extension from k to k2. Consider the homomorphism
η : Br(k3/k1) → Br(k2/k) induced by the norm map Nk1/k(k) : k∗1 → k∗ (see Definition 3.8). We
denote the kernel of η by Brη(k1/k|k3/k2). In Theorem 5.5, we summarize main results of [17].
Compare with Theorem 5.4 combined with Lemma 3.15.
Theorem 5.5 ([17, Theorems 5.3 & 5.5]). With the previous notations, we have

G H1 (G,AutT(T)
)

〈x, s〉
Br
(
k′〈s〉/k′〈x

2,s〉
)

β(Br(k′〈s,−s〉/k)) ⊕ Brη
(
k′〈s,−s〉/k|k′〈s〉/k′〈x

2,s〉
)

〈d, s〉 Br
(
k′〈d〉/k′〈d,−d〉

)
〈x2, s〉 Br

(
k′〈s〉/k

)
〈x2,−s〉

Br
(
k′/k′〈x

2〉
)

β(Br(k′〈−s〉/k))
〈d,−d〉 Br

(
k′〈d〉/k

)
⊕ Br

(
k′〈d〉/k

)

G H1 (G,AutT(T)
)

〈s,−s〉 Br
(
k′/k′〈−id〉

)
〈x〉

Br
(
k′/k′〈x

2〉
)

β(Br(k′/k)) ⊕ Brη
(
k′/k|k′/k′〈x

2〉
)

〈ds〉 Br
(
k′/k′〈−id〉

)
〈x2〉 Br(k′/k)
〈−id〉 Br(k′/k)⊕ Br(k′/k)
〈d〉 Br(k′/k)
〈s〉 {0}
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Example 5.6. Let (T = Spec(k[M ]), τ) be a two-dimensional k-torus such that the image of τ̃ is
conjugated to G12; for instance RC/R(Gm,C). Then, H1(G,AutT(T)) = {1}. Therefore, if (T, τ) acts
on an affine normal variety (X,σ), then the Altmann-Hausen presentation simplifies (see Lemma
4.7).

Example 5.7. Let (T = Spec(k′[M ]), τ) be a two-dimensional k-torus such that the image G of
τ̃ is isomorphic to Γ. Let (ωN , Y,D, σY , h) be a generalized AH-datum. Let L := k′(Y ) and let
K := LΓ. By Lemma 4.6, L/K is a Galois extension of Galois group Γ. If K satisfies one of the
conditions mentioned in [38, Chapter X, §7], and if G is conjugated to Gi for i ∈ {3, 5, 9, 10, 11},
then the Altmann-Hausen presentation simplifies (see Lemma 4.7), as in Example 3.17.

5.2. Galois-equivariant MMP. In this section, k′ = k and Γ = Gal(k/k).
A smooth projective k-surface (X,σ) is minimal if and only if X admits no Galois stable set

of pairwise disjoint (−1)-curves (see [32, Theorem 21.8 p115], see also [26] for a point on birational
geometry).

Recall that a smooth projective k-surface V is called a Del Pezzo surface if the dual of its
canonical sheaf is ample. The degree of V is the degree of Vk, that is the self-intersection number
of any anti-canonical Weil divisor −KVk

on Vk. Recall that 1 ≤ d ≤ 9. Over an algebraically (or
separably) closed field, Del Pezzo surfaces are classified, up to deformation, by their degree (see [32,
Theorems 24.3 and 24.4]). Up to deformation, the Del Pezzo surfaces are: P1

k × P1
k (if d = 8), and;

the blowup of P2
k at r = 9 − d k-points in general position. For a classification over an arbitrary

field, see [32], [14].

Remark 5.8. For a complement on Del Pezzo surfaces, see for instance [42], or [37]. In [36], there
is a complete classification of real Del Pezzo surfaces.

Compactification of torsors is studied in [41, Section 1, Theorem 1 and its Corollary], and also
in [17, Theorem 3.9]. In this article we need the following lemma.

Lemma 5.9. Let (T, σ) be a (T, τ)-torsor, where T = Spec(k[M ]) and M ∼= Z2. Then (T, σ)
admits a smooth projective compactification that is a (T, τ)-toric Del Pezzo k-surface containing
(T, σ) as a (T, τ)-stable dense open subset.

Proof. The k-group structure τ induces a Γ-representation τ̂ on GL(N). The image of τ̂ is a finite
subgroup of GL2(Z).

• Case 1: The image of τ̂ is conjugated to a normal subgroup of G1 = 〈x, s〉 (see Proposition
5.2). Let Λ be the fan of the projective toric variety Bl3(P2

k) in NQ:

−1 1

−1

1 v1v2

v3

v4 v5

v6

This fan is Γ-stable (for τ̂), therefore, by [25, Proposition 1.19], the k-structure σ on T extends to a
k-structure σΛ on XΛ = Bl3(P2

k), the variety (XΛ, σΛ) is a (T, τ)-toric k-variety (a toric Del Pezzo
k-surface of degree 6), and we obtain a (T, τ)-equivariant open immersion (T, σ) ↪→ (XΛ, σΛ).

• Case 2: The image of τ̂ is conjugated to a normal subgroup of G2 = 〈d, s〉 (see Proposition
5.2). Let Λ be the fan of the projective toric variety P1

k × P1
k in NQ:

−1 1

−1

1

v1

v2

v3

v4
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This fan is Γ-stable (for τ̂), therefore, by [25, Proposition 1.19], the k-structure σ on T extends to a
k-structure σΛ on XΛ = P1

k × P1
k, the variety (XΛ, σΛ) is a (T, τ)-toric k-variety (a toric Del Pezzo

k-surface of degree 8), and we obtain a (T, τ)-equivariant open immersion (T, σ) ↪→ (XΛ, σΛ). �

Note that Lemma 5.9 is still true for any field extension k′/k. We assume k′ = k in view of
applying an MMP.

Proposition 5.10. Let (T, τ) be a two-dimensional k-torus and let (T, σ) be a (T, τ)-torsor. Tak-
ing a smooth projective compactification, and then applying a (T, σ)-equivariant Minimal Model
Program, we obtain a smooth toric Del Pezzo k-surface X, birational to (T, σ), that contains (T, σ)
as a (T, τ)-stable dense open subset. More precisely, we have the following possibilities for X.
(i) X is a k-form of P2

k. In this case, the image of τ̂ is conjugated to G4, G9, G12, or to 〈id〉.
(ii) X is a k-form of Picard rank one of the Del Pezzo k-surface of degree 6. In this case, the

image of τ̂ is conjugated to G1, G3, or to G7.
(iii) X is a k-form of Picard rank one of P1

k × P1
k. In this case, the image of τ̂ is conjugated to G2,

G6, G8, or to G12. Or, X is a k-form of Picard rank two of P1
k × P1

k (if (T, τ) is reducible). In
this case, the image of τ̂ is conjugated to G5, G10, G11, or to 〈id〉.

Proof. By Lemma 5.9, a compactification of (T, σ) is a (T, τ)-toric Del Pezzo surface (XΛ, σΛ). We
can assume that XΛ = Bl3(P2

k) or XΛ = P1
k × P1

k (see the Proof of Lemma 5.9). Recall that to a
ray vi of a fan of a toric variety corresponds a toric divisor Di. The toric divisors associated to
XΛ = Bl3(P2

k) and to XΛ = P1
k × P1

k are respectively:

D1

D2

D3

D4

D5

D6

D1

D2

D3

D4

By construction, T = XΛ\ ∪ Di and (T, σ) = (XΛ\ ∪ Di, σΛ) [32, Theorem 30.3.1 p166] [31,
Theorem 3.10 p108].

Recall that P2
k has Picard rank one. Therefore, a k-form of P2

k′ has also Picard rank one. Then,
recall that Bl3(P2

k) has Picard rank four and that the Picard group is generated by three disjoint
toric divisors and a line that does not intersect any of the six toric divisors. Therefore, a k-form
of Bl3(P2

k) has Picard rank between one and four. Finally, recall that P1
k × P1

k has Picard rank two
and that the Picard group is generated by two intersecting toric divisors. Therefore, a k-form of
P1
k × P1

k has Picard rank one or two.
We apply a (T, τ)-equivariant MMP to the k-surface (XΛ, σΛ). This algorithm consists of

contracting (-1)-curves in a way compatible with the Γ-action.
Since the case where XΛ = P1

k × P1
k is similar to the case where XΛ = Bl3(P2

k), we only focus
on the second one. So, let XΛ = Bl3(P2

k), it has six (-1)-curves.
• If the image of τ̂ is conjugated to 〈x, s〉, 〈x2,−s〉, or to 〈x〉 (the acting torus is irreducible),

the six (-1)-curves form a unique Γ-orbit, hence we obtain a minimal surface that is a k-form of
Bl3(P2

k) of Picard rank one.
If the image of τ̂ is conjugated to 〈x2, s〉 or to 〈x2〉 (the acting torus is irreducible), the six (-1)-
curves form two Γ-orbits. We can contract one of these two orbits and we obtain a minimal surface
that is a k-form of P2

k (of Picard rank one) where the (1)-curves form a single Γ-orbits.

D1

D2

D3

D4

D5

D6

D′6

D′2

D′2

D′1

D′3

D′5

• If the image of τ̂ is conjugated to 〈s,−s〉 (the acting torus is irreducible), the six (-1)-curves
form two Γ-orbits. We can contract the orbit consisting of two (-1)-curves and we obtain a minimal
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surface that is a k-form of P1
k × P1

k where the (0)-curves form a single Γ-orbit, hence it is of Picard
rank one (the Picard group is generated by D′2 +D′6 +D′5 +D′3).

D1

D2

D3

D4

D5

D6

D′1

D′4

D′6

D′2

D′3

D′5

• If the image of τ̂ is conjugated to 〈x3〉 (the acting torus is reducible), the six (-1)-curves form
three Γ-orbits. We can contract the orbit consisting of two (-1)-curves and we obtain a minimal
surface that is a k-form of P1

k × P1
k of Picard rank two where the (0)-curves have two Γ-orbits (the

Picard group is generated by D′1 +D′5 and by D′6 +D′3).

D1

D2

D3

D4

D5

D6

D′2

D′4

D′6

D′1

D′3

D′5

• If the image of τ̂ is conjugated to 〈s〉 (the acting torus is irreducible), the six (-1)-curves
form four Γ-orbits. We can contract an orbit consisting of two (-1)-curves, then we contract the
invariant (-1)-curve and we obtain the minimal surface that is a k-form of P2

k (of Picard rank one)
where the (1)-curves have two Γ-orbits. The other possibility is to contract a Γ-invariant (-1)-curve.
Then we can contract the pair of (-1)-curves or the invariant (-1)-curve. We obtain respectively a
minimal surface that is a k-form of P1

k × P1
k of Picard rank one (the Picard group is generated by

D′3 +D′5) where the (0)-curves have two Γ-orbits, or a minimal surface that is a k-form of P2
k where

the (1)-curves have two Γ-orbits.

D1

D2

D3

D4

D5

D6

D′1

D′4

D′6

D′2

D′3

D′5

D′1

D′3

D′5

D′2

D′4

D′6

• If the image of τ̂ is conjugated to 〈id〉 (the acting torus is reducible), the six (-1)-curves
form six Γ-orbit, hence we can contract and we obtain a minimal surface that is a k-form of P2

k (of
Picard rank one) where the (1)-curves have three Γ-orbits. �

Example 5.11 (Another proof of H1(G12,AutT(T)) = {1}). Let (T, τ) be a k-torus such that the
image of the Γ-representation τ̂ on N is G12 = 〈s〉. For instance k = C and k = R and (T, τ) is the
Weil Restriction R-torus. Note that, by [17, Proposition 3.7], we can assume that T = Spec(k′[M ]),
where k′/k is a finite Galois extension of Galois group isomorphic to G12. Let (T, σ) be a (T, τ)-
torsor. We will prove that this torsor is trivial. The fan of the toric Del Pezzo surface P2

k′ is Galois
stable, therefore, by [25, Proposition 1.19], (T, σ) is a dense (T, τ)-stable open subset of a Severi
Brauer k-surface (P2

k′ , σ
′). The Galois action on the fan exchange two rays and fix the other one;

therefore the Galois action on the toric divisors exchanges two toric divisors and fix a point P .
Thus, (P2

k′ , σ
′) contains a k-point P . A Severi Brauer suface with a k-point is isomorphic to P2

k.
Therefore, (T, σ) is a trivial (T, τ)-torsor since it contains k-points, and H1(G12,AutT(T)) = {1}.

−1 1
−1

1
P
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Example 5.12. Let k = R, and let k′ = C.
(i) Consider the trivial S1×S1-torsor. Then, it is an S1×S1-stable dense open subset of P1

R×P1
R
∼=

Proj(R[x, y, z, t]/(x2 + y2 − z2 − t2)) (by Segre embedding).
(ii) Consider the non trivial S1×S1-torsor Spec(R[x, y]/(x2+y2+1))2. Then, it is an S1×S1-stable

dense open subset of Proj(R[x, y, z, t]/(x2 + y2 + z2 + t2)), which is an R-form of P1
R×P1

R with
no R-points.

(iii) Consider the trivial RC/R(Gm,C)-torsor. Then, it is an RC/R(Gm,C)-stable dense open subset of
RC/R(P1

C) ∼= Proj(R[x, y, z, t]/(x2−y2−z2− t2)), which is an R-form of P1
R×P1

R with R-points.

Example 5.13. Let k be a field, and let k′/k be a cubic Galois extension of Galois group {id, γ, γ2}.
Then, a R(1)

k′/k(Gm,k′)-torsor Xα corresponds to the k-structure σ on G2
m,k′ defined by:

σ]γ

(
a(k,l)χ

(k,l)
)

= γ(a(k,l))hγ (τ̃γ(k, l))χτ̃γ(k,l) = γ(a(k,l))α−lχ(−l,k−l),

where α ∈ k∗. If α * Im(Nk′/k(k)), then Xα is a non-trivial R(1)
k′/k(Gm,k′)-torsor (see Lemma 3.15),

which is a R(1)
k′/k(Gm,k′)-stable dense open subset of a k-form of P2

k′ with no k-points.

Example 5.14. Let k′/k be a Galois extension with Galois group Γ ∼= D12 ∼= 〈x, s〉. Let (G2
m,k′ , τ)

be the k-torus such that τ̂x = x and τ̂s = s. Consider the surface X of P2
k′ × P2

k′ :

X := {([x1 : x2 : x3], [y1 : y2 : y3]) | xi, yj ∈ k′, xiyi = xjyj , i ∈ {1, 2, 3}} .

It is the graph of the standard quadratic birational Cremona transformation. This defines a Del
Pezzo k′-surface of degree six. Recall that we have an isomorphism D12 ∼= S3 × C2. Let σ :
S3 ×C2 → Aut(Xk) be the k-structure on X defined as follow. The group S3 acts on P2

k′ × P2
k′ by

permuting separately the elements of the pair of triples, and by the Galois action on the constants.
The group C2 acts on P2

k′ × P2
k′ by exchanging the pair of triples, and by the Galois action on

the constants. This defines a k-structure on X since the equations of X are invariant. Then,
one can shows that the k-torus (G2

m,k′ , τ) acts on (X,σ), therefore (X,σ) is a toric Del pezzo k-
surface. Note that the open orbit is a trivial (G2

m,k′ , τ)-torsor since it contains an invariant point
([1 : 1 : 1], [1 : 1 : 1]).

Appendix A. k-structures

In this section, we explain the link between infinite and finite Galois descent. Let k′/k be
a Galois extension of Galois group Γ. In Lemmas A.1 and A.2, we explain how are related k-
structures on a k′-variety X and Galois subextensions k ⊂ k1 ⊂ k′. Let γ ∈ Γ. Since k1 is a normal
subextension in k′, γ(k1) = k1. We get an automorphism γ|k1

: k1 → k1 ([1, Lemmas 09HQ and
0BME]). Therefore, we obtain a continuous surjective homomorphism Γ → Gal(k1/k), γ 7→ γ|k1

,
with kernel Gal(k′/k1) ([1, Lemmas 0BMK, 0BMM and Theorem 0BML]). In other words, we
obtain a short exact sequence

1 −→ Gal (k′/k1) −→ Γ := Gal (k′/k) −→ Gal (k1/k) −→ 1

of profinite topological groups. Hence, Gal(k′/k1) is a normal subgroup of Γ and we have an
isomorphism Γ/Gal(k′/k1)→ Gal(k1/k), γGal(k′/k1) 7→ γ|k1

.

Lemma A.1. Let X be a k′-variety endowed with a k-structure σ. Let k1/k be a finite Galois
extension and let X1 be a k1-form of X as in Definition 3.1. There exists a k-structure σ1 :
Gal(k1/k)→ Aut(X1/k) such that the following diagram commutes for all γ ∈ Γ:

X1 ×Spec(k1) Spec (k′) X

X1 ×Spec(k1) Spec (k′) X

∼=

σ1 γ|k1
× Spec(γ)

∼=
σγ
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Furthermore, if X is quasi-projective (resp. affine), there exists a k-form X0 of X in the category
of quasi-projective (resp. affine) varieties, and a Γ-equivariant isomorphism (X0)k′ ∼= X, where the
k-structure on X is σ and the k-structure on (X0)k′ is given by γ ∈ Γ 7→ id× Spec(γ).

Proof. We give a sketch of the proof. The construction of the k-structure σ1 is based on fpqc descent
(see [6, Theorem 6]). If X is quasi-projective (resp. affine), then so is X1 by [24, Proposition 14.53
and 14.57]. Then, we use classical results of finite Galois descent: by [2, Corollaire 7.7], the desired
k-form X0 of X exists. �

Lemma A.2. If σ is a k-structure on a quasi-projective k′-variety X, then for all finite Galois
extension k1/k in k′ there exists a k1-form X1 of the k′-variety X such that the restriction of σ to
Gal(k′/k1) coincides with the natural Gal(k′/k1)-action on (X1)k′ ∼= X.

Proof. We give a sketch of the proof. Since σ is a k-structure on X, there exists a finite Galois
extension k1/k in k′ and a k1-form X1 of the k′-variety X. Let k2/k be another finite Galois
extension in k′. There exists a finite Galois extension k3/k that contains k1 and k2 [1, Lemmas
0EXM and 09DT]. We obtain a k3-form X3 := (X1)k3 of X, and by Lemma A.1, there exists a
k-structure σ3 on X3. Since k3/k2 is a finite Galois extension, by [2, Corollaire 7.7], the desired
k2-form X2 of X exists. �

Appendix B. Tori

B.1. Factorization by a finite Galois extension that splits the k-torus. We pursue Remark
3.6. Let k1/k be a finite Galois extension that splits (T, τ) and let H := Gal(k′/k1) be the absolute
Galois group of k′/k1. By Lemmas A.1 and A.2, there exists k1-form T1 of T and a k-group
structure τ1 on T1 such that the following diagram commutes for all γ ∈ Γ

T1 ×Spec(k1) Spec (k′) T

T1 ×Spec(k1) Spec (k′) T

∼=

τ1γ|k1
× Spec(γ)

∼=
τγ

Since k1 splits (T, τ), we can assume T1 = Spec(k1[M ]). Therefore, the H-action on M is trivial
and the Γ-action on M factorizes:

Γ GL(M)

Γ/H ∼= Gal (k1/k)

τ̃

τ̃1

This means that the profinite group Γ acts on M as the finite Galois group Gal(k1/k), and this
action comes from the Gal(k1/k)-action on T1. Furthermore, since the kernel of τ̂1 is a normal
subgroup of Gal(k1/k), by the Galois correspondence, there exists a finite Galois extension k2/k in
k1 such that the induced map Gal(k2/k) ∼= Gal(k1/k)/Ker(τ̂1) ↪→ GL(M) is injective. Therefore,
the corresponding k2-torus T2 is split and endowed with a k-group structure τ2 as in Lemma A.2.

B.2. Morphisms of tori and exact sequences of lattices. Let (T = Spec(k′[M ]), τ) be a
subtorus of the k-torus (Gnm,k′ = Spec(k′[M ′]), τ ′). The inclusion T ↪→ Gnm,k′ induces a surjective
lattice homomorphism M ′ →M . Let MY be the kernel of this homomorphism, it is a sublattice of
M ′. Moreover, the Γ-action τ̃ ′ onM ′ induces a Γ-action τ̃Y onMY . Let τY be the induced k-group
structure on TY = Spec(k′[MY ]). The next diagram of algebraic k′-groups commutes for all γ ∈ Γ:

1 T Gnm,k′ TY 1

1 T Gnm,k′ TY 1
τγ τ ′γ τY γ

There exists an injective morphism F : N → N ′ and a surjective homomorphism P : N ′ → NY ,
and the following diagrams of free Z-modules commute for all γ ∈ Γ:
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0 N N ′ NY 0

0 N N ′ NY 0

F P

F P
τ̂γ τ̂ ′γ τ̂Y γ

0 MY M ′ M 0

0 MY M ′ M 0

P ∗ F ∗

P ∗ F ∗
τ̃Y γ τ̃ ′γ τ̃γ

There always exists a section s∗ : M →M ′ (i.e. F ∗◦s∗ = idM ) [6, Proposition A.3.1], but not always
a Γ-equivariant one. Therefore, we obtain a section TY → Gnm,k′ , but not always a Γ-equivariant
one. In other words, Gnm,k′ ∼= T× TY , but this isomorphism is not always Γ-equivariant.

Appendix C. Torus actions

The next propositions is a direct consequence of fpqc descent in the category of varieties
endowed with a torus action (see [2, Corollaire 7.9]).

Proposition C.1. Let T be a k-torus. There is a one-to-one correspondence between quasi-
projective k-varieties endowed with a T -action and tuples (T, τ,X, σ, µ) consisting of:
(i) a k′-torus T endowed with a k-group structure τ such that T/{τγ | γ ∈ Γ} ∼= T ;
(ii) a quasi-projective k′-variety X endowed with a k-structure σ;
(iii) an action µ : T×X → X such that the following diagram commutes for all γ ∈ Γ:

T×X X

T×X X

µ

τγ × σγ σγ

µ

Let T = Spec(k[M ]) be a split torus acting on an affine variety X. Recall that the coordinate
algebra k[X] of X is M -graded. From Proposition C.1, we get the next lemma that is used in the
proof of Proposition 4.5.

Lemma C.2. Let (T = Spec(k′[M ]), τ) be a k-torus acting on the affine k-variety (X,σ). Let ωM
be the weight cone of the T-action on X. Then τ̃(ωM ) = ωM and for all m ∈M and γ ∈ Γ

σ]γ (k′[X]m) = k′[X]τ̃γ(m).

Proof. Let m ∈M , γ ∈ Γ, and let f ∈ k′[X]m. We obtain from the diagram of Proposition C.1;(
µ] ◦ σ]γ

)
(f) =

((
τ ]γ × σ]γ

)
◦ µ]

)
(f) = τ ]γ (χm)⊗ σ]γ(f) = χτ̃γ(m) ⊗ σ]γ(f).

Hence σ]γ(k′[X]m) ⊂ k′[X]τ̃γ(m). Moreover, if g ∈ k′[X]τ̃γ(m), then g = σ]γ(σ]γ−1(g)). �
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