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Abstract

The MinRank (MR) problem is a computational problem that
arises in many cryptographic applications. In Verbel et al. [24], the
authors introduced a new way to solve superdetermined instances of
the MinRank problem, starting from the bilinear Kipnis-Shamir (KS)
modeling. They use linear algebra on specific Macaulay matrices, con-
sidering only multiples of the initial equations by one block of variables,
the so called “kernel” variables. Later, Bardet et al. [7] introduced a
new Support Minors modeling (SM), that consider the Plücker coor-
dinates associated to the kernel variables, i.e. the maximal minors of
the Kernel matrix in the KS modeling.

In this paper, we give a complete algebraic explanation of the link
between the (KS) and (SM) modelings (for any instance). We then
show that superdetermined MinRank instances can be seen as easy
instances of the SM modeling. In particular, we show that performing
computation at the smallest possible degree (the “first degree fall”) and
the smallest possible number of variables is not always the best strat-
egy. We give complexity estimates of the attack for generic random
instances.

We apply those results to the DAGS cryptosystem, that was sub-
mitted to the first round of the NIST standardization process. We show
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that the algebraic attack from Barelli and Couvreur [8], improved in
Bardet et al. [5], is a particular superdetermined MinRank instance.
Here, the instances are not generic, but we show that it is possible
to analyse the particular instances from DAGS and provide a way to
select the optimal parameters (number of shortened positions) to solve
a particular instance.

keywords Post-quantum cryptography – MinRank problem – alge-
braic attack – DAGS cryptosystem.

1 Introduction

The MinRank Problem

The MinRank problem was first mentioned in [12] where its NP-completeness
was also proven. It is a central problem in algebraic cryptanalysis, starting
with the Kipnis and Shamir modeling [18] for the HFE encryption scheme.
The MinRank problem is very simple to state:

Problem 1 (Homogeneous MinRank problem).
Input: a target rank r ∈ N and K matrices M1, . . . ,MK ∈ Fm×n

q .
Output: field elements x1, x2, . . . , xK ∈ Fq, not all zero, such that

Rank

(

Mx

def
=

K
∑

i=1

xiMi

)

6 r.

It plays a central role in public key cryptography. Many multivariate
schemes are strongly related to the hardness of this problem, as in [20, 18, 21,
22]. The 3rd round NIST post-quantum competition finalist Rainbow [14],
or alternate GeMSS [13] suffered attacks based on the MinRank problem [9,
10, 23, 3].

In code-based cryptography, the MinRank problem is exactly the decod-
ing problem for matrix codes in rank metric. The two submissions ROLLO
and RQC [2, 1], from the 2nd round of the NIST post-quantum competition,
have been attacked using algebraic cryptanalysis in [6, 7]. Their security
analysis relies on the decoding problem for Fqm-linear rank-metric codes,
which can actually be reduced to the MinRank problem.
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This is of great importance for cryptographic purposes to design algo-
rithms that solve efficiently algebraic modeling for the MinRank problem,
and to understand their complexity.

Algebraic modeling

There has been a lot of recent progress in the algebraic modeling and solving
of the MinRank problem. We start by recalling the first modeling, namely
the Kipnis-Shamir (KS) modeling. Note that it implicitely assumes that the
n−r first columns of the small-rank matrix Mx we are looking for are linearly
dependent from the last r ones. In this paper, we will assume that we are
looking for a matrix Mx of rank exactly r (this can be achieved by looking
for increasing ranks, starting from r = 1), and that the last r columns of Mx

are linearly independent (it is true up to a permutation of the columns, and
for random matrices it is true with high probability). We will see later that
this last assumption is not mandatory.

Modeling 1 (Kipnis-Shamir Modeling [18]). Consider a MinRank instance
(M1, . . . ,MK) ∈ Fm×n

q with target rank r. Then, the MR problem can be

solved by finding x1, . . . , xK ∈ FK
q , and C = (ci,j) ∈ F

r×(n−r)
q such that

(

K
∑

i=1

xiMi

)

(

In−r

C

)

= 0m×(n−r). (KS)

The m(n−r) equations are bilinear in the K linear variables x = (x1, . . . , xK)
and the r(n− r) entries of the formal matrix C = (ci,j)i,j, refered to as the
kernel variables.

It is clear that a matrix has rank ≤ r if and only if its right kernel has
dimension at least n − r, so that any solution of the MinRank problem is a
solution of (KS).

The complexity of solving a generic bilinear system has been studied in
[17, 15], and gives an upper bound for the KS system, but this estimate
wildly overestimates the experimental results.

The matrix Mx has rank ≤ r if and only if all its minors of size r + 1
are zero. This modeling has been presented and analysed in [16, 17]. Under
the assumption that the last r columns of Mx are linearly independent, it is
sufficient to consider minors involving columns in sets T = {t}∪{n−r+1..n}
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with 1 ≤ t ≤ n − r, as it means that the last r columns generate the
column vector space. The notation |M|J,T represents the determinant of the
submatrix of M where we keep only rows in J and columns in T .

Modeling 2 (Minors Modeling). Let (M1, . . . ,MK) ∈ Fm×n
q be a MinRank

instance with target rank r. Then, the MR problem can be solved by finding
x1, . . . , xK ∈ F

K
q such that

{

|Mx|J,T = 0, ∀J ⊂ {1..m},#J = r + 1, T = {t} ∪ {n− r + 1..n} ⊂ {1..n}
}

(Minors)

Recently, a new modeling has been introduced in [7], that is at the mo-
ment the most efficient one from the complexity point of view. It uses two
ideas, that we will separate in two modelings: the first idea is that (KS)
means that the vector space with generator matrix Mx is orthogonal to the
one with generator matrix

(

In−r C⊤
)

. It is then straightforward to see that
any row of Mx belongs to the dual space with generator matrix

(

−C Ir
)

.
This leads to:

Modeling 3 (Support Minor Modeling-C [7]). Let (M1, . . . ,MK) ∈ Fm×n
q be

a MinRank instance with target rank r. Then, the MR problem can be solved
by finding x1, . . . , xK ∈ F

K
q , and C = (ci,j)1≤i≤r,1≤j≤n−r ∈ F

r×(n−r)
q such that

{

∣

∣

∣

∣

(

ri
−C Ir

)∣

∣

∣

∣

∗,T

= 0, ∀T ⊂ {1..n},#T = r + 1, and ri row of Mx

}

.

(SM-C)

The m
(

n
r+1

)

equations are bi-homogeneous with bi-degree (1, r) in the K linear
variables x = (x1, . . . , xK) and the r(n − r) entries of the formal matrix
C = (ci,j)i,j, refered to as the kernel variables.

Note that in (SM-C), the entries of C appear only as maximal minors of
(−C Ir). This leads to the second idea from [7], which consists in using the
Plücker coordinates: we replace each |(−C Ir)|∗,T , that is a polynomial of
degree #T = r in the entries of C, by a new variable cT using the injective
Plücker map, see [11, p.6].

p : {W ⊂ F
n
q : dim(W) = r} → P

N(Fq) (N =
(

n
r

)

− 1)

C 7→ (cT )T⊂{1..n},#T=r.
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Modeling 4 (Support Minor Modeling-cT [7]). Let (M1, . . . ,MK) ∈ Fm×n
q be

a MinRank instance with target rank r. Then, the MR problem can be solved

by finding x1, . . . , xK ∈ FK
q , and (cT )T⊂{1..n},#T=r ⊂ F

(nr)
q such that

{

∑

t∈T

(Mx)i,tcT\{t} = 0, ∀T ⊂ {1..n},#T = r + 1, and i ∈ {1..m}

}

. (SM)

The m
(

n
r+1

)

equations are bilinear in the K linear variables x = (x1, . . . , xK)

and the
(

n
r

)

minor variables cT , for all T ⊂ {1..n},#T = r.

The benefit of introducing such coordinates to describe a vector space
rather than a matrix describing a basis is that contrarily to the matrix rep-
resentation, a vector space W has unique Plücker coordinates associated to
it. This is not the case of the matrix representation of a vector space: if the
rows of a matrix C generate the vector space, then the rows of AC generate
the same vector space for any invertible A ∈ GL(r,Fq). For our algebraic
system, this brings the benefit of reducing the number of solutions of the
system: there are several solutions C to the algebraic system (SM-C), that
correspond to one unique solution to (SM). As already pointed out in [7],
it is also extremely beneficial for the computation to replace polynomials
|(−C Ir|∗,T with r! terms of degree r in the entries of C by single variables
cT ’s in Fq. We will use (SM-C) for the theoretical analysis of the link between
the various modelings, and (SM) for the computational solving.

Contributions

As a first contribution, we show that the first three systems are related, more
precisely

Proposition 1. The set of equations (KS) is included in the set of equa-
tions (SM-C), and the ideals generated by the SM-C and KS equations are
equal. Equations Minors (Minors modeling) are included in the ideal gener-
ated by KS.

This proposition applies to any instance, without particular hypothesis.
Note that Eq. (Minors) contain only the linear variables, hence the ideals

cannot be equal.
This proposition is not only interesting on the theoretical point of view,

but it also allows to understand different computational strategies and to
select the best one. A discussion is provided in Remark 1.
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In [24], Verbel et al. analyse degree falls occuring during a Gröbner basis
computation of (KS), and show that for overdetermined systems this can
occur before degree r+2, which is the general case. As a second contribution,
we show that these degree falls are in fact equations from SM-C. Using
the Plücker coordinates in (SM) allows to drastically reduce the size of the
considered matrices. Moreover, we give example to show that minimising the
degree and number of equations is not always the best strategy for optimising
the solving complexity.

Finally, we revisit the DAGS cryptosystem [4], that was a 1st round can-
didate to the NIST post-quantum standardization process, and was attacked
by Barelli and Couvreur [8]. We show that the attack is in fact a MinRank
attack, and describe the structure of this non-random superdetermined Min-
Rank instance. This precise understanding of the problem makes it possible
to choose the right parameters for an optimal attack.

2 Notation and preliminaries

Vectors are denoted by lower case boldface letters such as x, e and matrices
by upper case letters C, M. The all-zero vector of length ℓ is denoted by
0ℓ. The j-th coordinate of a vector x is denoted by xj and the submatrix of
a matrix C formed from the rows in I and columns in J by CI,J . When I
(resp. J) represents all the rows (resp. columns), we may use the notation
C∗,J (resp. CI,∗). We simplify Ci,∗ = C{i},∗ (resp. C∗,j = C∗,{j}) for the
i-th row of C (resp. j-th column of C) and ci,j = C{i},{j} for the entry in
row i and column j. Finally, |C| is the determinant of a matrix C, |C|I,J
is the determinant of the submatrix CI,J and |C|∗,J the one of C∗,J . The

transpose of a matrix C is C⊤.
The all-one vector of size n is denoted by 1n = (1, . . . , 1).
To simplify the presentation, we restrict ourselves to a field of charac-

teristic 2, but the results are valid for any characteristic, the only difference
being the occurrence of a ± sign before each formula.

For any matrix A of size q × r with r ≤ q, and any set J ⊂ {1..q} of
size r + 1, we define the vector VJ(A) of length q whose jst entry is 0 if
j /∈ J and |A|J\{j},∗ for j ∈ J . For A of size r × q with r ≤ q we define

VJ(A)
def
= VJ(A

⊤).
Using Laplace expansion along a column, it is clear that for any vector a
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of length q we have

VJ(A)a⊤ =
∣

∣

(

a⊤ A
)∣

∣

J,∗
. (1)

We denote by vecrow(A) (resp. veccol(A)) the vertical vector formed by
concatenating successives rows (resp. cols) of A. We have the formula

vecrow(AXY) = (A⊗Y⊤)vecrow(X) (2)

veccol(AXY) = (Y⊤ ⊗A)veccol(X)

where A ⊗ B
def
= (ai,jB)i,j is the Kronecker product of two matrices A =

(ai,j)i,j and B.
For a system F = {f1, . . . , fM} of bilinear equations in two sets of vari-

ables x = (xj)1≤j≤nx
and y = (yℓ)1≤ℓ≤ny

, it is usual to consider the associated
Jacobian matrices:

Jacx(F) =
(

∂fi
∂xj

)

i=1..M,j=1..nx

, Jacy(F) =
(

∂fi
∂yℓ

)

i=1..M,ℓ=1..ny

.

For homogeneous bilinear systems they satisfy the particular relation:

Jacx(F)x⊤ =
(

f1 . . . fM
)⊤

and any vector in the left kernel of a Jacobian matrix is a syzygy of the
system. Moreover, Jacx is a matrix whose entries are linear form in the
variables y, and Cramer’s rule show that the left kernel of Jacx contains
vectors VT (Jacx(F)T,∗) using the notation from (1) for all T ⊂ {1..M} of
size ny + 1. Generically those vectors generate the left kernel. For affine
systems, we consider the jacobian matrix associated to the homogeneous
part of highest degree of the system, and any syzygy for this part, that is
not a syzygy of the entire system leads to a degree fall.

3 Relations between the various modelings

This section applies to any MinRank instance without any specific hypothe-
sis.

The KS modeling consists in bilinear equations in two blocks of variables
x and C, whereas the SM-C modeling contains equations of degree 1 in x

and r in C, the variables C appearing only as maximal minors of
(

−C Ir
)

.
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In the case of the KS modeling, it has been noticed in [24], and later [7,
Lemma1] that the jacobian matrices have a very particular shape: if we write

Mx =
(

M
(1)
x M

(2)
x

)

with M
(1)
x of size m×(n−r) and M

(2)
x of size m×r, and

in the same way we write each Mi =
(

M
(1)
i M

(2)
i

)

, then the homogeneous

part of highest degree of the system is M
(2)
x C, and its Jacobian matrices are,

if we take the variables and equations in row/column order:

Jacxi

(

vecrow

(

xiM
(2)
i C

))

= vecrow

(

M
(2)
i C

)

=
(

Im ⊗C⊤
)

vecrow

(

M
(2)
i

)

Jacx
(

vecrow
(

M(2)
x C

))

=
(

Im ⊗C⊤
)

(

vecrow

(

M
(2)
1

)

. . . vecrow

(

M
(2)
K

))

Jacveccol(C)

(

veccol
(

M(2)
x C

))

= In−r ⊗M(2)
x (3)

The jacobian matrix in C admits a left kernel that contains the following
vectors:

ei ⊗VJ(M
(2)
x ) for any J ⊂ {1..p},#J = r + 1, 1 ≤ i ≤ n− r, (4)

where ei is the ith row of In−r. As a consequence, the ideal generated by
the (KS) equations contains the equations

(ei ⊗VJ(M
(2)
x ))veccol(Mx

(

In−r

C

)

) = (ei ⊗VJ(M
(2)
x ))veccol(Mx1)

= VJ(M
(2)
x )M(1)

x ei
⊤( thanks to (2))

= |Mx|J,{i}∪{n−r+1..n} ( thanks to (1)).

Those are precisely the (Minors) equations.
The jacobian matrix in x admits a left kernel that contains the vectors

eℓ ⊗VJ(C) for any J ⊂ {1..n− r},#J = r + 1, 1 ≤ ℓ ≤ m. (5)

The ideal generated by the (KS) equations contains the equations

(eℓ ⊗VJ(C))vecrow(M
(1)
x ) = eℓM

(1)
x VJ(C)⊤ = VJ(C)(M(1)

x ℓ,∗)
⊤

=
∣

∣

∣

(

(M
(1)
x ℓ,∗)

⊤
C⊤

)∣

∣

∣

J,∗
=

∣

∣

∣

∣

(

M
(1)
x ℓ,∗

C

)∣

∣

∣

∣

∗,J

.

They are exactly the (SM-C) equations for J ⊂ {1..n − r}. They have a
degree r in the kernel variables ci,j .
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In [24], the authors propose to solve (any) instances of KS by considering
particular elements in the left kernel of the Jacobian matrix in x for some
degree 1 ≤ d ≤ r − 1. This is done by considering all combination of the
polynomials with coefficients

eℓ ⊗VJ(CT,∗) (6)

for any d ∈ {1..r}, J ⊂ {1..n − r}, #J = d + 1, T ⊂ {1..r}, #T = d and
ℓ ∈ {1..m}. The authors in [24, Theorem 2] construct a matrix BJ whose
left kernel contains elements related to the left kernel of the Jacobian matrix
in x. The key remark is that the equations they consider are

(eℓ ⊗VJ(CT,∗))vecrow(Mx

(

In−r

C

)

) = eℓMx

(

In−r

C

)

VJ(CT,∗)
⊤

=

∣

∣

∣

∣

(

rℓ
−C Ir

)∣

∣

∣

∣

∗,T ′

for T ′ = J ∪({n−r+1..n}\(T +n−r)) ⊂ {1..n} of size r+1. The equations
have indeed a degree d in the kernel variables ci,j .

Note that for d = 0, for T ′ = {ℓ}∪{n−r+1..n} the equation

∣

∣

∣

∣

(

rℓ
−C Ir

)∣

∣

∣

∣

∗,T ′

is the ℓth KS equation, and we get all SM equations. As a consequence, we
have proven Proposition 1.

Remark 1. In the light of the previous results, we can understand more
precisely the behavior of a generic Gröbner basis (GB) algorithm with a graded
monomial ordering and a Normal selection strategy run on (KS) or (SM-C).
As (SM-C) contains (KS) directly into the system, computing a GB on (SM-
C) will also compute all equations that would be computed by (KS). On the
other hand, when computing a GB for (KS), the algorithm will produce all
equations (SM-C) by multiplying by monomials in C, hence we can expect
many syzygies during a GB computation on (SM-C).

This encourages to compute with (SM-C), but to look only at multiple
of the equations by the xi’s variables, which is the strategy proposed in [7].
Adding to this the change of variable that consider any minor of C as a
variable removes the hardness of computing with high degree polynomials (as
the new variables have degree 1 instead of a polynomial of degree d with d!
coefficients for the minor).

9



4 Complexity of solving superdetermined sys-

tems

Superdetermined MinRank instances are defined in [24] as MinRank instances
where K < rm. In the light of the previous section, it is now clear that [24]
considers for any 0 ≤ d ≤ r the equations

E(d)
def
=

{

EJ,T,ℓ
def
= eℓMx

(

In−r

C

)

VJ(CT,∗)
⊤ :

∀J⊂{1..n−r},#J=d+1,
∀T⊂{1..r},#T=d,

∀ℓ∈{1..m}

}

. (7)

and search for linear combination that will produce degree falls. We can
rewrite the equations

EJ,T,ℓ =

∣

∣

∣

∣

(

rℓ
C Ir

)∣

∣

∣

∣

∗,T ′

with T ′ = J ∪ ({n− r + 1..n} \ (T + n− r)) ⊂ {1..n}

=

K
∑

i=1

∑

j∈J

(M
(1)
i )ℓ,jxi |C|T,J\{j} +

K
∑

i=1

∑

s/∈T

(M
(2)
i )ℓ,sxi |C|T∪{s},J .

We have a total of
∑r

d=0m
(

n−r
d+1

)(

r
d

)

= m
(

n
r+1

)

equations in
∑r

d=0K
(

n−r
d

)(

r
d

)

=

K
(

n
r

)

variables described by

V(d)
def
={xi |C|T,J}i=1..K,#J=d,#T=d, V(r + 1) = ∅.

The system can be solved by linearization by constructing the associated
Macaulay matrix: its rows are indexed by J, T, ℓ (with #J = d+1, #T = d)
and its columns by i, J ′, T ′ (with #J ′ = d = #T ′), and the coefficient in
row (J, T, ℓ) and column (i, J ′, T ′) corresponds to the coefficient of EJ,T,ℓ in
the monomial xi |C|T ′,J ′. We can sort the columns by decreasing degree,
i.e. consider first monomials in V(r), up to V(0) that are the K variables
xi, see Fig. 1. Then finding linear combination of the equations that pro-
duce degree falls can be done by computing the echelon form of the Ma-
caulay matrix. For a set of rows in E(d), we have m

(

n−r
d+1

)(

r
d

)

equations in

K
(

n−r
d+1

)(

r
r+1

)

+ K
(

n−r
d

)(

r
d

)

monomials, and we get generically a degree fall
under the condition

m

(

n− r

d+ 1

)(

r

d

)

> K

(

n− r

d+ 1

)(

r

d+ 1

)
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V(r) V(r − 1) . . . V(d+ 1) V(d) . . . V(1) V(0)
E(r)

E(r − 1)
...

E(d)
...

E(0)

Figure 1: Shape of the Macaulay matrix associated to Eq. (7). The columns
correspond to equations in V(d), the rows to equations E(d). Gray cells
correspond to non-zero part of the matrix.

which is Corollary 5 in [24], and the first part of the Macaulay matrix with
columns in V(d + 1) is, up to a good choice of the ordering of rows and
columns, a block of diagonal matrices BJ as described in [24].

The best complexity estimates comes from the (SM) modeling, when
considering the minors |C|T,J as new variables. Eq. (7) contains m

(

n
r+1

)

equations in K variables xi and
(

n
r

)

variables that are minors of (−C Ir).
Hence the system can be solved whenever m

(

n
r+1

)

> K
(

n
r

)

by linearization,
i.e. m(n − r) > K(r + 1). After linearization, we get with overwhelming
probability #V(0)− 1 = m− 1 linear equations in the xi’s only.

As always, it is possible to improve computation by puncturing the ma-
trix Mx (taking only sufficiently many columns so that we keep an overde-
termined system), or by hybrid approach (performing an exhaustive search
on some columns of C, at the cost of qar operation in Fq for a columns). It
is also possible, as in [7, Eq. (23) p. 19], to compute equations at higher
degree b in xi. For instance, at b = 2 we can multiply all equations in (SM)
by xi’s variables, and we get for each set E(d) of equations:

m

(

n

r + 1

)

K −

(

n

r + 2

)(

m+ 1

2

)

equations,

(

n

r

)(

K + 1

2

)

monomials.

(8)

For instance, Table 1 compares the (SM) system with previous results
from [24]. For r = 5, the ratio between equations and monomials in (SM) is
smaller than 1, so that we cannot expect to solve by linearization directly.
Computing at b = 2 would produce 14400 equations in 13860 variables of
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m n K r m(n−r)
K(r+1)

neq nvars nrows in [24]

10 10 10 2 2.6 1200 450 1530
10 5 10 2 1 100 100
10 10 10 3 1.75 2100 1200 20240
10 7 10 3 1 350 350
10 10 10 4 1.2 2520 2100 38586
10 9 10 4 1 1260 1260
10 10 10 5 0.8 2100 2520 341495

Table 1: Size of matrices on (SM) for a MinRank instance with K = 10
matrices of size m× n, for various r. n can be decreased by puncturing the
matrices to get a speedup. The results have been verified experimentally on
random instances.

degree less than or equal to 7 in (x,C). Note that the last entry for r = 6
would theoretically require to go up to b = 5 with matrices of size 427350.

However, [24] suggest that we can have a closer look at the shape of the
equations and maybe find a better complexity for some very overdetermined
instances.

Hence, for a fixed d ∈ {0..r}, the set E(d) contains m
(

n−r
d+1

)(

r
d

)

equations

with K
(

n−r
d

)(

r
d

)

monomials V(d) of bidegree (1, d) and K
(

n−r
d+1

)(

r
d+1

)

variables
V(d+1) of bidegree (1, d+1). In [24], the authors determine the first degree
fall in KS by looking for the smallest d for which we have more equations
in E(d) than variables in V(d + 1). This produces Rank(E(d))−#V(d + 1)
degree fall, but it is not clear how to end the computation. If there is more
equations than variables, i.e.

m

(

n− r

d+ 1

)(

r

d

)

> K

(

n− r

d+ 1

)(

r

d+ 1

)

+K

(

n− r

d

)(

r

d

)

− 1

then with overwhelming probability, the linear system is full rank (its kernel
has dimension 1 as the system is homogeneous in x) and a non-zero element
in the kernel of the Macaulay matrix gives a value for each variable xi |C|T,J .
It is then straightforward to deduce xi/xi0 from two values xi |C|T,J and
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xi0 |C|T,J . On the other hand, if

K

(

n− r

d+ 1

)(

r

d+ 1

)

≤ m

(

n− r

d+ 1

)(

r

d

)

and m

(

n− r

d+ 1

)(

r

d

)

< K

(

n− r

d+ 1

)(

r

d+ 1

)

+K

(

n− r

d

)(

r

d

)

− 1

then it is necessary to add new equations to end the computation. It can be
done by consider equations of “higher degree”. If each minor of C is taken as
a variable, it doesn’t add a computational burden. We can solve as soon as
we can get sufficiently many blocks of equations E(d) such that we get more
equations than columns. Experimental results are presented Table 2 on the
same parameters as [24, Table 2]. For instance for a MinRank problem with
12× 12 matrices and a target rank r = 4, the authors in [24] solve at degree
d = 4 in 58s, whereas it is more interesting to consider equations in E(3..4)
that have degree up to 5, without considering equations of degree 2..3. Note
that if we puncture too much the matrices, for instance by taking only n = 8
columns, then we do not have any more an overdetermined SM system, and
solving it now require to produce more equations, for instance by considering
b = 2. In this case, we get a system of 5880 equations in 5460 and we can
solve, but this will be more costly than solving with n = 9.

Remark 2. There is an asymetry between m and n in the modelings. It
is always possible to exchange m and n by considering the transpose of the
matrices, but it is not clear in general which problem will be easier (m > n
or m < n). For instance, for K = 10, r = 2 we can have the following
behaviors: for m = 6, n = 7 the Macaulay matrix up to d = r has size
210× 210, whereas for m = 7, n = 6 it is not possible to solve at b = 1 (the
Macaulay matrix has dimension 140 × 150). We need to go to b = 2 and
solve a matrix of size 980 × 825. On the contrary, for m = 10, n = 6, the
Macaulay matrix has dimension 160 × 140 (d = 1..2), whereas for m = 6,
n = 10, the Macaulay matrix for d = r has size 336× 280.

However, as the number of equations is a multiple of m, the best solution
is often with m ≥ n.

5 Application to DAGS

DAGS scheme [4] is a key encapsulation mechanism (KEM) based on quasi-
dyadic alternant codes that was submitted to the first round of the NIST
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r κ d size time [24]
4 8 0..4 9504× 5940 5.6 s 58 s

3..4 4032× 3528 2.4 s
7 0..4 5544× 3960 2.1 s 38 s
6 0..4 3024× 2520 0.74 s 21 s

2..4 2232× 2220 0.52 s
5 0..4 1512× 1512 0.23 s 13 s

5 7 0..5 11088× 9504 11 s 756 s
2..4 9660× 9072 9.6 s

6 0..5 5544× 5544 3.1 s 367s

Table 2: Experimental size of matrices on SM for a MinRank instance with
K = 12 matrices of size 12× 12, for various r. It is possible to puncture the
codes, by considering only n = κ + r columns of the matrices. We consider
only systems for which SM solves at b = 1. The second row gives the size of
a submatrix of blocks E(d) for some d that solves the problem faster.

standardization process for a quantum resistant public key algorithm. It
suffered from an algebraic attack [8] that efficiently recovers the private key,
and was improved in [5]. Here, we show that the DAGS algebraic modeling
is in fact a MinRank problem. However, the previous complexity results do
not apply, as those MinRank instances have a structure, that can be used to
understand more precisely the complexity.

5.1 Principle of the attack

We recall some elements of the scheme. DAGS is based on the McEliece
scheme and uses Quasi-Dyadic Generalized Srivastava codes, which are a
subfamily of alternant codes. The structure of such codes is what allowed
DAGS to be attacked [8, 5].

The idea of the key-recovery attack leading to the modeling presented
here is to find a subcode of the public code. The attack was proposed in two
versions: a combinatorial one that uses brute force to find the subcode, and
an algebraic one that relies on solving a polynomial system. The complexity
of the combinatorial version is easy to compute, however the numbers of
calculations remains too high to be done in practice. On the contrary, the
algebraic attack is more efficient but its complexity is harder to estimate.

We focus on the second version and explain the principle. We begin by
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computing the invariant subcode of the public code of the scheme. Then, we
search for a subcode of this invariant code by solving a bilinear system built
from public parts of the scheme. Finally, we can recover the support and
multiplier of the original alternant code.

In the next subsection, we explain how the system we want to solve is
built.

5.2 Original Modeling

Let Cpub be the DAGS public code, Hpub be the public key of the scheme,
which is a parity-check matrix of Cpub, and let Gpub be its generator matrix.

We refer to [19, Chap. 12] for the definition of alternant codes. DAGS
codes are quasi-dyadic alternant codes over Fqm , with q a power of 2 and
m = 2. To build the system we need to understand the construction of
quasi-dyadic alternant codes, that are alternant codes for which the support
x and the multiplier y have a particular structure.

Definition 1. Let γ > 1 and n = 2γn0. The support x ∈ Fn
qm of a quasi-

dyadic alternant code of order 2γ is constructed from (b1, . . . , bγ) ∈ F
γ
qm that

are linearly independent over F2, and τ = (τ1, . . . , τn0
) ∈ F

n0

qm as

x
def
= τ ⊗ 12γ + 1n0

⊗ g,

where g
def
= (g)g∈G is a vector of all 2γ elements of the group G = 〈b1, . . . , bγ〉F2

which is the vector space generated by the elements (bi) over F2.
The elements τi are randomy drawn from Fqm such that the cosets τi +G

are pairwise disjoint.

For instance for γ = 2, we can choose g = (0, b1, b2, b1+b2) = b1(0, 1, 0, 1)+
b2(0, 0, 1, 1). For γ = 3 we take g = (0, b1, b2, b1 + b2, b3, b1 + b3, b2 + b3, b1 +
b2+ b3) = b1(0, 1, 0, 1, 0, 1, 0, 1)+ b2(0, 0, 1, 1, 0, 0, 1, 1)+ b3(0, 0, 0, 0, 1, 1, 1, 1).
In general, one possible order for g is given by g =

∑γ
i=1 biei where

ei
def
= (02i−1 ,12i−1 , 02i−1 ,12i−1, . . . ) = 12γ−i ⊗ (0, 1)⊗ 12i−1 .

The group G acts by translation on Fqm, and its action induces a per-
mutation of the code Cpub. This is what allows the DAGS system to have
reduced public keys: the public matrix Gpub is formed by blocks of size 2γ
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where each row of the block is deduced from the first row by one of the
permutation induced by G.

The attack in [8] introduces the invariant subcode Cpub
G with respect to

G of Cpub, which is defined as

Definition 2. The invariant code of Cpub is defined by:

Cpub
G = {c ∈ Cpub|∀(i, j) ∈ {0..n0 − 1} × {1..2γ}, ci2γ+j = ci2γ+1} .

The invariant subcode has dimension k0 = k/2γ where k is the dimension
of Cpub. Its generator matrix Ginv is easy to compute from Gpub: each block of
2γ rows of Gpub gives one row of Ginv by summation. The entries of Gpub are
then repeated by blocks of size 2γ, so that we can define a matrix G̃ ∈ F

k0×n0

qm

satisfying Ginv = G̃⊗ 12γ .
We introduce the component-wise product called Schur product:

Definition 3. The Schur product of two codes A and B ⊆ Fn
q corresponds

to the code generated by all the component-wise products of one codeword
from A and one codeword of B:

A ⋆ B = 〈a ⋆ b | a ∈ A ,b ∈ B〉
Fq

The attack in [8] amounts to find D , an unknown subcode of Cpub
G such

that x is orthogonal to D ⋆ Cpub
⊥. This leads to following system with 2

unknowns, D and x:
G

D⋆Cpub
⊥ · x⊤ = 0 (9)

Algebraically, a generator matrix for D ⋆ Cpub
⊥ can be written with high

probability as
((

Ik0−c U
)

·Ginv

)

⋆Hpub (10)

with c the codimension of D in the invariant subcode Cpub
G. If we can not

express the system like that, we just need to take another generator matrix
for the invariant subcode of Cpub. This finally leads to the original modeling:

((

Ik0−c U
)

Ginv ⋆Hpub

)

x⊤ = 0 (11)

where U is a matrix of unknowns of size (k0 − c) × c, Ginv = G̃ ⊗ 12γ and
G̃ is a public invariant matrix of size k0×n0, Hpub is the public parity-check
matrix, and x = τ ⊗ 12γ +

∑γ
i=1 bi1n0

⊗ ei ∈ Fn
qm is a vector of unknowns

τ = (τ1, . . . , τn0
) and (b1, . . . , bγ).
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Remark 3. As explained in [8], any affine map x → ax+ b for a ∈ F∗
qm, b ∈

Fqm preserves the quasi-dyadic structure of the code, and leaves the code
invariant, so that it is always possible to search among all possible x for
the ones that satisfy b1 = 1 and τn0

= 0. Moreover, the vector xq, hence

Tr(x)
def
= x + xq are also solution of the system (11), so that Tr(b2)

−1Tr(x)
is a solution with τn0

= 0, b1 = 0 and b2 = 1 (as Tr(a) = 0 for a ∈ Fq when
m = 2).

Remark 4. As explained in [5], there is a lot of redundancy among the
equations. We avoid that by considering only one out of every 2γ rows in
Hpub.

5.3 Modeling Update

A simple (but fastidious, see Appendix A) computation allows to write the
system as a MinRank instance with matrices of size (n0 − k0) × k0, when
G̃ = (Ik0G) is taken in systematic form:

(

k0
∑

i=1

τiMi +

n0−k0
∑

j=1

τj+k0Mj+k0 +

γ
∑

b=2

biHi

)

(

Ik0−c

U⊤

)

= 0 (12)

with Mi =
(

0i−1 (G{i},∗)
⊤

0k0−i

)

∀1 ≤ i ≤ k0

Mj+k0 =





0j−1

(G∗,{j})
⊤

0n0−k0−j



 ∀1 ≤ j ≤ n0 − k0

Hi = Hpub(In0
⊗ ei

⊤)∗,{1..k0} ∀2 ≤ i ≤ γ

It is clear that the matrices Mi from DAGS instances are not random,
and in practice we have more degree falls than expected. On the other hand,
the part concerning the variables bi with matrices Hi seems to behave like
a random system. Note also that experimentally we find that the system
always produces 3 solutions. However, this is small enough to be able to
recover the good one from the kernel of the Macaulay matrix, as only one
belong to the finite field Fq.

Proposition 2. For the DAGS modeling, the Macaulay matrix associated to
the set of equations E(d) has size Nrows ×Ncols = (n0 − k0)

(

k0−c
d+1

)(

c
d

)

× (n0 −
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Security Level q n0 k0 γ c k0 − a0 − c Matrix size Rank Time
DAGS_1 (128) 25 52 26 4 4 4 1456× 2520 1322 3.5s
DAGS_3 (192) 26 38 16 4 4 5 2772× 4284 2540 8.8s
DAGS_5 (256) 26 33 11 2 2 3 220× 310 194 0.0s

Table 3: DAGS original sets of parameters

k0 − 1 + c+ γ − 1)
(

k0−c
d+1

)(

c
d+1

)

, but its rank is

Rank(E(d)) = min

(

Nrows,

(

k0 − c

d+ 1

)(

(n0 − k0)

(

c− 1

d

)

+

(

c

d+ 1

)

d

))

Note that it is always possible to use shortened codes on a0 positions,
that amounts to consider codes with parameters (n0 − a0, k0 − a0).

The first sets of parameters were given in the specifications of the scheme.
They are shown in Table3. Experimental results in [5] give a solution of the
system DAGS_3 in degree 4 with linear algebra on a matrix of size 725, 895×
671, 071. It is improved by shortening the system up to k0 − a0 − c = 4 with
a matrix of size 103, 973× 97, 980 and a computation lasting 70 seconds. All
results presented here allows to choose to shorten the system to k0−a0−c = 5
instead of 4, as for 4 the system does not leads directly to linear equations,
and it reduces the computation to linear algebra on a matrix of size 2772 by
4284 that last only few seconds.

Conclusion

We have presented the link between the different modelings for the MinRank
problem. This allows a more accurate understanding of the best strategy to
solve MinRank instances.

We have shown that superdetermined MinRank instances are instances for
which (SM) solves at b = 1, and that the maximal degree in the computations
is not the best parameter to use to optimize the computation.

We have also presented the DAGS attack as a particular superdetermined
MinRank one, and how the accurate study of the involved matrices allows to
find the best strategy.
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A Appendix

We want to reduce (11) to a MinRank problem (12). We start from (11):
(

(

Ik0−c U
)

(G̃⊗ 12γ ) ⋆Hpub

)

x⊤ = 0.

Using the fact that (A ⋆ B)a⊤ = 0 is equivalent to (A ⋆ a)B⊤ = 0, that
A⊗ a = A(I⊗ a) and (AB) ⋆ a = A(B ⋆ a), it can be rewritten

(

Ik0−c U
)

G̃((In0
⊗ 12γ ) ⋆ x)Hpub

⊤ = 0

Now we can use the relations (A⊗a)⋆(b⊗x) = (A⋆b)⊗(a⋆x), τ⋆I = Diag(τ)
and A⊗ a = A(I⊗ a) to simplify

(In0
⊗ 12γ ) ⋆ x = (In0

⊗ 12γ ) ⋆ (τ ⊗ 12γ +

γ
∑

i=1

bi1n0
⊗ ei)

= (τ ⋆ In0
)⊗ 12γ +

γ
∑

i=1

bi(In0
⊗ ei)

= Diag(τ)(In0
⊗ 12γ ) +

γ
∑

i=1

bi(In0
⊗ ei)

We can now define H̃i = Hpub(In0
⊗ ei

⊤) and H̃ = Hpub(In0
⊗ 12γ

⊤) and we
get the system

(

Ik0−c U
)

G̃(Diag(τ)H̃⊤ +

γ
∑

i=1

biH̃i
⊤
) = 0,

(H̃Diag(τ)G̃⊤ +

γ
∑

i=1

biH̃iG̃
⊤)

(

Ik0−c

U⊤

)

= 0

We now simplify the products using the remark that H̃ is the parity-check
matrix corresponding to G̃ = (Ik0 G): H̃ = (G⊤ In0−k0), and that H̃i =
(Hi 0n0−k0) contains columns of zeros on the last n0 − k0 positions. This
gives (12).
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