Magali Bardet
email: magali.bardet@univ-rouen.fr

Manon Bertin
email: manon.bertin@etu.univ-rouen.fr

Improvement of algebraic attacks for solving superdetermined MinRank instances

Keywords:

The MinRank (MR) problem is a computational problem that arises in many cryptographic applications. In Verbel et al. [24], the authors introduced a new way to solve superdetermined instances of the MinRank problem, starting from the bilinear Kipnis-Shamir (KS) modeling. They use linear algebra on specific Macaulay matrices, considering only multiples of the initial equations by one block of variables, the so called "kernel" variables. Later, Bardet et al. [7] introduced a new Support Minors modeling (SM), that consider the Plücker coordinates associated to the kernel variables, i.e. the maximal minors of the Kernel matrix in the KS modeling.

In this paper, we give a complete algebraic explanation of the link between the (KS) and (SM) modelings (for any instance). We then show that superdetermined MinRank instances can be seen as easy instances of the SM modeling. In particular, we show that performing computation at the smallest possible degree (the "first degree fall") and the smallest possible number of variables is not always the best strategy. We give complexity estimates of the attack for generic random instances.

We apply those results to the DAGS cryptosystem, that was submitted to the first round of the NIST standardization process. We show

Introduction

The MinRank Problem

The MinRank problem was first mentioned in [START_REF] Buss | The computational complexity of some problems of linear algebra[END_REF] where its NP-completeness was also proven. It is a central problem in algebraic cryptanalysis, starting with the Kipnis and Shamir modeling [START_REF] Kipnis | Cryptanalysis of the HFE public key cryptosystem by relinearization[END_REF] for the HFE encryption scheme. The MinRank problem is very simple to state: Problem 1 (Homogeneous MinRank problem).

Input: a target rank r ∈ N and K matrices M 1 , . . . , M K ∈ F m×n q . Output: field elements x 1 , x 2 , . . . , x K ∈ F q , not all zero, such that

Rank M x def = K i=1 x i M i r.
It plays a central role in public key cryptography. Many multivariate schemes are strongly related to the hardness of this problem, as in [START_REF] Patarin | Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms[END_REF][START_REF] Kipnis | Cryptanalysis of the HFE public key cryptosystem by relinearization[END_REF][START_REF] Petzoldt | Design principles for HFEv-based multivariate signature schemes[END_REF][START_REF] Porras | ZHFE, a new multivariate public key encryption scheme[END_REF]. The 3rd round NIST post-quantum competition finalist Rainbow [14], or alternate GeMSS [13] suffered attacks based on the MinRank problem [START_REF] Beullens | Improved cryptanalysis of UOV and Rainbow[END_REF][START_REF] Beullens | Breaking Rainbow takes a weekend on a laptop[END_REF][START_REF] Tao | Efficient key recovery for all HFE signature variants[END_REF][START_REF] Baena | Improving support-minors rank attacks: applications to GeMSS and Rainbow[END_REF].

In code-based cryptography, the MinRank problem is exactly the decoding problem for matrix codes in rank metric. The two submissions ROLLO and RQC [START_REF] Aragon | Second round submission to the NIST post-quantum cryptography call[END_REF][START_REF] Aguilar Melchor | Rank quasi cyclic (RQC). Second Round submission to NIST Post-Quantum Cryptography call[END_REF], from the 2nd round of the NIST post-quantum competition, have been attacked using algebraic cryptanalysis in [START_REF] Bardet | An algebraic attack on rank metric code-based cryptosystems[END_REF][START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF]. Their security analysis relies on the decoding problem for F q m -linear rank-metric codes, which can actually be reduced to the MinRank problem. This is of great importance for cryptographic purposes to design algorithms that solve efficiently algebraic modeling for the MinRank problem, and to understand their complexity.

Algebraic modeling

There has been a lot of recent progress in the algebraic modeling and solving of the MinRank problem. We start by recalling the first modeling, namely the Kipnis-Shamir (KS) modeling. Note that it implicitely assumes that the n-r first columns of the small-rank matrix M x we are looking for are linearly dependent from the last r ones. In this paper, we will assume that we are looking for a matrix M x of rank exactly r (this can be achieved by looking for increasing ranks, starting from r = 1), and that the last r columns of M x are linearly independent (it is true up to a permutation of the columns, and for random matrices it is true with high probability). We will see later that this last assumption is not mandatory.

Modeling 1 (Kipnis-Shamir Modeling [START_REF] Kipnis | Cryptanalysis of the HFE public key cryptosystem by relinearization[END_REF]). Consider a MinRank instance (M 1 , . . . , M K) ∈ F m×n q with target rank r. Then, the MR problem can be solved by finding x 1 , . . . , x K ∈ F K q , and C = (c i,j) ∈ F r×(n-r) q such that K i=1

x i M i I n-r C = 0 m×(n-r) .

(KS)

The m(n-r) equations are bilinear in the K linear variables x = (x 1 , . . . , x K) and the r(nr) entries of the formal matrix C = (c i,j) i,j , refered to as the kernel variables.

It is clear that a matrix has rank ≤ r if and only if its right kernel has dimension at least nr, so that any solution of the MinRank problem is a solution of (KS).

The complexity of solving a generic bilinear system has been studied in [START_REF] Faugère | Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology[END_REF][START_REF] Faugère | Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and complexity[END_REF], and gives an upper bound for the KS system, but this estimate wildly overestimates the experimental results.

The matrix M x has rank ≤ r if and only if all its minors of size r + 1 are zero. This modeling has been presented and analysed in [START_REF] Faugère | On the complexity of the generalized minrank problem[END_REF][START_REF] Faugère | Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology[END_REF]. Under the assumption that the last r columns of M x are linearly independent, it is sufficient to consider minors involving columns in sets T = {t}∪{n-r +1..n} with 1 ≤ t ≤ nr, as it means that the last r columns generate the column vector space. The notation |M| J,T represents the determinant of the submatrix of M where we keep only rows in J and columns in T .

Modeling 2 (Minors Modeling). Let (M 1 , . . . , M K) ∈ F m×n q be a MinRank instance with target rank r. Then, the MR problem can be solved by finding

x 1 , . . . , x K ∈ F K q such that |M x | J,T = 0, ∀J ⊂ {1..m}, #J = r + 1, T = {t} ∪ {n -r + 1..n} ⊂ {1..n} (Minors)
Recently, a new modeling has been introduced in [START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF], that is at the moment the most efficient one from the complexity point of view. It uses two ideas, that we will separate in two modelings: the first idea is that (KS) means that the vector space with generator matrix M x is orthogonal to the one with generator matrix I n-r C ⊤ . It is then straightforward to see that any row of M x belongs to the dual space with generator matrix -C I r . This leads to: Modeling 3 (Support Minor Modeling-C [START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF]). Let (M 1 , . . . , M K) ∈ F m×n q be a MinRank instance with target rank r. Then, the MR problem can be solved by finding x 1 , . . . , x K ∈ F K q , and C = (c i,j) 1≤i≤r,1≤j≤n-r ∈ F r×(n-r) q such that r i -C I r * ,T = 0, ∀T ⊂ {1..n}, #T = r + 1, and r i row of M x .

(SM-C)

The m n r+1 equations are bi-homogeneous with bi-degree (1, r) in the K linear variables x = (x 1 , . . . , x K) and the r(nr) entries of the formal matrix C = (c i,j) i,j , refered to as the kernel variables.

Note that in (SM-C), the entries of C appear only as maximal minors of (-C I r). This leads to the second idea from [START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF], which consists in using the Plücker coordinates: we replace each |(-C I r)| * ,T , that is a polynomial of degree #T = r in the entries of C, by a new variable c T using the injective Plücker map, see [11, p.6].

p : {W ⊂ F n q : dim(W) = r} → P N (F q) (N = n r -1) C → (c T) T ⊂{1..n},#T =r .
Modeling 4 (Support Minor Modeling-c T [START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF]). Let (M 1 , . . . , M K) ∈ F m×n q be a MinRank instance with target rank r. Then, the MR problem can be solved by finding x 1 , . . . , x K ∈ F K q , and (c T) T ⊂{1..n},#T =r ⊂ F

(n r) q such that t∈T (M x) i,t c T \{t} = 0, ∀T ⊂ {1..n}, #T = r + 1, and i ∈ {1..m} . (SM)
The m n r+1 equations are bilinear in the K linear variables x = (x 1 , . . . , x K) and the n r minor variables c T , for all T ⊂ {1..n}, #T = r. The benefit of introducing such coordinates to describe a vector space rather than a matrix describing a basis is that contrarily to the matrix representation, a vector space W has unique Plücker coordinates associated to it. This is not the case of the matrix representation of a vector space: if the rows of a matrix C generate the vector space, then the rows of AC generate the same vector space for any invertible A ∈ GL(r, F q). For our algebraic system, this brings the benefit of reducing the number of solutions of the system: there are several solutions C to the algebraic system (SM-C), that correspond to one unique solution to (SM). As already pointed out in [START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF], it is also extremely beneficial for the computation to replace polynomials |(-C I r | * ,T with r! terms of degree r in the entries of C by single variables c T 's in F q . We will use (SM-C) for the theoretical analysis of the link between the various modelings, and (SM) for the computational solving.

Contributions

As a first contribution, we show that the first three systems are related, more precisely Proposition 1. The set of equations (KS) is included in the set of equations (SM-C), and the ideals generated by the SM-C and KS equations are equal. Equations Minors (Minors modeling) are included in the ideal generated by KS.

This proposition applies to any instance, without particular hypothesis. Note that Eq. (Minors) contain only the linear variables, hence the ideals cannot be equal. This proposition is not only interesting on the theoretical point of view, but it also allows to understand different computational strategies and to select the best one. A discussion is provided in Remark 1.

In [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF], Verbel et al. analyse degree falls occuring during a Gröbner basis computation of (KS), and show that for overdetermined systems this can occur before degree r +2, which is the general case. As a second contribution, we show that these degree falls are in fact equations from SM-C. Using the Plücker coordinates in (SM) allows to drastically reduce the size of the considered matrices. Moreover, we give example to show that minimising the degree and number of equations is not always the best strategy for optimising the solving complexity.

Finally, we revisit the DAGS cryptosystem [START_REF] Banegas | DAGS : Key encapsulation for dyadic GS codes[END_REF], that was a 1st round candidate to the NIST post-quantum standardization process, and was attacked by Barelli and Couvreur [8]. We show that the attack is in fact a MinRank attack, and describe the structure of this non-random superdetermined Min-Rank instance. This precise understanding of the problem makes it possible to choose the right parameters for an optimal attack.

Notation and preliminaries

Vectors are denoted by lower case boldface letters such as x, e and matrices by upper case letters C, M. The all-zero vector of length ℓ is denoted by 0 ℓ . The j-th coordinate of a vector x is denoted by x j and the submatrix of a matrix C formed from the rows in I and columns in J by C I,J . When I (resp. J) represents all the rows (resp. columns), we may use the notation C * ,J (resp. C I, *). We simplify C i, * = C {i}, * (resp. C * ,j = C * ,{j}) for the i-th row of C (resp. j-th column of C) and c i,j = C {i},{j} for the entry in row i and column j. Finally, |C| is the determinant of a matrix C, |C| I,J is the determinant of the submatrix C I,J and |C| * ,J the one of C * ,J . The transpose of a matrix C is C ⊤ . The all-one vector of size n is denoted by

1 n = (1, . . .

, 1).

To simplify the presentation, we restrict ourselves to a field of characteristic 2, but the results are valid for any characteristic, the only difference being the occurrence of a ± sign before each formula.

For any matrix A of size q × r with r ≤ q, and any set J ⊂ {1..q} of size r + 1, we define the vector V J (A) of length q whose jst entry is 0 if j / ∈ J and |A| J\{j}, * for j ∈ J. For A of size r × q with r ≤ q we define

V J (A) def = V J (A ⊤).
Using Laplace expansion along a column, it is clear that for any vector a of length q we have

V J (A)a ⊤ = a ⊤ A J, * . (1)
We denote by vec row (A) (resp. vec col (A)) the vertical vector formed by concatenating successives rows (resp. cols) of A. We have the formula

vec row (AXY) = (A ⊗ Y ⊤)vec row (X) (2)
vec col (AXY) = (Y ⊤ ⊗ A)vec col (X)
where

A ⊗ B def = (a i,j B) i,j
is the Kronecker product of two matrices A = (a i,j) i,j and B.

For a system F = {f 1 , . . . , f M } of bilinear equations in two sets of variables x = (x j) 1≤j≤nx and y = (y ℓ) 1≤ℓ≤ny , it is usual to consider the associated Jacobian matrices:

Jac x (F) = ∂f i ∂x j i=1..M,j=1..nx , Jac y (F) = ∂f i ∂y ℓ i=1..M,ℓ=1..ny .
For homogeneous bilinear systems they satisfy the particular relation:

Jac x (F)x ⊤ = f 1 . . . f M ⊤
and any vector in the left kernel of a Jacobian matrix is a syzygy of the system. Moreover, Jac x is a matrix whose entries are linear form in the variables y, and Cramer's rule show that the left kernel of Jac x contains vectors V T (Jac x (F) T, *) using the notation from (1) for all T ⊂ {1..M} of size n y + 1. Generically those vectors generate the left kernel. For affine systems, we consider the jacobian matrix associated to the homogeneous part of highest degree of the system, and any syzygy for this part, that is not a syzygy of the entire system leads to a degree fall.

Relations between the various modelings

This section applies to any MinRank instance without any specific hypothesis.

The KS modeling consists in bilinear equations in two blocks of variables x and C, whereas the SM-C modeling contains equations of degree 1 in x and r in C, the variables C appearing only as maximal minors of -C I r .

In the case of the KS modeling, it has been noticed in [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF], and later [START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF]Lemma1] that the jacobian matrices have a very particular shape: if we write

M x = M (1) x M (2) x with M (1)
x of size m×(n-r) and M

(2)

x of size m×r, and in the same way we write each

M i = M (1) i M (2) i
, then the homogeneous part of highest degree of the system is M

(2)

x C, and its Jacobian matrices are, if we take the variables and equations in row/column order:

Jac x i vec row x i M (2) i C = vec row M (2) i C = I m ⊗ C ⊤ vec row M (2) i Jac x vec row M (2) x C = I m ⊗ C ⊤ vec row M (2) 1 . . . vec row M (2) K Jac vec col (C) vec col M (2) x C = I n-r ⊗ M (2) x (3)
The jacobian matrix in C admits a left kernel that contains the following vectors:

e i ⊗ V J (M (2) x) for any J ⊂ {1..p}, #J = r + 1, 1 ≤ i ≤ n -r, (4)
where e i is the ith row of I n-r . As a consequence, the ideal generated by the (KS) equations contains the equations

(e i ⊗ V J (M (2) x))vec col (M x I n-r C) = (e i ⊗ V J (M (2) x))vec col (M x 1) = V J (M (2)
x)M (1) x e i ⊤ (thanks to (2))

= |M x | J,{i}∪{n-r+1..n} (thanks to (1)).

Those are precisely the (Minors) equations. The jacobian matrix in x admits a left kernel that contains the vectors

e ℓ ⊗ V J (C) for any J ⊂ {1..n -r}, #J = r + 1, 1 ≤ ℓ ≤ m. (5)
The ideal generated by the (KS) equations contains the equations

(e ℓ ⊗ V J (C))vec row (M (1) x) = e ℓ M (1) x V J (C) ⊤ = V J (C)(M (1) x ℓ, *) ⊤ = (M (1)
x ℓ, *)

⊤ C ⊤ J, * = M (1) x ℓ, * C * ,J
.

They are exactly the (SM-C) equations for J ⊂ {1..n -r}. They have a degree r in the kernel variables c i,j .

In [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF], the authors propose to solve (any) instances of KS by considering particular elements in the left kernel of the Jacobian matrix in x for some degree 1 ≤ d ≤ r -1. This is done by considering all combination of the polynomials with coefficients The key remark is that the equations they consider are

e ℓ ⊗ V J (C T, *) (6
(e ℓ ⊗ V J (C T, *))vec row (M x I n-r C) = e ℓ M x I n-r C V J (C T, *) ⊤ = r ℓ -C I r * ,T ′ for T ′ = J ∪({n-r + 1..n} \ (T + n-r)) ⊂ {1.
.n} of size r + 1. The equations have indeed a degree d in the kernel variables c i,j .

Note that for d = 0, for T ′ = {ℓ}∪{n-r+1..n} the equation r ℓ -C I r * ,T ′ is the ℓth KS equation, and we get all SM equations. As a consequence, we have proven Proposition 1.

Remark 1. In the light of the previous results, we can understand more precisely the behavior of a generic Gröbner basis (GB) algorithm with a graded monomial ordering and a Normal selection strategy run on (KS) or (SM-C). As (SM-C) contains (KS) directly into the system, computing a GB on (SM-C) will also compute all equations that would be computed by (KS). On the other hand, when computing a GB for (KS), the algorithm will produce all equations (SM-C) by multiplying by monomials in C, hence we can expect many syzygies during a GB computation on (SM-C).

This encourages to compute with (SM-C), but to look only at multiple of the equations by the x i 's variables, which is the strategy proposed in [START_REF] Bardet | Improvements of algebraic attacks for solving the rank decoding and minrank problems[END_REF]. Adding to this the change of variable that consider any minor of C as a variable removes the hardness of computing with high degree polynomials (as the new variables have degree 1 instead of a polynomial of degree d with d! coefficients for the minor).

Complexity of solving superdetermined systems

Superdetermined MinRank instances are defined in [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF] as MinRank instances where K < rm. In the light of the previous section, it is now clear that [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF] considers for any 0 ≤ d ≤ r the equations

E(d) def = E J,T,ℓ def = e ℓ M x I n-r C V J (C T, *) ⊤ : ∀J⊂{1..n-r},#J=d+1, ∀T ⊂{1..r},#T =d, ∀ℓ∈{1..m} . (7
)
and search for linear combination that will produce degree falls. We can rewrite the equations

E J,T,ℓ = r ℓ C I r * ,T ′ with T ′ = J ∪ ({n -r + 1..n} \ (T + n -r)) ⊂ {1..n} = K i=1 j∈J (M (1)
i) ℓ,j x i |C| T,J\{j} + K i=1 s / ∈T (M (2)
i) ℓ,s x i |C| T ∪{s},J .

We have a total of r d=0 m n-r d+1 r d = m n r+1 equations in r d=0 K n-r d r d = K n r variables described by

V(d) def ={x i |C| T,J } i=1..K,#J=d,#T =d , V(r + 1) = ∅.
The system can be solved by linearization by constructing the associated Macaulay matrix: its rows are indexed by J, T, ℓ (with #J = d + 1, #T = d) and its columns by i, J ′ , T ′ (with #J ′ = d = #T ′), and the coefficient in row (J, T, ℓ) and column (i, J ′ , T ′) corresponds to the coefficient of E J,T,ℓ in the monomial x i |C| T ′ ,J ′ . We can sort the columns by decreasing degree, i.e. consider first monomials in V(r), up to V(0) that are the K variables x i , see Fig.

m n -r d + 1 r d K n -r d + 1 r d + 1 V(r) V(r -1) . . . V(d + 1) V(d) . . . V(1) V(0) E(r) E(r -1)
. . .

E(d)

. . .

E(0)

Figure 1: Shape of the Macaulay matrix associated to Eq. (7). The columns correspond to equations in V(d), the rows to equations E(d). Gray cells correspond to non-zero part of the matrix.

which is Corollary 5 in [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF], and the first part of the Macaulay matrix with columns in V(d + 1) is, up to a good choice of the ordering of rows and columns, a block of diagonal matrices B J as described in [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF]. The best complexity estimates comes from the (SM) modeling, when considering the minors |C| T,J as new variables. Eq. (7) contains m n r+1 equations in K variables x i and n r variables that are minors of (-C I r). Hence the system can be solved whenever m n r+1 K n r by linearization, i.e. m(nr) K(r + 1). After linearization, we get with overwhelming probability #V(0) -1 = m -1 linear equations in the x i 's only.

As always, it is possible to improve computation by puncturing the matrix M x (taking only sufficiently many columns so that we keep an overdetermined system), or by hybrid approach (performing an exhaustive search on some columns of C, at the cost of q ar operation in F q for a columns). It is also possible, as in [7, Eq. (23) p. 19], to compute equations at higher degree b in x i . For instance, at b = 2 we can multiply all equations in (SM) by x i 's variables, and we get for each set E(d) of equations:

m n r + 1 K - n r + 2 m + 1 2 equations, n r K + 1 2 monomials. (8)
For instance, Table 1 compares the (SM) system with previous results from [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF]. For r = 5, the ratio between equations and monomials in (SM) is smaller than 1, so that we cannot expect to solve by linearization directly. Computing at b = 2 would produce 14400 equations in 13860 variables of m n K r m(n-r) K(r+1) n eq n vars n rows in [degree less than or equal to 7 in (x, C). Note that the last entry for r = 6 would theoretically require to go up to b = 5 with matrices of size 427350. However, [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF] suggest that we can have a closer look at the shape of the equations and maybe find a better complexity for some very overdetermined instances.

Hence . In [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF], the authors determine the first degree fall in KS by looking for the smallest d for which we have more equations in E(d) than variables in V(d + 1). This produces Rank(E(d)) -#V(d + 1) degree fall, but it is not clear how to end the computation. If there is more equations than variables, i.e.

m n -r d + 1 r d K n -r d + 1 r d + 1 + K n -r d r d - 1
then with overwhelming probability, the linear system is full rank (its kernel has dimension 1 as the system is homogeneous in x) and a non-zero element in the kernel of the Macaulay matrix gives a value for each variable x i |C| T,J . It is then straightforward to deduce x i /x i 0 from two values x i |C| T,J and

x i 0 |C| T,J . On the other hand, if

K n -r d + 1 r d + 1 ≤ m n -r d + 1 r d and m n -r d + 1 r d < K n -r d + 1 r d + 1 + K n -r d r d - 1
then it is necessary to add new equations to end the computation. It can be done by consider equations of "higher degree". If each minor of C is taken as a variable, it doesn't add a computational burden. We can solve as soon as we can get sufficiently many blocks of equations E(d) such that we get more equations than columns. Experimental results are presented Table 2 on the same parameters as [24, Table 2]. instance for a MinRank problem with 12 × 12 matrices and a target rank r = 4, the authors in [START_REF] Verbel | On the complexity of "superdetermined" Minrank instances[END_REF] solve at degree d = 4 in 58s, whereas it is more interesting to consider equations in E(3..4) that have degree up to 5, without considering equations of degree 2..3. Note that if we puncture too much the matrices, for instance by taking only n = 8 columns, then we do not have any more an overdetermined SM system, and solving it now require to produce more equations, for instance by considering b = 2. In this case, we get a system of 5880 equations in 5460 and we can solve, but this will be more costly than solving with n = 9.

Remark 2. There is an asymetry between m and n in the modelings. It is always possible to exchange m and n by considering the transpose of the matrices, but it is not clear in general which problem will be easier (m > n or m < n). For instance, for K = 10, r = 2 we can have the following behaviors: for m = 6, n = 7 the Macaulay matrix up to d = r has size 210 × 210, whereas for m = 7, n = 6 it is not possible to solve at b = 1 (the Macaulay matrix has dimension 140 × 150). We need to go to b = 2 and solve a matrix of size 980 × 825. On the contrary, for m = 10, n = 6, the Macaulay matrix has dimension 160 × 140 (d = 1..2), whereas for m = 6, n = 10, the Macaulay matrix for d = r has size 336 × 280. However, as the number of equations is a multiple of m, the best solution is often with m ≥ n.

Application to DAGS

DAGS scheme [START_REF] Banegas | DAGS : Key encapsulation for dyadic GS codes[END_REF] is a key encapsulation mechanism (KEM) based on quasidyadic alternant codes that was submitted to the first round of the NIST standardization process for a quantum resistant public key algorithm. It suffered from an algebraic attack [START_REF] Barelli | An efficient structural attack on NIST submission DAGS[END_REF] that efficiently recovers the private key, and was improved in [START_REF] Bardet | Practical algebraic attack on DAGS[END_REF]. Here, we show that the DAGS algebraic modeling is in fact a MinRank problem. However, the previous complexity results do not apply, as those MinRank instances have a structure, that can be used to understand more precisely the complexity.

Principle of the attack

We recall some elements of the scheme. DAGS is based on the McEliece scheme and uses Quasi-Dyadic Generalized Srivastava codes, which are a subfamily of alternant codes. The structure of such codes is what allowed DAGS to be attacked [START_REF] Barelli | An efficient structural attack on NIST submission DAGS[END_REF][START_REF] Bardet | Practical algebraic attack on DAGS[END_REF].

The idea of the key-recovery attack leading to the modeling presented here is to find a subcode of the public code. The attack was proposed in two versions: a combinatorial one that uses brute force to find the subcode, and an algebraic one that relies on solving a polynomial system. The complexity of the combinatorial version is easy to compute, however the numbers of calculations remains too high to be done in practice. On the contrary, the algebraic attack is more efficient but its complexity is harder to estimate.

We focus on the second version and explain the principle. We begin by computing the invariant subcode of the public code of the scheme. Then, we search for a subcode of this invariant code by solving a bilinear system built from public parts of the scheme. Finally, we can recover the support and multiplier of the original alternant code.

In the next subsection, we explain how the system we want to solve is built.

Original Modeling

Let C pub be the DAGS public code, H pub be the public key of the scheme, which is a parity-check matrix of C pub , and let G pub be its generator matrix.

We refer to [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]Chap. 12] for the definition of alternant codes. DAGS codes are quasi-dyadic alternant codes over F q m , with q a power of 2 and m = 2. To build the system we need to understand the construction of quasi-dyadic alternant codes, that are alternant codes for which the support x and the multiplier y have a particular structure. Definition 1. Let γ 1 and n = 2 γ n 0 . The support x ∈ F n q m of a quasidyadic alternant code of order 2 γ is constructed from (b 1 , . . . , b γ) ∈ F γ q m that are linearly independent over F 2 , and τ = (τ 1 , . . . , τ n 0) ∈ F n 0 q m as

x def = τ ⊗ 1 2 γ + 1 n 0 ⊗ g,
where g def = (g) g∈G is a vector of all 2 γ elements of the group G = b 1 , . . . , b γ F 2 which is the vector space generated by the elements (b i) over F 2 .

The elements τ i are randomy drawn from F q m such that the cosets τ i + G are pairwise disjoint.

For instance for γ = 2, we can choose g

= (0, b 1 , b 2 , b 1 +b 2) = b 1 (0, 1, 0, 1)+ b 2 (0, 0, 1, 1). For γ = 3 we take g = (0, b 1 , b 2 , b 1 + b 2 , b 3 , b 1 + b 3 , b 2 + b 3 , b 1 + b 2 + b 3) = b 1 (0, 1,
0, 1, 0, 1, 0, 1) + b 2 (0, 0, 1, 1, 0, 0, 1, 1) + b 3 (0, 0, 0, 0, 1, 1, 1, 1). In general, one possible order for g is given by g = γ i=1 b i e i where

e i def = (0 2 i-1 , 1 2 i-1 , 0 2 i-1 , 1 2 i-1 , . . .) = 1 2 γ-i ⊗ (0, 1) ⊗ 1 2 i-1 .
The group G acts by translation on F q m , and its action induces a permutation of the code C pub . This is what allows the DAGS system to have reduced public keys: the public matrix G pub is formed by blocks of size 2 γ where each row of the block is deduced from the first row by one of the permutation induced by G.

The attack in [START_REF] Barelli | An efficient structural attack on NIST submission DAGS[END_REF] introduces the invariant subcode C pub G with respect to G of C pub , which is defined as Definition 2. The invariant code of C pub is defined by:

C pub G = {c ∈ C pub |∀(i, j) ∈ {0..n 0 -1} × {1..2 γ }, c i2 γ +j = c i2 γ +1 } .
The invariant subcode has dimension k 0 = k/2 γ where k is the dimension of C pub . Its generator matrix G inv is easy to compute from G pub : each block of 2 γ rows of G pub gives one row of G inv by summation. The entries of G pub are then repeated by blocks of size 2 γ , so that we can define a matrix

G ∈ F k 0 ×n 0 q m satisfying G inv = G ⊗ 1 2 γ .
We introduce the component-wise product called Schur product:

Definition 3. The Schur product of two codes A and B ⊆ F n q corresponds to the code generated by all the component-wise products of one codeword from A and one codeword of B:

A ⋆ B = a ⋆ b | a ∈ A , b ∈ B Fq
The attack in [START_REF] Barelli | An efficient structural attack on NIST submission DAGS[END_REF] amounts to find D, an unknown subcode of C pub G such that x is orthogonal to D ⋆ C pub ⊥ . This leads to following system with 2 unknowns, D and x:

G D⋆C pub ⊥ • x ⊤ = 0 (9)
Algebraically, a generator matrix for D ⋆ C pub ⊥ can be written with high probability as

I k 0 -c U • G inv ⋆ H pub (10)
with c the codimension of D in the invariant subcode C pub G . If we can not express the system like that, we just need to take another generator matrix for the invariant subcode of C pub . This finally leads to the original modeling:

I k 0 -c U G inv ⋆ H pub x ⊤ = 0 (11
)
where U is a matrix of unknowns of size (k 0c) × c, G inv = G ⊗ 1 2 γ and G is a public invariant matrix of size k 0 × n 0 , H pub is the public parity-check matrix, and x = τ ⊗ 1 2 γ + γ i=1 b i 1 n 0 ⊗ e i ∈ F n q m is a vector of unknowns τ = (τ 1 , . . . , τ n 0) and (b 1 , . . . , b γ). Remark 3. As explained in [START_REF] Barelli | An efficient structural attack on NIST submission DAGS[END_REF], any affine map x → ax + b for a ∈ F * q m , b ∈ F q m preserves the quasi-dyadic structure of the code, and leaves the code invariant, so that it is always possible to search among all possible x for the ones that satisfy b 1 = 1 and τ n 0 = 0. Moreover, the vector x q , hence Tr(x) def = x + x q are also solution of the system [START_REF] Bruns | Determinantal Rings, lncs[END_REF], so that Tr(b 2) -1 Tr(x) is a solution with τ n 0 = 0, b 1 = 0 and b 2 = 1 (as Tr(a) = 0 for a ∈ F q when m = 2). Remark 4. As explained in [START_REF] Bardet | Practical algebraic attack on DAGS[END_REF], there is a lot of redundancy among the equations. We avoid that by considering only one out of every 2 γ rows in H pub .

Modeling Update

A simple (but fastidious, see Appendix A) computation allows to write the system as a MinRank instance with matrices of size

(n 0 -k 0) × k 0 , when G = (I k 0 G) is taken in systematic form: k 0 i=1 τ i M i + n 0 -k 0 j=1 τ j+k 0 M j+k 0 + γ b=2 b i H i I k 0 -c U ⊤ = 0 (12)
with M i = 0 i-1 (G {i}, *) ⊤ 0 k 0 -i ∀1 ≤ i ≤ k 0

M j+k 0 =   0 j-1 (G * ,{j}) ⊤ 0 n 0 -k 0 -j   ∀1 ≤ j ≤ n 0 -k 0 H i = H pub (I n 0 ⊗ e i ⊤) * ,{1..k 0 } ∀2 ≤ i ≤ γ
It is clear that the matrices M i from DAGS instances are not random, and in practice we have more degree falls than expected. On the other hand, the part concerning the variables b i with matrices H i seems to behave like a random system. Note also that experimentally we find that the system always produces 3 solutions. However, this is small enough to be able to recover the good one from the kernel of the Macaulay matrix, as only one belong to the finite field F q . Note that it is always possible to use shortened codes on a 0 positions, that amounts to consider codes with parameters (n 0a 0 , k 0a 0).

The first sets of parameters were given in the specifications of the scheme. They are shown in Table3. Experimental results in [START_REF] Bardet | Practical algebraic attack on DAGS[END_REF] give a solution of the system DAGS_3 in degree 4 with linear algebra on a matrix of size 725, 895× 671, 071. It is improved by shortening the system up to k 0a 0c = 4 with a matrix of size 103, 973 × 97, 980 and a computation lasting 70 seconds. All results presented here allows to choose to shorten the system to k 0 -a 0 -c = 5 instead of 4, as for 4 the system does not leads directly to linear equations, and it reduces the computation to linear algebra on a matrix of size 2772 by 4284 that last only few seconds.

Conclusion

We have presented the link between the different modelings for the MinRank problem. This allows a more accurate understanding of the best strategy to solve MinRank instances.

We have shown that superdetermined MinRank instances are instances for which (SM) solves at b = 1, and that the maximal degree in the computations is not the best parameter to use to optimize the computation.

We have also presented the DAGS attack as a particular superdetermined MinRank one, and how the accurate study of the involved matrices allows to find the best strategy.

) for any d ∈ {1..r}, J ⊂ {1..n -r}, #J = d + 1, T ⊂ {1..r}, #T = d and ℓ ∈ {1..m}. The authors in [24, Theorem 2] construct a matrix B J whose left kernel contains elements related to the left kernel of the Jacobian matrix in x.

1 .

 1 Then finding linear combination of the equations that produce degree falls can be done by computing the echelon form of the Macaulay matrix. For a set of rows in E(d), we have m n-and we get generically a degree fall under the condition

 , for a fixed d ∈ {0..r}, the set E(d) contains m n-V(d) of bidegree (1, d) and K n-r d+1 r d+1 variables V(d + 1) of bidegree (1, d + 1)

Proposition 2 .Table 3 :

 23 For the DAGS modeling, the Macaulay matrix associated to the set of equations E(d) has sizeN rows × N cols = (n 0k 0) k 0 -c d+1 c d × (n 0 -Security Level q n 0 k 0 γ c k 0a 0c Matrix size Rank Time DAGS_1 (128) 2 5 52 DAGS original sets of parameters k 0 -1 + c + γ -1) k 0 -c d+1 c d+1 , but its rank is Rank(E(d)) = min N rows , k 0c d + 1 (n 0k 0)

Table 1 :

 1 Size of matrices on (SM) for a MinRank instance with K = 10 matrices of size m × n, for various r. n can be decreased by puncturing the matrices to get a speedup. The results have been verified experimentally on random instances.

	24]

Table 2 :

 2 Experimental size of matrices on SM for a MinRank with K = 12 matrices of size 12 × 12, for various r. It is possible to puncture the codes, by considering only n = κ + r columns of the matrices. We consider only systems for which SM solves at b = 1. The second row gives the size of a submatrix of blocks E(d) for some d that solves the problem faster.

	r κ	d	size	time	[24]
	4 8 0..4 9504 × 5940	5.6 s	58 s
		3..4 4032 × 3528	2.4 s	
	7 0..4 5544 × 3960	2.1 s	38 s
	6 0..4 3024 × 2520 0.74 s 21 s
		2..4 2232 × 2220 0.52 s	
	5 0..4 1512 × 1512 0.23 s 13 s
	5 7 0..5 11088 × 9504 11 s 756 s
		2..4 9660 × 9072	9.6 s	
	6 0..5 5544 × 5544	3.1 s 367s

Acknowledgements

This work has been supported by the French ANR project CBCRYPT (ANR-17-CE39-0007).

A Appendix

We want to reduce [START_REF] Bruns | Determinantal Rings, lncs[END_REF] to a MinRank problem [START_REF] Buss | The computational complexity of some problems of linear algebra[END_REF]. We start from [START_REF] Bruns | Determinantal Rings, lncs[END_REF]:

Using the fact that

Now we can use the relations (A⊗a)⋆(b⊗x) = (A⋆b)⊗(a⋆x), τ ⋆I = Diag(τ) and A ⊗ a = A(I ⊗ a) to simplify

We can now define Hi = H pub (I n 0 ⊗ e i ⊤) and H = H pub (I n 0 ⊗ 1 2 γ ⊤) and we get the system

We now simplify the products using the remark that H is the parity-check matrix corresponding to G = (I k 0 G): H = (G ⊤ I n 0 -k 0), and that Hi = (H i 0 n 0 -k 0) contains columns of zeros on the last n 0k 0 positions. This gives [START_REF] Buss | The computational complexity of some problems of linear algebra[END_REF].

[13] Casanova, A., Faugère, J., Macario-Rat, G., Patarin, J., Perret, L., Ryckeghem, J.:

GeMSS