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Learning Suction Cup Dynamics from Motion Capture:
Accurate Prediction of an Object’s Vertical Motion during Release

Menno Lubbers, Job van Voorst, Maarten Jongeneel∗, and Alessandro Saccon

Abstract— Suction grippers are the most common pick-and-
place end effectors used in industry. However, there is little
literature on creating and validating models to predict their
force interaction with objects in dynamic conditions. In this
paper, we study the interaction dynamics of an active vacuum
suction gripper during the vertical release of an object. Object
and suction cup motions are recorded using a motion capture
system. As the object’s mass is known and can be changed for
each experiment, a study of the object’s motion can lead to
an estimate of the interaction force generated by the suction
gripper. We show that, by learning this interaction force, it is
possible to accurately predict the object’s vertical motion as a
function of time. This result is the first step toward 3D motion
prediction when releasing an object from a suction gripper.

I. INTRODUCTION

Due to the ability to deal with objects of various shapes,
materials, and sizes, suction cups are common pick-and-
place end effectors used in industry. In recent years, due
to labor scarcity, ergonomic considerations, and booming of
e-commerce, the development of autonomous pick-and-place
solutions for (de)palletizing, order fulfillment/packaging, and
bin-to-belt/bin-to-bin applications is steadily growing. See,
e.g., [1] for a commercially available solution in ware-
housing. The robotics literature dealing with perception and
control of robots employing suction cups is correspondingly
growing, e.g., providing frameworks for order packing [2] or
selection of robust vacuum suction grasp targets starting from
point clouds [3], employing quasi-static spring modeling
assumptions. Suction cups have the potential to be used for
dexterous manipulation [4], aside from standard pick-and-
place, including the possibility to execute pushing, dragging
[2] or toppling motions [5]. Due to a partial vacuum, they
have the extra feature of allowing for bilateral contact: to pull
and not just push. Robotic tossing using suction cups is also
receiving increased attention. For suction cups, separating
recyclables into bins by tossing instead of placing is becom-
ing a common solution in automated urban waste sorting
facilities, using the combination of suctions grippers and
delta robots as, e.g., in [6], [7] or employing collaborative
robots [8]. Scientific literature about robotic tossing with
suction cups is starting to appear. In [9], it is reported that
pick-and-toss reduces the time of processing recyclable items
by 15,3% in comparison to traditional pick-and-place.
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Fig. 1: Snapshots of a slow motion recorded video during a typical vertical
dropping experiment. The object is a plastic plate, that provides a sealant
surface and four metal rods that are used to attach additional weights. The
whole sequence takes less than 150 ms.

Contribution. In this paper, we specifically look at the
release dynamics of an active vacuum suction cup. The
suction cup is provided with an active vacuum created by
a Venturi ejector. During the release, the ejector valve is
closed and compressed air is injected into the suction cup
via a separate channel to speed up the release. The motion
of the suction cup mounting point, suction cup lip, and
the object is measured using a motion capture system (360
Hz sampling rate, with sub-millimeter accuracy). We show
that, during the release, it is possible to accurately predict
the motion of the object over time, just knowing its mass,
position, and velocity at the moment of release. In particular,
the obtained force model is capable of reproducing, both
qualitatively and quantitatively, the quite rich acceleration
and velocity profile of the released object. To the best of the
authors’ knowledge, it is the first time that such a detailed
prediction is attempted and validated for an active suction
cup gripper during release.

Related literature. Despite the existing efforts, there is little
literature regarding creating model-based or data-driven
models to predict object-suction-cup interaction in dynamic
conditions. The majority of existing studies employ a quasi-
static assumption in modeling the suction cup dynamics.



For example, in [4], the authors employ a locally linear
force-deformation model that is fitted online starting from
a deformation-reaction force dataset, previously obtained
using a force-torque sensor. Given a measured wrench,
their approach allows computing an estimate of the suction
cup deformation, which is then used for manipulation
purposes. In [10], a quite detailed physics-based model of a
suction cup is provided. It is obtained by discretization of
a CAD drawing into a FEM mesh. It includes force-contact
complementary conditions to include contact and force
constraints and determines air tightness to impose the
pressure within the suction cup cavity. The model is that
of a passive vacuum suction cup (i.e., no pump or vacuum
ejector is considered), and without bellows. For the same
type of passive vacuum suction cup, [11] provides a detailed
study of gas and water leakage, which is of interest for
obtaining estimates of the suction cup’s failure time. In
[12], the authors study the problem of fast pick-and-place
systems with suction cups, where they only consider the
maximum forces that prevent suction cup detachment while
moving an object. More recently, [13] investigates fast
vertical picking, employing a linear visco-elastic model to
model the suction cup force during contact. Active-vacuum
suction cups in dynamic holding conditions are also studied
in [14] with the goal of improving energy efficiency in
handling processes. The paper considers the 1D dynamic
deformation behavior of vacuum grippers in interaction
with specific gripper-object combinations (metal objects
with concave/convex and flat/curved surfaces), imposing
a predetermined force-deformation stiffness model whose
parameters are then learned from quasi-static experiments.
A parametric position-dependent nonlinear damping model
is then tuned by means of pull-off experiments conducted
at different velocities.

Paper structure. Besides this introduction, this paper is
structured as follows. The description of the experimental
setup is provided in Section II. Section III provides the
mathematical formulation of the problem, together with a
fundamental assumption that allows to arrive at a simplified
force model. The simplified formulation is used in Section IV
to learn a model from data and to validate the approach. The
conclusion and recommendations for future work are given
in Section V.

II. EXPERIMENTAL SETUP

As illustrated in Figure 2, the experimental setup consists
of a 6-axis UR10 collaborative robot arm by Universal
Robots equipped with an industrial vacuum gripper produced
by the company Smart Robotics. The gripper is provided
with a piGRIP suction cup, produced by Piab. As shown in
Figure 3a, the suction cup consists of four main parts: the
mounting point, the bellows, the suction cup lip, and the
foam. The mounting connects the suction cup to the vacuum
gripper. The suction cup has three bellows, which allow it to
adapt in the cup’s longitudinal direction when a vacuum is
created inside the suction cup cavity to grab/hold an object.

OptiTrack
motion capture

system

UR10 
Manipulator

Vacuum gripper

Suction cup

Plastic plate

Fig. 2: Experimental setup. A motion capture system is employed to record
the motion of the vacuum gripper, suction cup, and test object during vertical
release. To replicate intended mounting conditions, the suction gripper is
mounted on a collaborative robot.

The suction cup ends with a plastic plate with soft foam to
ensure extra sealing and adaptability to objects of various
surface shapes.

The vacuum gripper has two functional modalities: it
can create an under-pressure or over-pressure. A vacuum is
created by a Venturi ejector which is fed by a compressed air
tank. Over-pressure is created by injecting the compressed air
from the tank into the suction cup, bypassing the ejector, to
speed up object release. We refer to this modality as blow-
off. A 3D printed plastic plate is used as a release object,
ensuring a sealant surface for the suction gripper. Four metal
rods attached to the plastic plate allow to fasten different
weights and change the total mass. An OptiTrack motion
capture system consisting of 6 infrared cameras (four Prime
17W and two Prime x22 cameras) surrounds the robotic
setup. This system tracks the vacuum gripper, suction cup
lip, and plastic plate, each containing six passive reflective
markers. In Motive, the software package of the motion
capture system, rigid bodies are defined using these sets of
markers that allows us to track the vacuum gripper, suction
cup lip, and the plastic plate by means of the distances a,
hsc, and h, respectively, as also depicted in Figure 3.

III. PROBLEM AND MATHEMATICAL FORMULATION

Problem formulation. Devise and validate an approach to
learn a force model for an active vacuum suction gripper
capable of predicting the motion for a series of objects of
known mass, as a function of the initial position and velocity
of the object at the release moment. The data available for
this task are the time series of the position of the mounting
point, suction cup lip, and objects during the release.

For the tossing object employed in this study, we assume
that the the aerodynamic drag force is negligible (free
falling), and we will confirm this in Section IV. From this
assumption follows that the vertical object motion satisfies

mḧ = −mg − fscup→obj + fair→obj, (1)

where m denotes the object mass (assumed to be directly
centered under the suction cup), h denotes the object height
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Fig. 3: Employed suction gripper. (a) Close-up of the vacuum gripper with bellows suction cup, showing the passive motion-capture markers; (b) Definition
of parameters; height of the suction cup mounting point a; height of the suction cup lip hsc; height of the top of the object h; and relative distance between
the top of the package and the suction cup mounting point z. Note that a = h+ z.

with respect to the fixed world, g = 9.81m/s2 is the
gravitational acceleration, fscup→obj is the mechanical force
applied by the suction cup lip on the object, fair→obj is the
force induced by the suction and blow-off of the suction
cup applied to the object. Note that when the suction cup is
no longer in physical contact with the object fscup→obj =
0. From basic physical considerations, the reaction force
fscup→obj is also applied in the opposite direction to the
suction cup. The suction cup is a continuum deformable
model, but taking a lumped parameter model as an approx-
imation and denoting by msc its equivalent moving mass,
the simplified lumped dynamics of the suction cup can be
written as

mscḧsc = −mscg + fstiff-damp + fscup→obj + fair→scup (2)

where hsc denotes the height of the suction cup lip as in Fig-
ure 3b, fstiff-damp the stiffness-and-damping force depending
on hsc and ḣsc, fscup→obj the mechanical reaction force of
the object applied to the suction cup lip, and fair→scup fluid
dynamics forces acting along the suction cup axis. At the
beginning of the release phase, the object is still attached to
the suction cup lip. This means we can state that h = hsc,
and thus summing up (1) and (2) leads to

mtotḧ = −mtotg + fstiff-damp + fair→scup + fair→obj, (3)

with mtot := m + msc. In an attempt to find a dynamical
model that describes the motion of the object during the
entire release phase, we observe that it is sufficient to
model the total force exerted by the suction cup and the
air, so fscup+air→obj := fair→obj − fscup→obj. From an abstract
perspective, we see that

fscup+air→obj =fscup+air→obj(stateobj, statescup, stateair,m), (4)

where stateobj represents the relative position and velocity of
the object with respect to the mounting point of the suction
cup, statescup the deformation and deformation velocity of
the suction cup, stateair is the state of the fluid (mass flow,

volumetric flow, pressure) within the suction cup and in a
suitable volume surrounding the suction cup lip and object
surface initially in contact with the suction cup lip. Outside
of this volume, the fluid is considered to be at rest. The
dependency of the total force fscup+air→obj on the object mass
m in (4), can be understood by rewriting (3) as

mḧ = −mg +
m

mtot
(fstiff-damp + fair→scup + fair→obj) ,

leading to

fscup+air→obj =
m

m+msc
(fstiff-damp + fair→scup + fair→obj)

during the first phase of the release. The task at hand
is to learn (4) from experimental data. From a practical
perspective, only an approximation of the suction cup state
(its elongation and its time derivative) and the object state
(position with respect to the suction cup mounting point
and/or suction cup lip) can be considered to be known.
Another straightforward quantity to measure is the instant
of time at which the release command is issued to the
gripper. The internal state of the air stateair is, hard, if not
impossible to estimate in real-time. For these reasons, we
make the following assumption and we will later show in
the experimental results that such an assumption has been
empirically verified.

Fundamental assumption. The state of the fluid stateair

and suction cup state1 statescup appearing in (4) are, during
release, explicit functions of the object state stateobj, and
time t, where t denotes the time elapsed from the moment
the object release command is issued.

1Side note. In lab conditions the suction cup lip position with respect
to the suction cup mounting point (and thus statescup) can be retrieved via
the motion capture system, and could thus be used as input for (5). In
industrial settings, however, assuming to measure statescup would require
the modification of the suction cup by including additional sensors, which
are currently not available. Using the suction lip state as input is also not
desired in terms of robustness, system complexity, and cost perspectives.



Fig. 4: Typical position, velocity, and acceleration profiles during release.
The figure shows both the suction cup lip as well as the package height
with respect to the ground. After detachment, the suction cup lip stabilizes
to a constant height while the object continues to fall freely.

Given this assumption, (4) can be simplified into

fscup+air→obj = fscup+air→obj(stateobj(t),m, t). (5)

The 1D dynamics (1) can therefore be written as

mḧ = −mg + fscup+air→obj(z, ż,m, t) (6)

where z denotes the relative position of the object with
respect to the mounting point of the suction cup, as shown in
Figure 3b. Defining the height of the suction cup mounting
point as a, we can rewrite (6) as (note that h = a− z)

−mz̈ = −mg + fscup+air→obj(z, ż,m, t)−mä. (7)

Note how mä appearing on the right-hand side of (7) is the
apparent force when writing the dynamics in the reference
frame of the mounting point, which is non-inertial if ä ̸= 0.
Using (7), an estimate of fscup+air→obj is obtained from motion
capture data, knowing the object mass. This force estimate is
then paired with the relative position z and velocity ż of the
object, the time elapsed since the triggering of the release
command t, and mass m. In the following section, we show
that a supervised learning approach can be used to predict
fscup+air→obj as function of (z, ż,m, t), allowing for accurate
position and velocity prediction.

IV. EMPIRICAL VALIDATION OF THE FUNDAMENTAL
ASSUMPTION, MODEL LEARNING, AND VALIDATION

Vertical release experiments are performed where the
experimental object is loaded with different weights. Specif-
ically, release experiments with m ∈ {160, 306, 452, 642,
714, 784, 974, 1181, 1581, 2187} grams are recorded. For
each value of m, 11 experiments are executed2.

2All recorded data is made publicly available through
the Impact Aware Robotics database, see https://
impact-aware-robotics-database.tue.nl/.

Typical position, velocity, and acceleration profiles of
both the test object and the suction cup lip for a single
experiment are shown in Figure 4. Release experiment
data is collected over a common time interval [0, T ],
where T is selected long enough to ensure the object is
in free fall towards the end of the interval. A noncausal
Savitzky-Golay filter [15], [16] is used to filter the noisy
position signal from the motion capture system and estimate
the velocity and acceleration after the experiments. In
the left plot of Figure 5, we provide the average object
height for all repeated experiments with the same mass.
The figure also provides average velocity and acceleration
estimates. For all experiments, at the moment of release
(t = 0), the object and gripper are at equilibrium, hence
(ż(0) = ȧ(0) = 0). Different weights lead to quite different
acceleration, velocity, and position profiles. Furthermore,
objects experience an oscillatory acceleration until the
object physically detaches from the suction cup (cf. also
Figure 1). Acceleration can then even change sign (the
object is being pulled, instead of being pushed by the
suction gripper) likely because a still persisting under
pressure within the suction cup will force surrounding air
to get suddenly inside the suction cup, generating a pulling
force on the object. This acceleration inversion lasts for
about 20 to 40 ms, after which the object experiences a
vanishing force interaction with the suction gripper, and its
motion is dominated by gravity. All objects tend to free
fall after about 100 ms from the release command, with a
constant acceleration, empirically confirming the assumption
that aerodynamic drag is negligible for these experiments.
The right plot of Figure 5 displays the average height a,
velocity ȧ, and acceleration ä of the suction cup mounting
point for different values of m. The plots show an apperent
acceleration of the mounting point during release as result
of the dynamic reaction forces at the level of the suction
cup. At rest, the suction cup elongation z is a function
of mass, as shown in Figure 6. The plot shows the 11
measurements, the average values, and a ±3σ band. As a
general trend, the heavier the attached object, the larger the
suction cup elongation becomes.

Learning the force model. The availability of the signals z,
ż, z̈, and ä, allow to estimate fscup+air→obj appearing in (7)
for each instant of time and setting up a supervised learning
problem, with z, ż, m, and t as input and fscup+air→obj as
expected output. Assuming, without loss of generality, that
mä(t) is negligible when compared to gravity and suction-
cup induced forces, the solution to (7) can be abstractly
written as

(z(t), ż(t)) = ϕ(t, t0, z0, ż0;m) (8)

with ϕ denoting the flow map of the ODE and where
z0 := z(t0) and ż0 := ż(t0). We can further assume that
t0 = 0, as we are interested in simulating the system from
the moment of release, when the ejector valve is closed
and simultaneously air is injected creating a blow-off. From
assumption (5) and the continuity of the solutions of (7) with



Fig. 5: Position h, velocity ḣ, and acceleration ḧ of the object (left) and position a, velocity ȧ, and acceleration ä of the mounting point (right).

respect to variations of initial conditions and parameters, one
expects that each trajectory (z(t), ż(t),m, t) ∈ R4, t ∈ [0, T ]
corresponding to a different initial condition and parameter
value (z0, ż0,m0). would remain separated from the others
in the 4-dimensional space.

Visually verifying the lack of self intersection in a 4-
dimensional space is not possible, but we have discovered
that such a lack of self intersection is actually visible in a
3-dimensional space, provided a suitable mapping is used. In
particular, the mapping R4 ∋ (z, ż, t,m) 7→ (mz,mż, t) ∈
R3 is such a mapping as can be seen in Figure 7a. A priori,
there is no reason to expect that the trajectories in the 4-
dimensional space should not intersect when looking at a
submersion into a 3-dimensional space. However, a lack of
intersection in the submersed space actually implies lack of
intersection in the original four-dimensional space, due to
the invertibility of the continuous mapping when restricted
to its image. The lack of intersections in the (mz,mż, t)
space also suggests that it is possible to then learn the force
model f using the reduced coordinates (mz,mż, t) in place
of (z, ż,m, t) and thus assume that

fscup+air→obj = fscup+air→obj(mz,mż, t). (9)

In the following, we show that by employing this reduced
set of coordinates, we can indeed learn a force model that
reproduces accurately the measured object position, veloc-
ities, and accelerations even for a test mass that was not
included in the training data. The training-validation split is
such that data pertaining to one specific object mass is used
to validate, while the rest is used to train the force model.
Having obtained a force model, its efficacy is evaluated by
using it in simulation for the validation mass and comparing
the predicted trajectory with the measured one. This is then
done for all masses. This is referred to a cross-validation.

It is worthwhile to note that learning the force model
using other reduced parameterizations might lead to poor
results. For example, the coordinates (z, ż, t) ∈ R3, that
were initially considered, do not produce valuable results.
The trajectories in this 3-dimensional space, as illustrated
in Figure 7b, actually twist and intersect in a region of
the space, preventing to learn a single-valued force function
using these coordinates as inputs. An additional problem is
that at time t = 0, the trajectories of the various experiments

TABLE I: Table with LWPR algorithm settings.

Parameter Value Parameter Value
kernel Gaussian init D 560
norm in [0.257, 2.585, 0.139] diag only 0
init alpha 250 w gen 0.2
meta 1

for different m actually overlap, as can also be observed from
Figure 6. What is problematic in this set of coordinates is,
in particular, that there is no dependence on the object mass,
while such a dependence is to be expected as we detailed in
Section III.

To learn the force model, we have employed the Locally
Weighted Projection Regression (LWPR) incremental learn-
ing approach [17] and employed the freely available imple-
mentation [18]. LWPR is a machine learning approach for
nonlinear function approximation that learns incrementally
in (potentially) high-dimensional spaces. This method was
used because it is a well established method, and because in
the future we will use it on a highly dimensional input space
corresponding to the full 6D dynamics. Consider Figure 8.
The figure shows that by employing LWPR to learn the
function fscup+air→obj(mz,mż, t) from experimental data, we
obtain quite accurate predictions of the motion of the object
during release, for an experiment that was not included in
the training set. More specifically, for each value of m, a
force model is learned using the experiments with a different
mass and then a simulation is performed by integrating (7)
using m, the average acceleration ä(t), and the average initial
condition z(0) and ż(0) from the experiments related to that
value of m. Not surprising, the predictions are poorer for
the edge cases (m = 2187g, but especially for m = 160g)
as they correspond to extrapolation rather than interpolation.
Excluding these edge cases, the maximum absolute error of
the predicted trajectory from the average motion obtained
from the experiments is of 2.14mm for the position, 0.09m/s
for the velocity, and 2.65m/s2 for the acceleration, respec-
tively. The root-mean-square error, again excluding the edge
cases, is 0.75mm, 0.023m/s, and 0.381m/s2, respectively. For
completeness, the LWPR algorithm settings that were used
for training are given in Table I3.

3The code that is used to obtain the results, is made publicly avail-
able through https://gitlab.tue.nl/robotics-lab-public/
learning-1d-suction-cup-dynamics



Fig. 6: Suction cup rest length versus object weight. The blue line denotes
the average and the red curve the ±3σ band.

V. CONCLUSION AND FUTURE WORK

In this paper, we have considered the vertical motion
of objects of known mass released from an active vacuum
suction gripper. The motion of the objects and the suction cup
mounting point are recorded via a motion capture system.
A supervised learning approach is proposed that shows
remarkable prediction capabilities when evaluated on a test
set, despite not having any direct information about the
suction cup state. Learning the force model can be cast as a
function approximation problem in a three-dimensional space
(mass-scaled relative position and velocity and elapsed time)
instead of a four-dimensional space (relative position, relative
velocity, mass, and elapsed time). This allows for visual
inspection of the measurement data for assessing, e.g., its
regularity. However, selecting a suitable 3-dimensional em-
bedding is crucial, as the embedding using relative position,
relative velocity, and elapsed time, as initially chosen, leads
to poor predictions. The generalization and validation of the
approach for planar and full spatial motions are left for future
work. The extension to learning a multi-dimensional force-
torque model, likely requires the use of the relative position,
orientation, linear and angular velocity, and the object’s
inertia tensor as input. This problem setting is significantly
more complex. However, achieving an accurate prediction
of the 1D force shows that the assumption of (5) is valid,
giving good hope that the same approach can be used in the
6D case. Obtaining an accurate prediction of the 6D object
motion during release from a suction gripper is useful for
motion planning for robotic tossing, either on surfaces such
as conveyor belts or into boxes and totes. Another direction
for future research is the investigation of force models for
objects with different surface sealing. We expect that, via a
pressure sensor, sealing conditions can be identified before
release, acting as a prior in selecting the correct learned
model. In this work, considering the generalization to the
6D case, the LWPR method is selected because it showed
excellent performance in learning the flying dynamics of
rigid-bodies from motion capture data [19]. Also in the
context of this paper its performance is excellent. However,
the hyperparameters should be systematically tuned over a
validation set. Likewise, a comparison with other learning
methods should be made.

(a)

(b)

Fig. 7: The average measured trajectories visualized in (a) the (mz,mż, t)
space and (b) the (z, ż, t) space. Curves in using the second parametrization
twist and intersect in the middle of the time interval, hindering the learning
of a force model using these coordinates.
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Fig. 8: Predicted vs measured object height, velocity, and acceleration for a selection of object weights. Average measured object trajectories are plotted in
blue, with 3σ intervals shown in red. The model prediction is shown in black. Edge cases (a) and (i) are not expected to be accurate, as they correspond
to extrapolation of the experimental data.
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“Modeling of vacuum grippers for the design of energy efficient
vacuum-based handling processes,” Production Engineering, vol. 14,
no. 5-6, pp. 545–554, 2020.

[15] A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of
Data by Simplified Least Squares Procedures,” Analytical Chemistry,
vol. 36, no. 8, p. 1627–39, 1964.

[16] R. W. Schafer, “What Is a Savitzky-Golay Filter?” IEEE Signal
Processing Magazine, vol. 28, no. 4, pp. 111–117, 2011.

[17] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental Online
Learning in High Dimensions,” Neural computation, vol. 17, pp. 2602–
34, Jan. 2006.

[18] “Locally Weighted Projection Regression,” https://web.inf.ed.ac.uk/
slmc/research/software/lwpr, University of Edinburgh, 2019, [Online;
accessed 29-Jun-2022].

[19] S. Kim and A. Billard, “Estimating the non-linear dynamics of
free-flying objects,” Robotics and Autonomous Systems, vol. 60, p.
1108–1122, Sept. 2012.


