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ABSTRACT: Rainfall-induced landsliding is a global and systemic hazard that is likely to increase with the projections of
increased frequency of extreme precipitation with current climate change. However, our ability to understand and mitigate
landslide risk is strongly limited by the availability of relevant rainfall measurements in many landslide prone areas. In the
last decade, global satellite multisensor precipitation products (SMPP) have been proposed as a solution, but very few stud-
ies have assessed their ability to adequately characterize rainfall events triggering landsliding. Here, we address this issue
by testing the rainfall pattern retrieved by two SMPPs (IMERG and GSMaP) and one hybrid product [Multi-Source
Weighted-Ensemble Precipitation (MSWEP)] against a large, global database of 20 comprehensive landslide inventories
associated with well-identified storm events. We found that, after converting total rainfall amounts to an anomaly relative
to the 10-yr return rainfall R*, the three products do retrieve the largest anomaly (of the last 20 years) during the major
landslide event for many cases. However, the degree of spatial collocation of R* and landsliding varies from case to case
and across products, and we often retrieved R* . 1 in years without reported landsliding. In addition, the few (four) land-
slide events caused by short and localized storms are most often undetected. We also show that, in at least five cases, the
SMPP’s spatial pattern of rainfall anomaly matches landsliding less well than does ground-based radar rainfall pattern or
lightning maps, underlining the limited accuracy of the SMPPs. We conclude on some potential avenues to improve
SMPPs’ retrieval and their relation to landsliding.

SIGNIFICANCE STATEMENT: Rainfall-induced landsliding is a global hazard that is expected to increase as a re-
sult of anthropogenic climate change. Our ability to understand and mitigate this hazard is strongly limited by the lack
of rainfall measurements in mountainous areas. Here, we perform the first global assessment of the potential of three
high-resolution precipitation datasets, derived from satellite observations, to capture the rainfall characteristics of
20 storms that led to widespread landsliding. We find that, accounting for past extreme rainfall statistics (i.e., the rainfall
returning every 10 years), most storms causing landslides are retrieved by the datasets. However, the shortest storms
(i.e., ∼3 h) are often undetected, and the detailed spatial pattern of extreme rainfall often appears to be distorted. Our
work opens new ways to study global landslide hazard but also warns against overinterpreting rainfall derived from
satellites.

KEYWORDS: Extreme events; Satellite observations; Anomalies; Atmosphere–land interaction

1. Introduction

Landsliding, broadly referring to any downslope movement
of soil and rock masses, is a global hazard causing thousands
of fatalities every year (Petley 2012; Froude and Petley 2018)
and substantial economic losses. Together with shallow earth-
quakes, rainfall (intense and/or prolonged; i.e., intensity vs
amounts) is the main trigger of landsliding, mainly by increas-
ing slope pore-water pressures and reducing resistance of the
soil or rock masses (Wilson and Wieczorek 1995; van Asch
et al. 1999; Iverson 2000). Thus, although rainfall is often
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required for triggering the failure, its size, location, and timing
will substantially depend on various parameters such as sur-
face and subsurface slope geometry, material strength, and
hydrological properties such as porosity and permeability
(Terzaghi 1943; Iverson 2000).

Fine-scale variations of hydromechanical properties of rock
mass are a strong control on landslide initiation but remain
hard to constrain. This degrades the prediction of mechanistic
models for rainfall-induced landsliding over regional scales
(Rosso et al. 2006; Baum et al. 2010; von Ruette et al. 2014),
and limits the development of landslide hazard forecasting, in
contrast to other hydrometeorological hazards, such as floods
(e.g., Han and Coulibaly 2017; Wu et al. 2020). Most empirical
approaches have focused on developing meteorological
thresholds (e.g., rainfall intensity–duration) for quantifying
landslide occurrences (e.g., Caine 1980; Guzzetti et al. 2008).
More recently, two new approaches have emerged. The first
one aims at developing hydrometeorological thresholds (Bogaard
and Greco 2018), more in line with hydrological and mechanistic
considerations on landslide triggering (Mirus et al. 2018; Thomas
et al. 2018). The second approach, which focuses on relating
changes in landslide density with rainfall magnitude beyond the
threshold, relies on the generation of large landslide inventories
(Chen et al. 2013; Saito et al. 2014; Marc et al. 2018, 2019). Im-
portantly, such approaches based on landslide populations, and
not on individual landslides, require rainfall information at the
catchment scale (∼100 km2) rather than at the hillslope scale
(∼0.1 km2). Still, for most of these studies, limitations on
rainfall and/or landslide data availability are key issues.

The proliferation of medium to high resolution (,15 m)
satellite imagery (both multispectral and radar) allows research-
ers to detect, map and monitor landslides triggered by rainfall
events in more and more settings (Marc et al. 2018; Amatya
et al. 2021; Emberson et al. 2022). However, extensive in situ
gauge networks (or ground-based weather radar) are lacking in
most landslide-prone areas (e.g., central and Southeast Asia,
Central and South America, and central Africa). Thus, for the
last decade rainfall data retrieved from satellite constellation
measurements have been considered as a potential alternative
to study and potentially nowcast landslide hazard globally
(Hong et al. 2007; Kirschbaum et al. 2009; Farahmand and
AghaKouchak 2013). This approach has recently culminated
into an automatic hazard awareness system, based on daily
and antecedent (7 days) rainfall derived from satellite multi-
sensor precipitation products (SMPP) and susceptibility maps
derived from global maps of land cover, slope and distance to
roads and faults (Kirschbaum et al. 2015; Kirschbaum and
Stanley 2018; Stanley et al. 2021). The key advantages of
SMPP are their global coverage, and their fair spatial and
temporal resolution (typically 1 h and 0.18). Still, many issues
with the retrieved precipitation properties have been ob-
served, including (i) difficulty in capturing orographic rainfall
(AghaKouchak et al. 2011; Shige et al. 2013; Yamamoto et al.
2017), (ii) difficulty in retrieving short duration and/or very
intense rainfall (Mehran and AghaKouchak 2014) or rainfall
over terrain transition (e.g., coastal areas; Tan et al. 2018;
You et al. 2020a), and (iii) generally increasing uncertainties

and bias in between microwave sensor overpass (e.g., Tan et al.
2016) leading to a misrepresentation of the precipitation fea-
tures (e.g., size, shape, and orientation) affecting the location
and timing of the peak rainfall rates (Guilloteau et al. 2021).

Currently, very few studies have quantitatively tested the
ability of these products to retrieve and map extreme rainfall
leading to widespread landsliding. In Italy, several SMPPs
have been tested to derive rainfall thresholds for landslide
and debris flow triggering (Nikolopoulos et al. 2017; Rossi
et al. 2017; Brunetti et al. 2018). Overall SMPPs could resolve
thresholds, but they were often significantly lower than
thresholds estimated from in situ gauging stations and with
less discrimination power. Similarly, combining SMPP and
soil moisture estimates retrieved from satellite information
in California, thresholds for landslide occurrence produced
more false alarms than thresholds derived from ground obser-
vations (Thomas et al. 2019). Very recently, the spatial pat-
tern of landslides triggered by two storm events in Japan (in
2017 and 2018) was compared with the rainfall pattern re-
trieved by the Integrated Multi-satellitE Retrievals for GPM
(IMERG) product, the ERA5 reanalysis, and ground-based
radar observations (Ozturk et al. 2021). In contrast to the
ground-based radar observations, neither the reanalysis nor
the satellite product estimated higher rainfall amount over
the landslide areas than in the surrounding (stable) hillslopes.

Beyond these few case studies, a global assessment of
SMPP to retrieve the properties of rainfall patterns leading to
widespread landsliding is still missing. Through the use of
ground radar, it was recently shown that the rainfall anomaly
(i.e., the ratio between event rainfall and past extreme events)
better predicts the spatial distribution of landslides caused by
a typhoon in Japan than the absolute amount of rainfall
(Marc et al. 2019). The superior ability of rainfall anomaly as
an indicator of landsliding may arise from the coevolution of
the landscape hydromechanical properties with the extreme
climatology (Marc et al. 2019). Additionally, using rainfall
anomaly may help to remove systematic errors in mean rainfall
retrieval from the SMPPs. Assuming that rainfall anomaly is a
valid predictor of landsliding globally, for SMPP to be relevant
for landslide hazard alerts, they must retrieve a substantial
rainfall anomaly that is spatially collocated with the zone of
rainfall-induced landsliding. As the occurrence of widespread
landsliding is relatively infrequent, large anomalies retrieved
by the SMPPs should also be rare to avoid false alarms.

Here, we focused on 20 storm events for which widespread
landsliding has been mapped, to test these two abilities for two
high-spatial-resolution (0.18), long-standing SMPPs [IMERG
and Global Satellite Mapping of Precipitation (GSMaP)] and
one hybrid product combining model reanalysis and SMPPs
[Multi-Source Weighted-Ensemble Precipitation (MSWEP)].

2. Data and methods

a. Landslide event inventories

To assess the capability of SMPPs globally, we have tried to
gather a large number of landslide inventories spanning a
broad range of lithological and climatic settings (Table 1;
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Fig. S1 in the online supplemental material), but other events
may have been missed or published after we performed data
extraction and analysis (e.g., Coe et al. 2014; Prancevic et al.
2020; Emberson et al. 2022). Most of the rainfall landslide
event inventories used in this study (see Table 1) are de-
scribed in previous compilations by Marc et al. (2018) and by
Emberson et al. (2022). In addition, we consider the following
landslide events with published inventories: Messina 2009 in
Italy (Ardizzone et al. 2012), Hiroshima 2014 in Japan (Wang
et al. 2015), and Mocoa 2017 in Colombia (Garcı́a-Delgado
et al. 2019). In all of these cases, the boundary of cloud free
imagery extends far beyond the extent of mapped landsliding,
suggesting the whole footprint of the landslide event is cap-
tured and should reflect a change in rainfall amount [when
not limited by availability of steep (.108–158) hillslopes
(Meunier et al. 2007; Lin et al. 2008; Marc et al. 2019)]. In ad-
dition, with standard mapping methods (see Stumpf et al.
2014; Marc et al. 2018), we mapped landslides associated with
intense rainfall in Japan 2004 (Kondo et al. 2004), Myanmar
2015 (Mondini 2017), and Haiti 2016 (see the online
supplemental material).

An important aspect is that the landslides themselves usually
have dimensions of 10–100 m and that their exact locations de-
pend on properties varying at fine spatial scale. Thus, we aim
to compare the location and dimension of the area where in-
tense landsliding occurred, spanning from ∼50 to .10000 km2

(Table 1), and where rainfall anomaly was retrieved by the
rainfall product with a 0.18 resolution (∼100 km2). To ensure
the detection of potentially spatially mislocated anomalies
we always extracted rainfall time series over study areas
that are substantially broader than the landslide event area
(Table 1).

For Micronesia and Dominica, landsliding was dense across
the islands, which represents only a few pixels of the rainfall
products, and most surrounding pixels were offshore and
therefore do not allow us to constrain false positives (i.e.,
strong anomalies without landsliding). As a result, the inter-
pretation and discussion of the spatial pattern of the anomaly
relative to the landslides is more limited.

b. SMPPs

Here, we used three SMPPs available from 2000 to the present
and with the following spatiotemporal resolution: (i) NASA’s
0.18/30-min IMERG (Huffman et al. 2019), (ii) JAXA’s 0.18/1-h
GSMaP (Kubota et al. 2020), and (iii) the 0.18/3-h MSWEP
(Beck et al. 2017), which we describe briefly below.

The IMERG and GSMaP multisatellite precipitation esti-
mates are based on a combination of the thermal infrared
(IR) observations from geostationary satellites and the pas-
sive microwave (PMW) observations from all the available
satellites from the GPM constellation, either imagers or
sounders. Additionally, in situ observations from the Global
Telecommunication System (GTS) or other gauged-based
precipitation products [e.g., Climate Prediction Center (CPC)
and GPCC], are used to readjust (a posteriori calibration ap-
proach) the satellite precipitation estimates. Although IMERG

and GSMaP ingest similar raw data, they differ in their retrieval
algorithm.

The V06B IMERG algorithm considers the PMW rainfall
retrievals from the Goddard Profiling Algorithm, version
2017 (GPROF2017; Kummerow et al. 2015; Kidd et al. 2015),
and the Precipitation Retrieval and Profiling Scheme, version
2019 (PRPS2019; Kidd et al. 2021a). The PMW rainfall re-
trievals are then combined and intercalibrated with three
prior multisatellite algorithms, the TRMM Multisatellite Pre-
cipitation Analysis (TMPA; Huffman et al. 2007, 2010), the
CPC Morphing–Kalman filter Lagrangian time interpolation
scheme (CMORPH-KF; Joyce et al. 2004, 2011), and the Pre-
cipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks–Cloud Classification System
recalibration scheme (PERSIANN-CCS; Hong et al. 2004).
Moreover, V06B, incorporates several other major improve-
ments to the algorithm, including, for instance, a homogenous
GPM-TRMM calibration, a new model-based morphing scheme
and refinements of the Kalman filtering and the quality index.
IMERG precipitation estimates are available as two near-real-
time outputs (the early and late runs), for which the calibration
consists of climatological gauge adjustments (using GPCP), and
a post-real-time output (final run–multisatellite precipitation
estimate with gauge calibration) that considers monthly gauge
analyses for the adjustments.

The V6 GSMaP algorithm utilizes distinct approaches for
retrieving the precipitation over land and ocean surfaces, and
when orographic rainfall is expected. The retrieval is per-
formed differently depending on the radiometer type through
the successive application of three algorithms: the Microwave
Imager/Sounder Algorithm (GSMaP_MWIS; Kubota et al.
2007; Aonashi et al. 2009), for calculating the rainfall rate
from PMW platforms; the MW-IR Merged Algorithm
(GSMaP_MVK; Ushio et al. 2009) using the morphing
Kalman filtering approach to better constrain the affected
areas and their rainfall rate; and the Gauge-calibrated
rainfall algorithm (GSMaP_Gauge; Mega et al. 2019), by adjust-
ing the GSMaP_MVK estimates with the NOAA’s global gauge
analysis (CPC Unified Gauge-Based Analysis of Global Daily
Precipitation). The GSMaP rainfall estimates are available at
three levels, namely, real-time, near-real-time, and standard
products (GSMaP_MVK and GSMaP_Gauge).

In contrast to IMERG and GSMaP, the MSWEP V2 pre-
cipitation estimates are the result of a combination between
the gridded precipitation data from satellite estimates, climate
model reanalyzes and various global gauge networks (see the
list of products in Beck et al. 2017). The methodology under-
lying MSWEP involves multiple and sequential approaches to
take advantage of each of those distinct products to compute
the optimal merging of precipitation estimates. In general, it
considers distribution and systematic bias corrections, globally
and regionally by utilizing daily precipitation observations.
Note that MSWEP is not in strict terms an SMPP because it
blends satellite measurements with model reanalyzes and rain
gauge measurements. Thus, its inclusion aims to assess the
pros and cons of GSMaP and IMERG, which have the poten-
tial to produce nowcast and hazard alerts for heavy rainfall
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and landsliding in the coming years (Otsuka et al. 2016; Kotsuki
et al. 2019).

Therefore, in our investigation, we have extracted rainfall
estimate time series from IMERG Final Calibrated V06B,
GSMaP Gauge V6, and MSWEP V2, in regions surrounding
each considered landslide event (Table 1). This covers the
period from mid-2000 to the end of 2019 for GSMaP and
IMERG, but for MSWEP we could only access data until
November 2017, which prevented us from studying the four
most recent events with this product (Table 1). Given the
variable start date of each product, we also discarded the re-
cord of each product before 1 January 2001.

c. Estimation of rainfall anomaly from SMPP

To assess the relevance of the satellite rainfall products to
understand landslide events we propose to use the rainfall
anomaly metrics of Marc et al. (2019). The authors found that
the spatial distribution of landslides caused by a large typhoon
mismatched with the spatial pattern of total rainfall during
the typhoon Rt but agreed with the one of rainfall anomaly
R*, defined as

R* � Rt=R10, (1)

with R10 being the 10-yr return rainfall. The anomaly is de-
fined at each grid cell and over any time scale relevant to
landsliding; for example, 3, 12, 48, and 96 h for which both Rt
and R10 are computed in this study (Fig. 1). Because it is
based on a ratio, the anomaly metric may also remove

potential bias of underestimation or overestimation of rainfall
in some areas, as long as within a single pixel this bias is sys-
tematic through time and thus affects both Rt and R10. Still,
some bias is likely to remain as the accuracy of SMPPs’ re-
trieval (especially in rugged terrain or during heavy storms)
varies through time, both over yearly and decadal time scales
because the satellite constellation has changed, and at the
event scale, depending on satellite radar overpasses.

To compute the rainfall anomaly, we first computed R10
for all study areas using the metastatistical extreme value dis-
tribution (MEV; Zorzetto et al. 2016). We calculated a time
series of mean rainfall rates at a given time scale, excluding every
time step where the mean rain rate was below 0.02 mm h21

[∼0.5 mm day21, which is typically in the range of thresholds
used to consider dry days (0.1–1 mm day21; Reiser and Kutiel
2009)] and applied the probability weighted moment method
to fit a Weibull (a stretched exponential) distribution to the
remaining data of each annual block. Then we derived the
MEV cumulative distribution function, as an average of
the sample constituted by all the annual Weibull distribu-
tions, from which we extracted the 10-yr return rainfall. This
method using the whole rainfall dataset is expected to be
more robust than fitting a general extreme value (GEV) dis-
tribution on the annual maxima (Zorzetto et al. 2016; Marra
et al. 2018, 2020). For reference, we have also computed R10
through a maximum likelihood fit of a GEV distribution to
the empirical distribution of annual maxima (Saito andMatsuyama
2012, 2015; Marc et al. 2019). This approach yielded R10 maps
with similar spatial pattern but with increased magnitude over
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FIG. 1. (left) Maximal total rainfall (Rt; mm), (left center) rainfall anomaly (R* = Rt/R10), and (right center) 10-yr return rainfall
(R10; mm) obtained (a)–(c) from GSMaP at 12-h time scale during Z19 and (e)–(g) from IMERG at the 48-h time scale during
M15. Also shown for context are (d),(h) elevation maps of the respective regions containing the study area (in blue). Black dots are
landslide centroids, shaded areas are relatively flat terrain where landsliding is unlikely, and white solid and dashed lines in
(b) and (e) are the anomaly contour for R* = 1.2 and 1, respectively. Note that the sharp, linear boundaries of the landslide inven-
tory in (e)–(g) are defined by the footprint of the two Sentinel-2 images that were used for the mapping and that there is evidence
of some landsliding occurring beyond these boundaries (see the online supplemental material). Note how the difference in patterns
between Rt and R* is related to the existence of strong spatial gradients in R10.
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some zones, typically by 20–100%. Thus, this approach would
somewhat decrease the reported anomalies but not change
their locations nor our conclusions.

Having mapped R10 over the areas of interest, we compute
the maximum total rainfall that occurred over the considered
time scales (3–96 h) within a period of 5–15 days containing
the storm-induced landsliding event (see Table 1; Fig. 1), as
well as within each annual block of the time series. Thus, we
estimate the rainfall anomaly both during the event, and for
every year of record. This allows us to assess whether a given
product did or did not retrieve a strong anomaly associated
with large landslide events. It also importantly allows us to as-
sess whether they have recorded rainfall event larger than
R10 in the study area (i.e., anomalies with R* . 1) during
other time periods (Fig. 2). Note that, if the maximum rainfall
rate of the annual block in which the event occurred is outside
of the event time window, then the event and annual anomaly
will be different.

The four time scales over which both the event and annual
anomalies were computed should allow us to capture both
landslide events driven by short intense bursts of rainfall and
by more prolonged rainfall (see Table 1, along with Fig. S2 in
the online supplemental material). We did not use time scales
shorter than 3 h because it would exclude the MSWEP prod-
uct and because the reliability of such short-term measure-
ment on small areas is debated (Guilloteau et al. 2016).

d. Categorizing the accuracy of SMPPs for each event

For each landslide event, we aim to categorize the spatial
and temporal accuracy of indicators derived from the SMPPs.

Given that the link between landslides and rainfall is not
straightforward, fully parameterized extraction and compari-
son of “rainfall objects” (see Davis et al. 2006) defined based
on R* and landslide density may artificially degrade this link
or require too many parameters to be adjusted. These chal-
lenges would remain with approaches based on spatial averag-
ing (see Roberts and Lean 2008). However, our objective is
not (yet) to develop a specific method to routinely compare
landslides and retrieved rainfall, but only to understand in
which settings SMPPs retrieve spatial rainfall patterns consis-
tent with the associated landsliding, if at all. By focusing on a
few specific cases, one could follow the approach of Ozturk
et al. (2021), comparing an empirical model based on static
layer only (e.g., slope or geology) with one based on the same
static layers complemented with a rainfall map. However,
given the number of studied events (20), the number of rain-
fall anomaly time scales (4) and the number or years evalu-
ated (.15), such an approach would have been impractical
and excessive given our goals. Thus, as a preliminary ap-
proach for our dataset, we manually inspected each event and
evaluated the qualitative agreement of the retrieved anomaly
and landslide pattern, through space and time.

To assess the spatial accuracy of the rainfall product quali-
tatively, we focus on the overlap between significant rainfall
anomalies (i.e., R* . 1) and the area of intense landsliding
(i.e., ignoring isolated landslides) (Fig. 1). When the overlap-
ping area is similar or larger than the mutually exclusive areas
(excluding flat and submerged area with R* . 1), the spatial
accuracy is deemed good (Figs. 1b, 2e, and 5d–f and Fig. S7 in
the online supplemental material). If the rainfall anomaly
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contains the landslide area but extends much beyond, it is
ranked as fair (Figs. 2a,b,f). If the rainfall anomaly is offset
from the landsliding area but within a range smaller or similar
to the dimensions of the landslide event (taken as the small
axis of an ellipse containing most of the landslide) it is also
deemed fair (Fig. 1e). Finally, when the rainfall anomaly is
farther away but still in the study area, it is considered poor
(Figs. 2i,j).

The temporal accuracy is based on the intensity of the
anomaly within the boundary of the landslide event during
the event relative to other annual maxima, since in most areas
we have no other substantial landslide events reported over
the period (Fig. 2). If the rainfall anomaly was the largest dur-
ing the last 20 years, the temporal accuracy is the best possi-
ble, and false alarms are unlikely. If the rainfall anomaly was
ranked second or third, accuracy is fair and false alarms
should be rare, while if the anomaly has a lower rank the ac-
curacy is poor and false alarms are likely (Fig. 3). Note that
for J04, D17, and TW8, given the affected areas overlap with
the larger storms and landslide events that occurred in 2011,
2015, and 2009, respectively (see Table 1 for details and codes
for each event), the temporal accuracy is best when the anom-
aly is ranked second behind these events. In the discussion,
we will also address the possibility that another large anomaly
retrieved by the SMPP could correspond to other landslide
events reported in the literature (especially in Taiwan and Japan)
or to landslide events unreported.

When the anomaly at all time scales remains weak (R* , 1)
during the event, it is considered undetected by the rainfall
product. Given that landslides can be triggered by either short-
or long-duration rainfall, for each event we record the time scales
yielding the best spatial and temporal accuracies (Figs. S3–S13 in
the online supplemental material) and will focus on these time
scales in the following results and discussion.

3. Results

In 16 of 20 cases, at least two products have detected a sub-
stantial anomaly (R* . 1) over at least one time scale during
the events triggering landsliding (Fig. 3). However, we note
that the rainfall products have fairly diverse spatial and tem-
poral accuracies, even though they used the same satellite
constellation as a primary source of data. Below, we briefly
detail this diversity of performance by reviewing each case.
Note that except for MSWEP for J11, the 96-h time scale
never performs better than shorter time scales (Fig. 3c), and
thus will not be described in detail.

a. Case-by-case anomaly patterns and accuracy

For some events, all products retrieved similar anomaly pat-
terns, such as MI2, and D15 where all products retrieved
R* . 1.5–2 all over the impacted island (Micronesia or Domi-
nica) at 48 and 12 h, respectively. Similarly, for B11 at 12–48 h
and TW9 at 48 h, all products retrieved an anomaly in or near
the landsliding area of R* ∼ 1.4 and R* ∼ 1.5–2, respectively. For
these four cases the event anomalies were the largest in the area
for 20 years. For M15, all products also retrieved R* ∼ 1.2–1.4 at
48 h, on the southern edge of the landslide area (Fig. 1) but the
temporal accuracy varied, as the event anomaly was ranked first,
third, and beyond sixth for MSWEP, GSMaP, and IMERG,
respectively. For J04, all products retrieved an anomaly
(R* ∼ 1–1.5) over the landslide area and ranked it as the largest
in the northeastern part of the Kii Peninsula for the last
20 years. However, MSWEP and IMERG had the anomaly
spreading over a much larger area than the one experiencing
landsliding, and the time scales with the strongest anomaly
varied from 3 to 48 h for the three products (Fig. 3). For
P18, both GSMaP and IMERG retrieved R* ∼ 1.2 at 12 h on
the eastern edge of the landslide zone, but none retrieved
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this anomaly as the strongest of the time series. Similarly, for
J18, both GSMaP and IMERG retrieved R* ∼ 1.2–1.4 at
48 and 12 h, respectively, on the eastern edge of the landslide
zone but found a stronger anomaly to have occurred in
October 2017.

Other landslide events are not retrieved in terms of rainfall
anomalies. For H16, MSWEP retrieved R* . 1.4 over the
whole peninsula at 12–48 h, GSMaP found R* ∼ 1–1.2 at 48 h,
localized at the peninsula’s tip, and IMERG found a localized
anomaly of R* ∼ 0.9–1 for 10–20 km east of the landslide
event area. For J11 at 48 h, GSMaP and IMERG found
R* ∼ 1 and R* . 1–1.4 in the landslide event area and ranked
first and third annual anomaly of the time series, respectively.
MSWEP yield similar results but only at 96 h. J14 was not
detected by MSWEP, but both GSMaP and IMERG found
an anomaly (R* ∼ 1) at the 3 h time scales, next to the landslide
area but with many false alarms (larger anomalies) recorded for
other years. We note that the anomaly is a bit stronger at 2 h,
which makes sense given the intense rainfall was just limited to
2 h (Wang et al. 2015). For J17, MSWEP did not detect any
anomaly, and GSMaP and IMERG detected a localized
R* ∼ 1–1.2 overlapping with or 10 km eastward, respectively, of
the landslide event. For TW8, MSWEP did not retrieve a signif-
icant anomaly, while IMERG found R* ∼ 1–1.2 at 12 h mostly
collocating with the landslide clusters, and GSMaP found an
anomaly of R* ∼ 1.2 located mostly on the flat coast west of the
landsliding. For P17, MSWEP was not available and both
SMPPs retrieved some pixels with R* ∼ 1–1.2 near the landslide
events, but they all had many other years with similar annual
anomalies. For Z19, both SMPPs found R* . 1.5 at 12–48 h
more than 100 km east of the landslide event, over flat areas,
and only GSMaP found R* ∼ 1.4 precisely collocated, in space
and time, with the landslide event.

Last, some events were retrieved by only one product, such
as B08 where MSWEP only found a localized R* . 1 at all
time scales, C15 where only IMERG detected R* . 1 locally,
and C17 where only GSMaP found R* ∼ 1–1.2 but about 100 km
northeast of the landslide event. IT9 was undetected by the three
products.

b. Global performance and relation to time scales

For the studied events, the three products have similar per-
formance spatially and temporally, with only a third of good re-
trieval, and with some false alarms and poor to fair localization
in most cases. For each product, the spatial and temporal accu-
racies are quite strongly correlated, although IMERG often
has the best spatial accuracy, while GSMaP often has the best
temporal accuracy (Fig. 3, along with Fig. S15 in the online
supplemental material). Given our limited landslide inventory
sample, we do not attempt to evaluate how the capability of
different products varies in different geographical regions.
However, we note that the capability of the products does not
seem related to the year of the event, with some poorly re-
trieved events occurring both in the TRMM era (B08, IT9, and
TW8) and the GPM era (C15, C17, and P17).

Despite the variable ability to retrieve a spatial anomaly col-
located with landsliding or to rank the annual events from

2001 to 2019, the three products agree most of the time in
terms of the time scale over which the maximal rainfall anom-
aly occurred during the landslide event (Fig. 3c). Indeed, in
most of the Asian and Pacific Ocean typhoon cases (TW9, J11,
J18, and M15), the products display the strongest anomaly
with the best spatial match at the 48-h hour time scale. This
appears to be the good order of magnitude for the intense
rainfall duration between 1 and 3 days (Table 1). For TW8,
D15, D17, and P18 all products suggest the anomaly best related
to the landsliding was at the 12-h time scale, which can only be
confirmed from in situ data for TW8. Although more uncertain
and retrieved only by some products, C15, C17, and J14 only
have anomalies at 3-h time scales consistent with the ideas that
they were short, localized intense rainfall (Wang et al. 2015).

For six other cases (MI2, H16, P17, J04, J17, and Z19), the
time scales of different products disagree and do not necessarily
match the duration of absolute rainfall records.

4. Discussion

a. On the importance of normalizing absolute
rainfall estimates

We note that although the three products often had rainfall
anomalies that showed similar patterns in terms of spatial and
temporal patterns, they would have been much more difficult
to compare with absolute values. Indeed, in terms of absolute
rainfall the location and amount retrieved by the three SMPPs
could easily vary by more than a factor of 2, making any quan-
titative comparisons between the products and empirical or
physical thresholds very difficult.

For example, during Typhoon Morakot (TW9) and Meari
(J04), the total rainfall during 48 h over the area with wide-
spread landsliding was about 800 and 500 mm for IMERG, 1200
and 250 mm for GSMaP and 4000 and 700 mm for MSWEP, re-
spectively (Fig. 4, along with Fig. S7 in the online supplemental
material). For the area with landsliding in M15 and J11, the 48-h
total rainfall was about 300 and 400 mm, respectively, for both
IMERG and GSMaP, while in the same area MSWEP reported
about 1500 and 800 mm, respectively. Independent gauge or
ground-based radar estimates available for TW9, J04, and J11
suggest that 48-h rainfall amounted to about 2000, 800, and
1000 mm (Kondo et al. 2004; Chien and Kuo 2011; Marc et al.
2019), suggesting that none of the SMPPs were correct and that
it would be very difficult to build and compare threshold in
terms of absolute rainfall. Similar bias and variability can be
found at short time scales, for example, in 3 h during the J14
event in the landsliding area, GSMaP and IMERG recorded
about 75 mm in 3 h while MSWEP recorded 150 mm. All prod-
ucts underestimated the event rainfall measured by ground-
based radar to 220 mm in 3 h (Wang et al. 2015), but, interest-
ingly, although MSWEP was the closest in absolute terms it is
the only product that did not yield any anomaly, since the R10
in this area is 250 mm (Fig. S8 in the online supplemental
material). These large differences in absolute rainfall at short
and long time scales likely come from the fact that different
gauges are used for normalization and that GSMaP uses an oro-
graphic rainfall boost under some conditions, while MSWEP
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may, in some cases, revert to the reanalysis modeled rainfall
rather than the satellite measurements. For the 20 storm events,
the diversity of mean rain rates leading to landsliding (whether
at short or long time scales) is also very large from about 5 to
.100 mm h21 (Table 1), which underlines the difficulty in look-
ing for global threshold in absolute rainfall intensity.

Beyond intercomparison with thresholds, the effect of a
normalization by R10 also allows us to account for strong gra-
dients in the local climatology of extremes that could mislead
landslide hazard warnings. For example, M15 and Z19 both
have much larger Rt values toward the coast, in relatively flat
areas, and it is when computing R* that it becomes clear that
the mountainous areas had actually exceptional rainfall with
R* . 1.2 on or near the landslide event area (Fig. 1).

b. Are other extreme anomalies false alerts or unreported
landslide events? Insights from Taiwan and Japan

Among the studied areas, only some parts of Taiwan have been
mapped sufficiently frequently to identify landsliding caused by
multiple typhoons within the same areas. Marc et al. (2015)
mapped the landslides caused by rainfall events between 1996 and
2014 within the Chenyoulan catchment in central Taiwan
(23.58–248N). Huang and Montgomery (2012) reported intense
landslides in 2001, 2004 and 2005 along the Tachia River (about
248N), while Chen et al. (2013) mapped the impact of more than
10 typhoons in three catchments across Taiwan (Fig. 5). Given
that not all of these studies report landslide area density, as a
first-order test we use landslide number density as a measure
of the relative magnitude of the landslide event caused by
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various typhoons. In the northern catchment (24.58N), they
could constrain only the typhoons between 2004 and 2009
and found that intense landsliding (.1 per km2) occurred in
August 2004 and 2005, during Typhoons Aere and Matsa, re-
spectively. In the two southern catchments (238N) they re-
ported most landslides during Morakot (TW9, .1 km2), and
second most during Typhoon Haitang in July 2005 (∼0.5 km2).
Three other typhoons induced similar landsliding (0.1–0.2 km2);
Typhoons Mindulle, Bilis, and Kalmaegi (here TW8), in early
July 2004, 2006, and 2008, respectively, while other events caused
significantly fewer landslides.

In Taiwan, the pattern and timing of the maximum annual
anomalies is quite similar for the three SMPPs, and the

following discussion applies to all SMPPs. In September 2001,
a very strong anomaly hit northern Taiwan (258N) corre-
sponding to Typhoon Nari, while a more modest anomaly in
late July near 248N corresponding to Typhoon Toraji, which
caused widespread landsliding between 23.58 and 248N
(Huang and Montgomery 2012; Marc et al. 2015). Substantial
anomalies are also present from 248 to 228N in July 2005 and
near 248N in July 2006, matching well with Typhoons Haitang
and Bilis, although the anomalies are not as large in 2005 as
might be expected from the landsliding and the gauge meas-
urements (Chen et al. 2013, 2015). Surprisingly, the typhoons
that caused landsliding in the north in 2004 and 2005 (Aere
and Matsa) have not been recorded with strong anomalies
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(Figs. 5b,g). However, from 24.58 to 25.58 moderate but exten-
sive anomalies were retrieved in October 2007 and September
2008, matching with Typhoons Krosa and Sinlaku, which
caused some landslides in northern Taiwan (Chen et al. 2013).
However, these two years the typhoons causing landslides in
the south (Sepat in 2007 and Kalmaegi in 2008) were not re-
trieved consistently with the poor spatial and temporal score
achieved for TW8 (Fig. 3). These results strongly suggest in
the case of Taiwan that across the last decades many of the
largest anomalies were indeed significant typhoon events that
caused landsliding (Fig. 5), and the poor score of TW8 seems
to be more likely due to some misdetection of this event
rather than false alarms for other typhoons. Nevertheless, the
rainfall anomaly in 2001 (Nari) and 2012 appears as a false
alarm, and several rainfall-induced landslide events are asso-
ciated with R* , 1 or mislocated anomalies (Fig. 5).

Japan is also very prone to landslides, frequently leading to
media or scientific reports. Below, we discuss major anomalies
and landslide reports from the literature in the three areas we
have analyzed.

In the Kii Peninsula, the interproduct variability is higher
than in Taiwan but we note that GSMaP, and to some extent
MSWEP, retrieve substantial anomalies (R* ∼ 1–2) on the
southern and eastern part of Shikoku island (1348E) in August
2004 (Fig. 2). This corresponds to the heavy rainfall caused by
Typhoon Namtheum, which led to several large landslides in
Shikoku island (Wang et al. 2005). In contrast, all SMPPs de-
tect significant anomalies (R* . 1.5) on the eastern edge of
Shikoku in 2014 and across the peninsula in 2017, while we did
not find any reports of landslides for those two years.

Over Kyushu, both SMPPs yield several annual anomalies
equal or larger to that observed in 2017, but we could not find
mention of other landslide disasters in the area in the litera-
ture or the international disaster Emergency Events Database
(EM-DAT). Over Hiroshima, J18 is clearly among the largest
anomalies, but October 2017 also appears as the first and sec-
ond largest anomaly for GSMaP and IMERG, respectively. It
corresponds to Typhoon Lan, which caused flooding and some
landsliding over several prefectures of Honshu island (EM-DAT).
Additionally, even if J14 yieldsR* ∼ 1 at short time scales, well col-
located with landsliding, many years have stronger anomalies with-
out reported landsliding, suggesting some underestimation.

In summary, in Taiwan, most annual maxima of rainfall
anomaly correspond to major typhoons that have caused land-
slides and the major challenge for the products is rather that
some events are underestimated. In Japan, it is less clear, and
while some major anomalies correspond to other landslide or
flooding events (Shikoku 2004; Hiroshima 2017), we also find
that several annual anomalies may be overestimated. Such false
alerts and overestimation of the anomaly may be due to an un-
derestimation of R10 in some places rather than to the overes-
timation of the event rainfall. We also note the likelihood of
false alarms derived from anomaly ranking is a very rough
measure, which has multiple limitations. First, this technique
was not evaluated globally on all landslide prone terrain, but
also because we focus on a threshold of R* . 1 while this
threshold likely varies, for example with lithological units
(Marc et al. 2019). This highlights the need for future studies to

better understand the source of uncertainties of R10 for each
product, as well as to replicate the methods in other geographical
areas and with other, landscape adjusted, R* threshold.

c. Limits and potential for improvement of the SMPPs

We have assessed the relevance of SMPPs to landslide anal-
yses with the working assumption that landslide events are
bound to occur on any hillslopes experiencing rainfall
amounts (over time scales from 3 to 96 h) exceeding the local
10-yr return rainfall, as shown for J11 (Marc et al. 2019). This
approach is consistent with the geomorphological concept
(Dietrich et al. 1995; Iida 2004; Marc et al. 2019) that the sta-
bility of the landscape is adjusted to the climate and in partic-
ular the extreme meteorology.

We note that performing the same analysis over 192 h (8 days)
did not improve the results, which may not be surprising given
that all events except B08 are shorter than 100 h. However, the
focus on rainfall anomalies ignores the fact that landslides are
caused by a rise of pore water pressures that may only partially
relate to the ongoing rainfall, and in large part are due to an-
tecedent rainfall and hydrological processes modulating the
subsurface drainage (Bogaard and Greco 2018) and the water
storage in the slope aquifer (Brönnimann et al. 2013; Watakabe
and Matsushi 2019), with all these processes being modulated
by the slope fabrics and fracturing. As a result, a future ap-
proach could aim to couple a simple model to estimate the
water level in the regolith based on the rainfall time series
(e.g., Wilson and Wieczorek 1995) and focus on anomalies
of regolith water level (e.g., Saito and Matsuyama 2012).
Combining rainfall products with satellite-based soil moisture
estimates could also be a way forward (Felsberg et al. 2021).
Still, in the cases of sustained heavy rainfall caused by typhoons
and hurricanes, overrepresented in this study, the moisture from
antecedent rainfall is likely negligible relative to the one brought
by the event. Beyond antecedent rainfall, the rainfall regime as
well as hydromechanical properties of the ground modulate
landslide triggering, likely affecting the ability of SMPPs to re-
trieve the conditions of landsliding. Although our global analysis
covers many typical landslide settings (Table 1), it does not sam-
ple them equally, especially in terms of climate (temperate and
equatorial fully humid settings represent more than half our da-
tabase). Additionally, some specific settings are not represented
such as landscapes with carbonates topography, or with “arid,”
“snow,” or “polar” climates; these are less common but present
in areas prone to landsliding such as the Alps, Norway, central
Asia, and the edges of the Tibetan Plateau (Fig. S1 in the online
supplemental material). Future studies should aim to constrain
these undersampled settings, and to evaluate SMPPs in specific
settings that may be associated with peculiar landslide triggering
(e.g., orography, atmospheric rivers, rain-on-snow events, mon-
soons, and very long-duration–weak-precipitation events).

1) SELECTED EVIDENCE OF INCORRECT RAINFALL

RETRIEVAL

For a number of rainfall-induced landslide events, we lack
independent rainfall in situ measurements. Thus, the discrep-
ancy between satellite anomaly maps and landslide locations
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may not necessarily be due to a misretrieval of the rainfall by
the SMPP but could also be due to some additional variability
in factors controlling the landslide location, such as the
strength, permeability and infiltration rate, slope gradient,
and vegetation state of hillslopes. However, in several cases,
in situ rainfall data reported intense rainfall activity collocated
with the landsliding, which suggests that the SMPP rainfall re-
trieval is in large part at fault. This was clearly the case for J11
where the rainfall anomaly estimated from ground-based ra-
dar agreed precisely with the area of landsliding (Marc et al.
2019). The same was true when considering total event rain-
fall for J17 and J18 (Ozturk et al. 2021). This was also likely
the case for TW9 and IT9, which all had exceptional levels of
absolute rainfall in the area where most landslides occurred
(Chien and Kuo 2011; Ardizzone et al. 2012). On these four
events, only TW9 was well retrieved by all products, though
even in this case the quantitative pattern of R* at fine scale is very
different in each case (Fig. 4). The retrievals for the Japanese
cases (J11, J17, and J18) were variable, and IT9 was completely
undetected by the three products.

The two Brazilian landslide events (B08 and B11) also high-
light the issue with the current retrieval of SMPPs. B08
was completely undetected by GSMaP and IMERG, and the

detection by MSWEP may be entirely due to a local gauge
nearby (Camargo 2015) that recorded heavy rainfall on the
two days preceding the events, at the end of an anomalously
wet month.

For B11, the three SMPPs broadly agreed during the event
and retrieved a strong anomaly between 12 and 48 h, overlap-
ping with most of the landsliding slightly offset to the north-
west of the landsliding area (Fig. 6). For this event, the
Brazilian lightning record shows intense lightning activity pre-
cisely collocated with the three clusters of landsliding (Fig. 6).
The link with the landslides is even more striking considering
that most of the lightning on this day occurred between 0500
and 0700 local time, which matches well with the timing of
several destructive landslides in urban areas reported between
0600 and 0900 LT 12 January (Netto et al. 2013).

Strong lightning activity at the time of landsliding was re-
ported for older disasters in Brazil (Jones 1973), even leading
to the suggestion that they may directly induce landsliding
(Lacerda 1997). However, it is well known that lightning ac-
tivity is associated with intense convection and intense bursts
of rainfall (Battan 1965; Piepgrass et al. 1982; Soula and
Chauzy 2001; Schultz et al. 2011), which strongly suggests that
exceptional rainfall intensity must have occurred on the
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morning of 12 January, exactly when the landslide occurred,
from 42.58 to 438W. In contrast the three SMPPs suggested a
lower values of both Rt and R* from 42.58 to 438W (Fig. 6).

Thus, we propose that, in many of the studied cases, the
poor link between SMPP retrieval and landslide location is
likely due to inadequate rainfall retrieval from the SMPP
rather than due to some independent complexities in the land-
scape and/or the landslide mapping. In the next section we
briefly identify options to improve the SMPP algorithms.

2) IMPROVING SMPP RETRIEVAL FOR LANDSLIDE

APPLICATIONS: INCLUDING LIGHTNING AND OROGRAPHY

As we have seen in the case of B11, the spatiotemporal pat-
tern of lightning seems to accurately match the location of
landsliding. Thus, with the recent launch of the Geostationary
Operational Environmental Satellite (GOES) satellite, with
sensors permitting mapping of lightning activity [Geostation-
ary Lightning Mapper (GLM)] with high spatiotemporal ac-
curacy (Goodman et al. 2013), incorporating lightning activity
in SMPPs is potentially a way forward to improve mapping of
extreme rainfall and landslide applications. Physical models
to derive quantitative precipitation estimates from lightning
activity exist (Minjarez-Sosa and Waissman 2017) and could
be used in conjunction with other highly resolved, continuous
measurements (such as the geostationary infrared in PERSIANN;
Xu et al. 2013; Mahrooghy et al. 2013). This may prove especially
useful in capturing brief and localized events that may form
and dissipate without being sampled by the passive micro-
wave radiometers, likely strongly biasing their retrieval
(Guilloteau et al. 2017). In fact, SMPPs tend to smooth rain-
fall rate over scales smaller than 200 km and 4 h, biasing
both the intensity, location, and timing of precipitation fea-
tures (Guilloteau et al. 2021). More generally, uncertainties
in SMPPs rain retrieval are highly space–time dependent, as
it depends both on environmental conditions (e.g., the pre-
cipitation regime, type of precipitation system, surface type),
and the technique itself, which involves the combination of
distinct uncertainty sources (i.e., the calibration, the algo-
rithm, and the sampling terms; Roca et al. 2010). Particularly
among these factors PMW observations, which are the essen-
tial component of IMERG and GSMaP, are commonly proc-
essed through Bayesian-like algorithms (Aonashi et al. 2009;
Kummerow et al. 2015), implying certain limitations, for in-
stance in dealing with the platform-sensor heterogeneity and
the rainfall rate variability. Consequently, both the intensity
and detection of light and intense rainfall may be biased
(Elsaesser and Kummerow 2015; Kidd et al. 2018; You et al.
2020b), which also propagates up to the final level-3 precipita-
tion retrieval (Ayat et al. 2021; Oliveira et al. 2016).

Another issue that may bias SMPPs, especially in the case
of landslide studies, is the retrieval of orographically forced
rainfall. Studies focused on Japan, Taiwan, and India, have
shown that the satellite radar profile with altitude was
strongly affected in the case of upward orographic forcing of
warm and humid air masses (Shige et al. 2013; Taniguchi et al.
2013; Yamamoto et al. 2017). As a result, the GSMaP
algorithm was updated to differentiate for such orographic

conditions, based on reanalyzed wind model and topography.
However, the issues in overestimating or underestimating the
orographic effect depending on the wind speed has been
highlighted for GSMaP v6 and should be corrected in v7
(Yamamoto et al. 2017). Unfortunately, GSMaP v7 has not
been reprocessed before 2014 yet and our results are based
on v6 and therefore suffer from this inaccurate orographic
algorithm. This issue also strongly impacts the maps of R10
(Figs. S7c and S10c in the online supplemental material),
leading in the case of TW9 and TW8 to a strong reduction
of the anomaly relative to the other SMPPs (Fig. 4, along
with supplemental Fig. S10). In the case of J11 this issue is
less pronounced and despite it GSMaP retrieves a much
stronger anomaly (the strongest on record) although a bit
offset from the main relief (Fig. 2). In any case, investigating
and updating the orographic algorithm to prevent this bias
in rainfall location seems urgent to maximize GSMaP rele-
vance for landslide studies. Further developing orographic
corrections, to also account for other forms of orography
other than the uplift of warm and humid air masses is also
of importance (see review by Houze 2012).

Last, efforts to improve high-resolution SMPPs are con-
stantly ongoing (see Kidd et al. (2021b) for a detailed review),
such as adaptation of the PMW algorithms to better deal with
distinct surface environments (Turk et al. 2021), or correctly
filling the gaps between the PMW and IR observations (Tan
et al. 2021), which are expected to improve the applicability of
SMPPs for landslide applications.

5. Conclusions

We have analyzed the rainfall during 20 storm events that
caused widespread landsliding, as recorded by three rainfall
products based (partially or totally) on satellite measure-
ments. Specifically, we have focused on the recorded rainfall
anomaly, that is, the maximal rainfall over a given time scale,
normalized by the 10-yr return rainfall over the same time
scale. Although the spatiotemporal pattern of retrieved
anomalies varies somewhat from product to product, at least
one product coincides at least partially with the area of wide-
spread landsliding in 11 cases, and the rainfall event that
caused landsliding was retrieved as the largest anomaly of the
observation period in 12 cases. Typhoons and hurricanes with
rainfall lasting several days over large areas are most often re-
trieved as substantial anomalies, often at the 48-h time scale,
while landslide events caused by short, localized rainfall seem
to be the hardest to retrieve. In any case, we found that using
anomalies allows us to remove substantial interproduct vari-
ability and bias in the absolute estimate of rainfall, and in
some cases to better relocate the area with high landslide haz-
ard. Thus, we suggest that implementing the normalization of
satellite rainfall using long-term records is necessary in an oper-
ational landslide hazard awareness algorithm (e.g., Kirschbaum
and Stanley 2018). Still, there is large room for improvement in
the satellite product to better constrain the 10-yr rainfall and
the rainfall events, possibly by better integrating spatial infor-
mation from lightning activity and orographic processes, which
are often important in mountainous areas. Also, to improve the
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operational use of rainfall anomalies, future studies should eval-
uate how to define anomalies combining early and nowcast
products (Otsuka et al. 2016; Kotsuki et al. 2019) with long-
term rainfall products to derive extreme climatology, and the
impact of the evolution of satellite constellation on the estima-
tion of the 10- or 20-yr return rainfall.
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