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ABSTRACT
Simulated annealing (SA) is a widely used approach to solve
global optimization problems in signal processing. The ini-
tial non-convex problem is recast as the exploration of a se-
quence of Boltzmann probability distributions, which are in-
creasingly harder to sample from. They are parametrized by
a temperature that is iteratively decreased, following the so-
called cooling schedule. Convergence results of SA methods
usually require the cooling schedule to be set a priori with
slow decay. In this work, we introduce a new SA approach
that selects the cooling schedule on the fly. To do so, each
Boltzmann distribution is approximated by a proposal den-
sity, which is also sequentially adapted. Starting from a vari-
ational formulation of the problem of joint temperature and
proposal adaptation, we derive an alternating Bregman prox-
imal algorithm to minimize the resulting cost, obtaining the
sequence of Boltzmann distributions and proposals. Numeri-
cal experiments in an idealized setting illustrate the potential
of our method compared with state-of-the-art SA algorithms.

Index Terms— Global optimization, simulated anneal-
ing, adaptive cooling schedule, Kullback-Leibler divergence,
alternating minimization.

1. INTRODUCTION

Many problems ranging from signal processing to ma-
chine learning require to find the global minimizer of non-
convex functions. Non-convexity can arise due to sparsity-
inducing regularizers [1], non-linear activation functions [2],
or discrete domain constraints [3], among other factors. Stan-
dard optimization methods converge at best to local minima
which may be of limited interest, so specific space exploration
strategies are needed to reach global optimality. For instance,
branch & bound methods rely on subspaces that are retained
or discarded [4]. In particle swarm optimization methods, in-
teracting particles are simulated for efficient exploration [5].

In this work, we focus on the class of SA algorithms,
which explore the space by sampling from the Boltzmann dis-
tributions associated to the objective function. These distribu-
tions, indexed by a temperature T , have their modes located
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at the global minimizers of the objective. When T is high,
they are flat, hence easy to explore by sampling. In contrast,
they become increasingly concentrated around their modes,
hence more informative, as T decays. By following a cooling
schedule, i.e. a sequence of temperatures {Tk}k∈N going to
zero, the optimization problem is thus recast as a sequence of
increasingly harder sampling problems [6]. This progressive
strategy allows to benefit from the early iterations at high T to
sample from the last harder distributions. Samples approach-
ing the Boltzmann distributions can be generated by iterating
Markov kernels [7], or with parametric proposal distributions
[8]. In this work, we adopt the latter approach.

SA algorithms performance requires designing good pro-
posals and cooling schedule. On the one hand, the construc-
tion of parametric proposals for sampling tasks has been well-
explored. A typical approach is to minimize a divergence be-
tween the proposal and the target [9, 8, 10, 11]. On the other
hand, the adaptation of cooling schedules has been under-
looked in the literature. In fact, many convergence results for
SA require a logarithmic cooling schedule [7, 8, 12]. Recent
convergence results account for faster schedules [13]. How-
ever, fixed cooling schedules backed by theoretical guarantees
often involve constants which are either intractable [7] or em-
pirically chosen [8, 12]. One exception is [14], where temper-
atures are set by solving non-linear optimal control problems.

The main contribution of this work is a novel SA frame-
work integrating an iterative alternating approach for both
temperature and parametric proposal on-the-fly adaptation.
We formulate the adaptation problem as the minimization of a
loss function involving the Kullback-Leibler (KL) divergence
between the Boltzmann distribution and the proposal, as well
as a regularization term promoting temperature decay. We
introduce an alternating Bregman proximal algorithm [15] to
solve the resulting optimization problem. Suitable sampling
strategies are considered to solve the inner problems.

The paper is structured as follows. In Section 2, we
present the global optimization problem at hand, and intro-
duce the necessary background on SA and Bregman proximal
tools. In Section 3, we describe our variational formulation
for adaptive SA as well as an alternating proximal approach
to resolve it. We conduct some numerical experiments in
Section 4, before concluding in Section 5.



2. BACKGROUND

2.1. Problem statement and notation

In this work, we are interested in finding f∗ such that

f∗ = min
x∈X

f(x), (1)

where X ⊂ Rd is the search space, and f : X → R is the
objective function. We assume that X and f are such that
Problem (1) is well-defined. In the remainder, the euclidean
scalar product is denoted by 〈·, ·〉 and || · || is the euclidean
norm. The Borel algebra of X is denoted by B(X ). M(X )
is the set of probability measures on (X ,B(X )). For a given
p ∈ M(X ), a measurable function h and a set S ⊂ X , we
will write p(h) =

∫
X h(x)p(dx) and p(S) =

∫
S
p(dx). We

refer to [16] for further details on measure theory concepts.

2.2. Boltzmann distributions and SA

SA algorithms rely on the Boltzmann distributions, de-
noted by πT for T > 0. They relate the probability of x ∈ X ,
its energy f(x) and the temperature T through

πT (x) = exp

(
− 1

T
f(x)−B(T )

)
, (2)

where B is the log-partition function of πT , that is

B(T ) = log

(∫
exp

(
− 1

T
f(x)

)
dx

)
, ∀T > 0. (3)

Boltzmann distributions are interesting from a global op-
timization perspective, as their mass concentrates on the min-
imizers of f as T → 0 [7, Eq. (5.13)], i.e,

lim
T→0

πT (Sε) = 1, ∀ε > 0, (4)

where Sε = {x ∈ X , f(x) ≤ f∗ + ε} for any ε > 0.
However, Boltzmann distributions are usually intractable.

SA algorithms amount to exploring a sequence {πTk}k∈N as-
sociated to a cooling schedule {Tk}k∈N, with Tk → 0. For
each k ∈ N, a proposal qk is used to generate samples approx-
imating πTk . Proposals are chosen such that qk gets closer to
πTk as k → ∞. They can be constructed from Markov ker-
nels {Pk}k∈N, i.e, qk = qk−1Pk [7]. Alternatively, they can
be of the form qθk , parametrized by some θk [8].

2.3. Kullback-Leibler divergence and proximal operators

Let us now introduce two mathematical tools that will be
at the core of our proposed adaptive SA algorithm. First, the
KL divergence is widely used to measure the discrepancy be-
tween probability distributions and thus to fit proposals to tar-
gets [8, 9]. It reads

KL(π, q) =

∫
log

(
π(x)

q(x)

)
π(dx), ∀π, q ∈M(X ). (5)

We then introduce the concept of Bregman proximity opera-
tor. Given a Bregman divergence dψ with associated function
ψ [17], and a convex lower-semicontinuous function h, we
define, following [15], the two Bregman proximity operators

←−−proxψh (θ) := arg min
θ′∈Θ

h(θ′) + dψ(θ′, θ), (6)

−−→proxψh (θ) := arg min
θ′∈Θ

h(θ′) + dψ(θ, θ′). (7)

Well-posedness of the above definition can be ensured by [15,
Lemma 2.1, Proposition 3.5]. It is worth noting that, when
ψ(·) = || · ||2, the euclidean distance and standard proximity
operator are recovered. In this work, we will instead focus on
another choice for ψ, so that dψ reads as the KL divergence
between two distributions of interest.

3. PROPOSED ANNEALING FRAMEWORK

3.1. Proposed formulation

We first propose to use parametric proposal distributions
from an exponential family, that is with density

qθ(x) = exp (〈θ,Γ(x)〉 −A(θ)) . (8)

The above is parametrized by θ ∈ Θ ⊂ Rdθ . Exponen-
tial families are a standard choice for proposal distributions
in sampling [11, 8]. The choice of sufficient statistics Γ :
X → Rdθ determines the family. If Γ(x) = (x, xx>)>, the
Gaussian family is recovered, while the Boltzmann family is
a particular case with Γ(x) = −f(x). Eq. (8) also involves
the log-partition function

A(θ) = log

(∫
exp (〈θ,Γ(x)〉) dx

)
, ∀θ ∈ Θ. (9)

We aim at constructing efficiently {θk, Tk}k∈N to mini-
mize f . To do so, we introduce the loss function

Fλ(T, θ) = KL(πT , qθ) + λR(T ), ∀T > 0, θ ∈ Θ. (10)

Hereabove, the first term measures the discrepancy between
the proposal and the sought Boltzmann distribution. More-
over, R : R+ → R+ is a regularization term, weighted by
some λ > 0, that promotes the decay of {Tk}k∈N. In prac-
tice, R must be increasing and null at T = 0. The minimiza-
tion of Fλ hence promotes a good fitting of the Boltzmann
distributions by the proposals and a low final temperature.

3.2. Proposed alternating Bregman proximal algorithm

Let us now present our approach for minimizing the pro-
posed loss function Fλ. We introduce the shorter notations

H(T ) =

∫
log(πT (x))πT (x)dx, ∀T > 0, (11)

(πT (Γ))i =

∫
(Γ(x))i πT (x)dx, ∀T > 0,∀i ∈ {1, ..., dθ}.

(12)



We can thus rewrite in a more explicit way

Fλ(T, θ) = H(T ) + λR(T )

+ 〈θ, πT (Γ)〉+A(θ), ∀T > 0, θ ∈ Θ. (13)

We see in (13) that T and θ are coupled only in one term of
the loss function, with a linear dependency on θ, thus moti-
vating an alternating procedure. We opt for proximal alter-
nating methods, where one alternatively computes the prox-
imity operator of the loss function with respect to each of the
variables. This leads to more stable convergence behavior
[18, 19] than the standard Gauss-Seidel technique, especially
in the challenging non-convex setting.

We now choose the metric in which the proximity oper-
ator is computed. The KL divergence appears in Fλ, so it is
natural to use it in our proximal steps. Since both Boltzmann
and the parametric proposal distributions are exponential, we
can link the Bregman and the KL divergences as follows [17]

dB(T ′, T ) = KL(πT , πT ′), ∀T, T ′ > 0, (14)
dA(θ, θ′) = KL(qθ′ , qθ), ∀θ, θ′ ∈ Θ, (15)

where B and A are defined in Eq. (3) and (9), respectively.
These choices lead to Alg. 1, with two positive hyper-

parameters, λ and ρ. They control respectively the trade-off
between adaptation and low-temperature, and the inertia be-
tween iterates.

Algorithm 1: Alternating proximal SA (APSA)
Initialization with T0 > 0, θ0 ∈ Θ.
for k = 1, 2, . . . do

Temperature adaptation:

Tk+1 = −−→proxBρ−1Fλ(·,θk)(Tk). (16)

Proposal adaptation:

θk+1 =←−−proxAρ−1Fλ(Tk+1,·)(θk). (17)

end

As an alternating proximal algorithm, Alg. 1 enjoys a
monotonicity property akin to [15, Proposition 4.1]. Namely,

Fλ(Tk, θk) ≥ Fλ(Tk+1, θk+1), ∀k ∈ N. (18)

Since the loss takes non-negative values, we can deduce con-
vergence of {Fλ(Tk, θk)}k∈N to some non-negative value.

3.3. Temperature adaptation

We discuss the practical resolution of the inner Prob-
lem (16). Eq. (16) is a scalar but non-convex minimization
problem. We propose to approximate its solution by an in-
tensive grid search, restricting the values of T to a grid of

the form {T (i)}1≤i≤NT , with T (i) = ih, with h =
TNT
NT

.
This strategy, though basic, presents the great advantage
of allowing the precomputation of the values H(T (i)),
B(T (i)), πT (i)(f), and πT (i)(Γ) for every 1 ≤ i ≤ NT .
From these, we can compute Fλ(T (i), θ) using Eq. (13) and
KL(πT (i) , πT (j)) = H(T (i)) + 1

T (j)πT (i)(f) + B(T (j)), for
every θ ∈ Θ and i, j ∈ {1, ..., NT }.

Although these computations are not realistic in high di-
mensions, they allow to solve Eq. (16) with high precision,
thus yielding a proof-of-concept implementation of Alg. 1.

3.4. Proposal adaptation

We focus now on Eq. (17), which reads as the minimiza-
tion of θ 7−→ KL(πTk+1

, qθ) + ρKL(qθk , qθ) on Θ. Since
we are manipulating exponential proposals, we can rewrite

KL(πT , qθ) = H(T )− 〈θ, πT (Γ)〉
+A(θ), ∀T > 0, θ ∈ Θ. (19)

Function A is convex [11], analytic on Θ [20, Theorem 2.2],
and its gradient is ∇A(θ) = qθ(Γ). Therefore, solving (17)
is equivalent to solving −πTk(Γ) + qθ(Γ) + ρ(−qθk(Γ) +
qθk+1

(Γ)) = 0. Thus, Eq. (17) admits the following explicit
solution:

qθk+1
(Γ) =

1

1 + ρ
πTk+1

(Γ) +
ρ

1 + ρ
qθk(Γ). (20)

In this update, only qθk(Γ) is accessible. We propose to
approximate πTk+1

(Γ) using importance sampling [21], as it
was done in [8]. Consider N samples {xn}1≤n≤N drawn
from qθk , then πTk+1

(Γ) ≈
∑N
n=1 wnΓ(xn),with normalized

weights wn obtained from wn =
πTk+1

(xn)

qθk (xn) , amounting to N
evaluations of f per iteration.

Note that the precomputed values πT (i)(Γ) could also be
used at this stage. However, we consider that we can gain bet-
ter insights on realistic implementations of Alg. 1 by making
use of a sampling step to evaluate (20).

3.5. Discussion

At each iteration, the proposed Alg. 1 fits an exponential
proposal to the current Boltzmann distribution. This proposal
adaptation strategy is rather common when the target is fixed,
as in [11]. In the context of SA, our approach stems from the
MARS framework of [8]. The novelty here is the introduction
of the temperature adaptation step and the use of Bregamn
proximity steps. We can also cite the cross-entropy method
[9] for global optimization, which also adapts parametric pro-
posals by KL divergence minimization. In this method how-
ever, the targets are constructed by truncating the proposals to
keep the areas with the best values of f .

In a broader context, expectation-minimization algo-
rithms for statistical inference can also be reformulated using
alternating divergence minimization [22, 23].



4. NUMERICAL EXPERIMENTS

4.1. Considered examples and setting

We consider two benchmark problems in R2, whose min-
imum is f∗ = 0. Problem (P1) relies on the ill-conditioned
Rosenbrock function with a unique minimizer at x∗ = (1, 1)T

located in a large banana-shaped valley. Problem (P2) aims
at minimizing the highly multimodal Rastrigin function, min-
imized at x∗ = 0. Their respective objective functions are

f1(x) = 5(x2 − x2
1)2 + (1− x1)2, ∀x ∈ R2, (21)

f2(x) = 2 +

2∑
i=1

x2
i − cos(2πxi), ∀x ∈ R2. (22)

We use the regularization function R(T ) = T 2, and
Gaussian proposals with parameters µ and Σ. We evaluate
{f(µk)}k∈N to outline the performance of the SA algorithms.
We also record {Tk}k∈N to understand the temperature adap-
tation behavior of Alg. 1. We set NT = 1000, TNT = 50,
and N = 105. Precomputations were done in Julia [24] with
the numerical integration package hcubature. Algorithms
were initialized with T0 = TNT , Σ0 = 10 Id and random
µ0 ∈ R2.

4.2. Influence of APSA hyper-parameters

We display in Fig. 1 the evolution of {f(µk)}k∈N and
{Tk}k∈N for different λ and ρ, on both problems.

Fig. 1. Influence of the parameters of APSA for solving (P1) (top) and
(P2) (bottom): λ = 0.05, ρ = 100.0 (blue), λ = 0.05, ρ = 1.0 (red),
λ = 5.0, ρ = 100.0 (green), λ = 5.0, ρ = 1.0 (purple).

In both examples, high values of ρ seem to slow the it-
erates down, while high values of λ encourage low values of
T . This influence is clear if we inspect {Tk}k∈N. Regarding
{f(µk)}k∈N, we can see that the two plots with ρ = 100.0 are
very close. It is also the case on (P2) for ρ = 1.0. The role
of λ is important as can be seen on Fig. 1 (top-left), where
APSA reaches small values for only one combination of λ, ρ.

4.3. Comparison with other algorithms

We now compare our approach to three other SA algo-
rithms with fixed schedules, among which MARS is the only
one using parametric proposals: the SMCSA algorithm [12],
whereN particles interact through weighting and resampling,
with logarithmic cooling schedule Tk = T0

log(k+1) for k ≥ 1,
the MARS algorithm of [8], which uses Gaussian proposals
with logarithmic cooling schedule, and the multi-start fast SA
(mFSA), which consists in running N parallel fast SA algo-
rithms [13] with schedule Tk = 1

(k+1) log(k+1) for k ≥ 1.
Among the parameters tested in Fig. 1, we retain λ = 5,

ρ = 1. For SMCSA and mFSA, the values {f(µk)}k∈N are
the averages of the sampled objective values at iteration k.

Fig. 2. One run of the algorithms on (P1) (top) and (P2) (bottom): MARS
(red), APSA (blue), mFSA (purple) and SMCSA (green).

On (P1), the APSA algorithm shows the best perfor-
mance, with a very fast convergence. On (P2), the perfor-
mances of APSA and MARS are indistinguishable, and are
clearly better than those of mFSA and SMCSA.

The performance of APSA are up-to-par with the other
tested algorithms. Surprisingly, the adapted temperatures do
not reach T = 0. This may indicate that reaching a low fi-
nal temperature is enough to globally minimize f . Moreover,
the final temperature of APSA is actually reached very fast,
showing that adaptative schedules can be faster.

5. CONCLUSION

In this work, we have proposed a variational formulation
associated to an alternating proximal framework for the de-
sign of a simulated annealing algorithm with adaptive cool-
ing schedule. This is in stark contrast with existing methods,
which need a fixed cooling schedule, often too slow. As a
proof of concept, we matched state-of-the-art SA algorithms
performance with an idealized implementation. We plan on
leveraging these promising insights to design a more practi-
cal adaptive SA algorithm with sound convergence analysis.
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