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Simulated annealing (SA) is a widely used approach to solve global optimization problems in signal processing. The initial non-convex problem is recast as the exploration of a sequence of Boltzmann probability distributions, which are increasingly harder to sample from. They are parametrized by a temperature that is iteratively decreased, following the socalled cooling schedule. Convergence results of SA methods usually require the cooling schedule to be set a priori with slow decay. In this work, we introduce a new SA approach that selects the cooling schedule on the fly. To do so, each Boltzmann distribution is approximated by a proposal density, which is also sequentially adapted. Starting from a variational formulation of the problem of joint temperature and proposal adaptation, we derive an alternating Bregman proximal algorithm to minimize the resulting cost, obtaining the sequence of Boltzmann distributions and proposals. Numerical experiments in an idealized setting illustrate the potential of our method compared with state-of-the-art SA algorithms.

INTRODUCTION

Many problems ranging from signal processing to machine learning require to find the global minimizer of nonconvex functions. Non-convexity can arise due to sparsityinducing regularizers [START_REF] Marmin | Sparse signal reconstruction for nonlinear models via piecewise rational optimization[END_REF], non-linear activation functions [START_REF] Haeffele | Global optimality in neural network training[END_REF], or discrete domain constraints [START_REF] Chan | Algorithms for finding global minimizers of image segmentation and denoising models[END_REF], among other factors. Standard optimization methods converge at best to local minima which may be of limited interest, so specific space exploration strategies are needed to reach global optimality. For instance, branch & bound methods rely on subspaces that are retained or discarded [START_REF] Fowkes | A branch and bound algorithm for the global optimization of hessian lipschitz continuous functions[END_REF]. In particle swarm optimization methods, interacting particles are simulated for efficient exploration [START_REF] Bonyadi | Particle swarm optimization for single objective continuous space problems: a review[END_REF].

In this work, we focus on the class of SA algorithms, which explore the space by sampling from the Boltzmann distributions associated to the objective function. These distributions, indexed by a temperature T , have their modes located T.G. and E.C. acknowledge support from the ERC Starting Grant MA-JORIS ERC-2019-STG-850925. V.E. acknowledges support from the ANR of France under PISCES (ANR-17-CE40-0031-01) project.

at the global minimizers of the objective. When T is high, they are flat, hence easy to explore by sampling. In contrast, they become increasingly concentrated around their modes, hence more informative, as T decays. By following a cooling schedule, i.e. a sequence of temperatures {T k } k∈N going to zero, the optimization problem is thus recast as a sequence of increasingly harder sampling problems [START_REF] Del Moral | Sequential Monte Carlo samplers[END_REF]. This progressive strategy allows to benefit from the early iterations at high T to sample from the last harder distributions. Samples approaching the Boltzmann distributions can be generated by iterating Markov kernels [START_REF] Haario | Simulated annealing process in general state space[END_REF], or with parametric proposal distributions [START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF]. In this work, we adopt the latter approach.

SA algorithms performance requires designing good proposals and cooling schedule. On the one hand, the construction of parametric proposals for sampling tasks has been wellexplored. A typical approach is to minimize a divergence between the proposal and the target [START_REF] Kroese | The cross-entropy method for continuous multi-extremal optimization[END_REF][START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF][START_REF] Bugallo | Adaptive importance sampling: The past, the present, and the future[END_REF][START_REF] Akyildiz | Convergence rates for optimised adaptive importance samplers[END_REF]. On the other hand, the adaptation of cooling schedules has been underlooked in the literature. In fact, many convergence results for SA require a logarithmic cooling schedule [START_REF] Haario | Simulated annealing process in general state space[END_REF][START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF][START_REF] Zhou | Sequential Monte Carlo simulated annealing[END_REF]. Recent convergence results account for faster schedules [START_REF] Rubenthaler | Fast simulated annealing in R d with an application to maximum likelihood estimation in state-space models[END_REF]. However, fixed cooling schedules backed by theoretical guarantees often involve constants which are either intractable [START_REF] Haario | Simulated annealing process in general state space[END_REF] or empirically chosen [START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF][START_REF] Zhou | Sequential Monte Carlo simulated annealing[END_REF]. One exception is [START_REF] Molvalioglu | Meta-control of an interacting-particle algorithm for global optimization[END_REF], where temperatures are set by solving non-linear optimal control problems.

The main contribution of this work is a novel SA framework integrating an iterative alternating approach for both temperature and parametric proposal on-the-fly adaptation. We formulate the adaptation problem as the minimization of a loss function involving the Kullback-Leibler (KL) divergence between the Boltzmann distribution and the proposal, as well as a regularization term promoting temperature decay. We introduce an alternating Bregman proximal algorithm [START_REF] Bauschke | Joint minimization with alternating Bregman proximity operators[END_REF] to solve the resulting optimization problem. Suitable sampling strategies are considered to solve the inner problems.

The paper is structured as follows. In Section 2, we present the global optimization problem at hand, and introduce the necessary background on SA and Bregman proximal tools. In Section 3, we describe our variational formulation for adaptive SA as well as an alternating proximal approach to resolve it. We conduct some numerical experiments in Section 4, before concluding in Section 5.

BACKGROUND

Problem statement and notation

In this work, we are interested in finding f * such that

f * = min x∈X f (x), (1) 
where X ⊂ R d is the search space, and f : X → R is the objective function. We assume that X and f are such that Problem (1) is well-defined. In the remainder, the euclidean scalar product is denoted by •, • and || • || is the euclidean norm. The Borel algebra of X is denoted by B(X ). M(X ) is the set of probability measures on (X , B(X )). For a given p ∈ M(X ), a measurable function h and a set S ⊂ X , we will write p(h) = X h(x)p(dx) and p(S) = S p(dx). We refer to [START_REF] Chopin | An Introduction to Sequential Monte Carlo[END_REF] for further details on measure theory concepts.

Boltzmann distributions and SA

SA algorithms rely on the Boltzmann distributions, denoted by π T for T > 0. They relate the probability of x ∈ X , its energy f (x) and the temperature T through

π T (x) = exp - 1 T f (x) -B(T ) , (2) 
where B is the log-partition function of π T , that is

B(T ) = log exp - 1 T f (x) dx , ∀T > 0. (3) 
Boltzmann distributions are interesting from a global optimization perspective, as their mass concentrates on the minimizers of f as T → 0 [7, Eq. (5.13)], i.e,

lim T →0 π T (S ) = 1, ∀ > 0, (4) 
where S = {x ∈ X , f (x) ≤ f * + } for any > 0.

However, Boltzmann distributions are usually intractable. SA algorithms amount to exploring a sequence {π T k } k∈N associated to a cooling schedule {T k } k∈N , with T k → 0. For each k ∈ N, a proposal q k is used to generate samples approximating π T k . Proposals are chosen such that q k gets closer to π T k as k → ∞. They can be constructed from Markov kernels {P k } k∈N , i.e, q k = q k-1 P k [START_REF] Haario | Simulated annealing process in general state space[END_REF]. Alternatively, they can be of the form q θ k , parametrized by some θ k [START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF].

Kullback-Leibler divergence and proximal operators

Let us now introduce two mathematical tools that will be at the core of our proposed adaptive SA algorithm. First, the KL divergence is widely used to measure the discrepancy between probability distributions and thus to fit proposals to targets [START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF][START_REF] Kroese | The cross-entropy method for continuous multi-extremal optimization[END_REF]. It reads

KL(π, q) = log π(x) q(x) π(dx), ∀π, q ∈ M(X ). ( 5 
)
We then introduce the concept of Bregman proximity operator. Given a Bregman divergence d ψ with associated function ψ [START_REF] Nielsen | Entropies and cross-entropies of exponential families[END_REF], and a convex lower-semicontinuous function h, we define, following [START_REF] Bauschke | Joint minimization with alternating Bregman proximity operators[END_REF], the two Bregman proximity operators ← --

prox ψ h (θ) := arg min θ ∈Θ h(θ ) + d ψ (θ , θ), (6) 
--→ prox ψ h (θ) := arg min θ ∈Θ h(θ ) + d ψ (θ, θ ). (7) 
Well-posedness of the above definition can be ensured by [15, Lemma 2.1, Proposition 3.5]. It is worth noting that, when

ψ(•) = || • || 2
, the euclidean distance and standard proximity operator are recovered. In this work, we will instead focus on another choice for ψ, so that d ψ reads as the KL divergence between two distributions of interest.

PROPOSED ANNEALING FRAMEWORK

Proposed formulation

We first propose to use parametric proposal distributions from an exponential family, that is with density

q θ (x) = exp ( θ, Γ(x) -A(θ)) . ( 8 
)
The above is parametrized by θ ∈ Θ ⊂ R d θ . Exponential families are a standard choice for proposal distributions in sampling [START_REF] Akyildiz | Convergence rates for optimised adaptive importance samplers[END_REF][START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF]. The choice of sufficient statistics Γ : X → R d θ determines the family. If Γ(x) = (x, xx ) , the Gaussian family is recovered, while the Boltzmann family is a particular case with Γ(x) = -f (x). Eq. ( 8) also involves the log-partition function

A(θ) = log exp ( θ, Γ(x) ) dx , ∀θ ∈ Θ. (9) 
We aim at constructing efficiently {θ k , T k } k∈N to minimize f . To do so, we introduce the loss function

F λ (T, θ) = KL(π T , q θ ) + λR(T ), ∀T > 0, θ ∈ Θ. (10)
Hereabove, the first term measures the discrepancy between the proposal and the sought Boltzmann distribution. Moreover, R : R + → R + is a regularization term, weighted by some λ > 0, that promotes the decay of {T k } k∈N . In practice, R must be increasing and null at T = 0. The minimization of F λ hence promotes a good fitting of the Boltzmann distributions by the proposals and a low final temperature.

Proposed alternating Bregman proximal algorithm

Let us now present our approach for minimizing the proposed loss function F λ . We introduce the shorter notations

H(T ) = log(π T (x))π T (x)dx, ∀T > 0, (11) 
(π T (Γ)) i = (Γ(x)) i π T (x)dx, ∀T > 0, ∀i ∈ {1, ..., d θ }. (12) 
We can thus rewrite in a more explicit way

F λ (T, θ) = H(T ) + λR(T ) + θ, π T (Γ) + A(θ), ∀T > 0, θ ∈ Θ. ( 13 
)
We see in (13) that T and θ are coupled only in one term of the loss function, with a linear dependency on θ, thus motivating an alternating procedure. We opt for proximal alternating methods, where one alternatively computes the proximity operator of the loss function with respect to each of the variables. This leads to more stable convergence behavior [START_REF] Bolte | Alternating proximal algorithm for blind image recovery[END_REF][START_REF] Attouch | Proximal alternating minimization methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality[END_REF] than the standard Gauss-Seidel technique, especially in the challenging non-convex setting.

We now choose the metric in which the proximity operator is computed. The KL divergence appears in F λ , so it is natural to use it in our proximal steps. Since both Boltzmann and the parametric proposal distributions are exponential, we can link the Bregman and the KL divergences as follows [START_REF] Nielsen | Entropies and cross-entropies of exponential families[END_REF] 

d B (T , T ) = KL(π T , π T ), ∀T, T > 0, ( 14 
) d A (θ, θ ) = KL(q θ , q θ ), ∀θ, θ ∈ Θ, (15) 
where B and A are defined in Eq. ( 3) and ( 9), respectively. These choices lead to Alg. 1, with two positive hyperparameters, λ and ρ. They control respectively the trade-off between adaptation and low-temperature, and the inertia between iterates. 

T k+1 = --→ prox B ρ -1 F λ (•,θ k ) (T k ). (16) 
Proposal adaptation:

θ k+1 = ← -- prox A ρ -1 F λ (T k+1 ,•) (θ k ). (17) 
end

As an alternating proximal algorithm, Alg. 1 enjoys a monotonicity property akin to [15, Proposition 4.1]. Namely,

F λ (T k , θ k ) ≥ F λ (T k+1 , θ k+1 ), ∀k ∈ N. ( 18 
)
Since the loss takes non-negative values, we can deduce convergence of {F λ (T k , θ k )} k∈N to some non-negative value.

Temperature adaptation

We discuss the practical resolution of the inner Problem [START_REF] Chopin | An Introduction to Sequential Monte Carlo[END_REF]. Eq. ( 16) is a scalar but non-convex minimization problem. We propose to approximate its solution by an intensive grid search, restricting the values of T to a grid of the form {T (i) } 1≤i≤N T , with T (i) = ih, with h = T N T N T . This strategy, though basic, presents the great advantage of allowing the precomputation of the values H(T (i) ), B(T (i) ), π T (i) (f ), and π T (i) (Γ) for every 1 ≤ i ≤ N T . From these, we can compute F λ (T (i) , θ) using Eq. ( 13) and KL(π

T (i) , π T (j) ) = H(T (i) ) + 1 T (j) π T (i) (f ) + B(T (j)
), for every θ ∈ Θ and i, j ∈ {1, ..., N T }.

Although these computations are not realistic in high dimensions, they allow to solve Eq. ( 16) with high precision, thus yielding a proof-of-concept implementation of Alg. 1.

Proposal adaptation

We focus now on Eq. ( 17), which reads as the minimization of θ -→ KL(π T k+1 , q θ ) + ρKL(q θ k , q θ ) on Θ. Since we are manipulating exponential proposals, we can rewrite

KL(π T , q θ ) = H(T ) -θ, π T (Γ) + A(θ), ∀T > 0, θ ∈ Θ. ( 19 
)
Function A is convex [START_REF] Akyildiz | Convergence rates for optimised adaptive importance samplers[END_REF], analytic on Θ [20, Theorem 2.2], and its gradient is ∇A(θ) = q θ (Γ). Therefore, solving [START_REF] Nielsen | Entropies and cross-entropies of exponential families[END_REF] is equivalent to solving -π T k (Γ) + q θ (Γ) + ρ(-q θ k (Γ) + q θ k+1 (Γ)) = 0. Thus, Eq. ( 17) admits the following explicit solution:

q θ k+1 (Γ) = 1 1 + ρ π T k+1 (Γ) + ρ 1 + ρ q θ k (Γ). (20) 
In this update, only q θ k (Γ) is accessible. We propose to approximate π T k+1 (Γ) using importance sampling [START_REF] Elvira | Advances in importance sampling[END_REF], as it was done in [START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF]. Consider N samples {x n } 1≤n≤N drawn from q θ k , then π T k+1 (Γ) ≈ N n=1 w n Γ(x n ), with normalized weights w n obtained from w n = π T k+1 (xn) (xn) , amounting to N evaluations of f per iteration.

q θ k
Note that the precomputed values π T (i) (Γ) could also be used at this stage. However, we consider that we can gain better insights on realistic implementations of Alg. 1 by making use of a sampling step to evaluate (20).

Discussion

At each iteration, the proposed Alg. 1 fits an exponential proposal to the current Boltzmann distribution. This proposal adaptation strategy is rather common when the target is fixed, as in [START_REF] Akyildiz | Convergence rates for optimised adaptive importance samplers[END_REF]. In the context of SA, our approach stems from the MARS framework of [START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF]. The novelty here is the introduction of the temperature adaptation step and the use of Bregamn proximity steps. We can also cite the cross-entropy method [START_REF] Kroese | The cross-entropy method for continuous multi-extremal optimization[END_REF] for global optimization, which also adapts parametric proposals by KL divergence minimization. In this method however, the targets are constructed by truncating the proposals to keep the areas with the best values of f . In a broader context, expectation-minimization algorithms for statistical inference can also be reformulated using alternating divergence minimization [START_REF] Amari | Information geometry of the EM and em algorithms for neural networks[END_REF][START_REF] Fujimoto | A modified EM algorithm for mixture models based on Bregman divergence[END_REF].

NUMERICAL EXPERIMENTS

Considered examples and setting

We consider two benchmark problems in R 2 , whose minimum is f * = 0. Problem (P 1 ) relies on the ill-conditioned Rosenbrock function with a unique minimizer at x * = (1, 1) T located in a large banana-shaped valley. Problem (P 2 ) aims at minimizing the highly multimodal Rastrigin function, minimized at x * = 0. Their respective objective functions are

f 1 (x) = 5(x 2 -x 2 1 ) 2 + (1 -x 1 ) 2 , ∀x ∈ R 2 , ( 21 
)
f 2 (x) = 2 + 2 i=1 x 2 i -cos(2πx i ), ∀x ∈ R 2 . ( 22 
)
We use the regularization function R(T ) = T 2 , and Gaussian proposals with parameters µ and Σ. We evaluate {f (µ k )} k∈N to outline the performance of the SA algorithms. We also record {T k } k∈N to understand the temperature adaptation behavior of Alg. 1. We set N T = 1000, T N T = 50, and N = 10 5 . Precomputations were done in Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF] with the numerical integration package hcubature. Algorithms were initialized with T 0 = T N T , Σ 0 = 10 Id and random µ 0 ∈ R 2 .

Influence of APSA hyper-parameters

We display in Fig. 1 the evolution of {f (µ k )} k∈N and {T k } k∈N for different λ and ρ, on both problems. In both examples, high values of ρ seem to slow the iterates down, while high values of λ encourage low values of T . This influence is clear if we inspect {T k } k∈N . Regarding {f (µ k )} k∈N , we can see that the two plots with ρ = 100.0 are very close. It is also the case on (P 2 ) for ρ = 1.0. The role of λ is important as can be seen on Fig. 1 (top-left), where APSA reaches small values for only one combination of λ, ρ.

Comparison with other algorithms

We now compare our approach to three other SA algorithms with fixed schedules, among which MARS is the only one using parametric proposals: the SMCSA algorithm [START_REF] Zhou | Sequential Monte Carlo simulated annealing[END_REF], where N particles interact through weighting and resampling, with logarithmic cooling schedule T k = T0 log(k+1) for k ≥ 1, the MARS algorithm of [START_REF] Hu | Annealing adaptive search, crossentropy, and stochastic approximation in global optimization[END_REF], which uses Gaussian proposals with logarithmic cooling schedule, and the multi-start fast SA (mFSA), which consists in running N parallel fast SA algorithms [START_REF] Rubenthaler | Fast simulated annealing in R d with an application to maximum likelihood estimation in state-space models[END_REF] with schedule T k = 1 (k+1) log(k+1) for k ≥ 1. Among the parameters tested in Fig. 1, we retain λ = 5, ρ = 1. For SMCSA and mFSA, the values {f (µ k )} k∈N are the averages of the sampled objective values at iteration k. On (P 1 ), the APSA algorithm shows the best performance, with a very fast convergence. On (P 2 ), the performances of APSA and MARS are indistinguishable, and are clearly better than those of mFSA and SMCSA.

The performance of APSA are up-to-par with the other tested algorithms. Surprisingly, the adapted temperatures do not reach T = 0. This may indicate that reaching a low final temperature is enough to globally minimize f . Moreover, the final temperature of APSA is actually reached very fast, showing that adaptative schedules can be faster.

CONCLUSION

In this work, we have proposed a variational formulation associated to an alternating proximal framework for the design of a simulated annealing algorithm with adaptive cooling schedule. This is in stark contrast with existing methods, which need a fixed cooling schedule, often too slow. As a proof of concept, we matched state-of-the-art SA algorithms performance with an idealized implementation. We plan on leveraging these promising insights to design a more practical adaptive SA algorithm with sound convergence analysis.

Algorithm 1 :

 1 Alternating proximal SA (APSA) Initialization with T 0 > 0, θ 0 ∈ Θ. for k = 1, 2, . . . do Temperature adaptation:

Fig. 1 .

 1 Fig. 1. Influence of the parameters of APSA for solving (P 1 ) (top) and (P 2 ) (bottom): λ = 0.05, ρ = 100.0 (blue), λ = 0.05, ρ = 1.0 (red), λ = 5.0, ρ = 100.0 (green), λ = 5.0, ρ = 1.0 (purple).

Fig. 2 .

 2 Fig. 2. One run of the algorithms on (P 1 ) (top) and (P 2 ) (bottom): MARS (red), APSA (blue), mFSA (purple) and SMCSA (green).