
HAL Id: hal-03740536
https://hal.science/hal-03740536

Submitted on 3 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Boolean algebra for a formal expression of events in
logical systems

Bruno Denis, Jean-Jacques Lesage, Jean-Marc Roussel

To cite this version:
Bruno Denis, Jean-Jacques Lesage, Jean-Marc Roussel. A Boolean algebra for a formal expression of
events in logical systems. IMACS symposium on mathematical modelling, Feb 1994, Vienna, Austria.
pp. 859-862. �hal-03740536�

https://hal.science/hal-03740536
https://hal.archives-ouvertes.fr

- 859 -

IMACS Symposium on Mathematical Modelling February 2-4, 1994
1. MATHMOD VIENNA Vienna, Austria

A Boolean algebra for a formal expression of events in logical systems

Bruno Denis ; Jean-Jacques Lesage ; Jean-Marc Roussel

Laboratoire Universitaire de Recherche en Production Automatisée
Ecole Normale Supérieure de Cachan

61, avenue du président Wilson
F-94235 Cachan cedex - France

e-mail : denis@lurpa.ens-cachan.fr

Abstract. The dynamic modelling of logical systems widely calls upon the event notion. In
terms of Function Chart Grafcet or Petri Nets for instance, events are generally represented by
“rising or falling edges” of logical variables. However, numerous ambiguities are encountered in
the models because the translation of events into edges is not formal enough. In this paper, we pro-
pose a Boolean algebra the definition-set of which allows us to describe the time behavior of the
inputs and the outputs of any logical system. In this algebra, we have defined two unary opera-
tions in order to formally express the events. Then, we are giving 14 properties related to these ris-
ing and falling edge operations and their composition with the operations AND, OR, and NOT.

Key Words. Boolean algebra, event, logical system, Grafcet, Interpreted Petri Nets.

1. INTRODUCTION
The notion of event is widely used in describing the dynamic behavior of logical systems, mostly

when it is represented by combinatory equations, Grafcets or Interpreted Petri Nets (IPN). The use
of events in the transition conditions of a graph introduces a wide variety of descriptions that
turns out very useful for the representation of real time systems [15]. It actually allows for the
conditioning of the clearing of transitions by the occurrence of an event (event - connected
approach) and not only through the checking of a condition (condition-connected approach) [14].
Both these approaches are joint in the Interpreted Petri Nets if one associates a predicate and an
event to each transition [10].

In this paper we will show that, even though the relevance of the notion of event cannot be
questioned, the same cannot apply to the rigor of its definition or its use in the transition
conditions of Grafcets or Interpreted Petri Nets. We will first demonstrate the limits and
inaccuracies of the notion of “edges” and the interest of building an “extended” Boolean algebra so
as to reach a more formal approach of events in transition conditions. This Boolean algebra will
then be described, and its main properties given.

2. PROBLEMATICS OF THE TAKING INTO ACCOUNT OF EVENTS
From a theoretical point of view, the notion of event corresponds to a zero time spectrum

information, i.e the information that translates the supposedly instantaneous change of state of a
logical variable or of the function of logical variables [1], [7], [2]. The concept is then translated in
the notation “rising edge : ” or “falling edge : ” of the variable or of the function of variables [11]
(Fig. 1).

Yet in practice, the use of edges is often limited to the sole elementary logical variables as the
evaluation of expressions that hold edges of functions of logical variables - as in equation (1) - is
not mastered.

(1)

When the restrictive hypotheses of non-simultaneous events or of total independence between
the a, b, c variables can be emitted, heuristics such as (2) or (3) may be used [4] :

(2)

↑ ↓

E1 ↑ a c⋅ b+() ↓ a b⋅ c+()⋅=

↑ a b⋅() ↑a b⋅ a ↑b⋅+=

IMACS Symposium on Mathematical Modelling Vienna - Februar, 2-4 1994
1. MATHMOD VIENNA

- 860 -

(3)

Fig. 1 Rising edge and falling edge of a boolean variable.

One only has to examine such an expression as (1) to identify the cause of the difficulties met in
evaluating such logical equations. In fact, in this expression, “+” and “.” represent the two
operations of composition of Boole’s Algebra and “ ”, the unary complementary operation ; these
operations are thus perfectly defined by their truth table. However, “ ” is only a mere notation
that shows that the designer of this expression is interested in the change of state of the function

 and not in its logical level “1”. In [3] the authors actually stress that grafcet transition
conditions that hold edges of variables are not defined according to Boole’s Algebra.

So as to develop and evaluate such expressions, whatever the number of variables that make up
the logical functions, and taking into account the possibility of distinct simultaneous events, we
now wish to build an “extended” Boolean algebra that holds two event-connected unary
operations : the “rising edge” and the “failing edge”. Thus equipped with an algebraic definition of
edges, we will establish a set of properties that allows for the development and the evaluation of
expressions such as (1).

3. BUILDING OF AN “EVENT-CONNECTED” BOOLEAN

3.1 Set of definition
The set of definition for the researched algebra must :

• faithfully represent the inputs and outputs of any logical system,
• allow for the temporal taking into account of events,
• hold at least two elements,
• be closed under all the operations defined on it.

Taking these four criteria into consideration, we have retained and will note the set of
functions defined on , whose range is , that verify the following property.

By definition, all u functions of are then piecewise continuous and can admit a double
discontinuity at certain points. The general shape of a function of the set is represented in
Fig. 2.

Fig. 2 Example of an element function of the set .

At the points of discontinuity, the problem of the value of the function is posed. The function can
actually be considered as right-continuous or left-continuous. As J.P. Frachet, we will hold for the
right - continuity, as it is more natural to the physicist, it being causal [5]. At the date of
occurrence of an event, we will therefore consider that the function has already changed its value.

We admit the existence of points that present a double discontinuity (;) so
as to ensure that is closed under the edge operations.

↑ a b+() ↑a b⋅ a ↑b⋅+=

u
t

t

t

↑u

↓u

–

↑

a c⋅ b+()

II
IR +* IB 0 1,{ }=

II u{ : IR +* IB |→=

t∀ IR +*
: εt∃ 0> : ε1 ε2,()∀]0 εt[, 2∈ u t ε1–()=u t ε2–(),()() }∈

II
II

1

0

u t()

t1 t2 tt3 t4

II

u t2() 0= u t4() 1=
II

IMACS Symposium on Mathematical Modelling Vienna - Februar, 2-4 1994
1. MATHMOD VIENNA

- 861 -

It may be stressed here that such a definition of the elements of is perfectly in conformity
with the practice of automaticians who frequently represent the time evolution of boolean values
as timing diagrams.

3.2 Convention of notation
To make the reading of this paper easier, and to avoid all possible mixing of the operations on

the elements of (function) and the booleans (values taken by these functions at a
given time), we will from then on note “ ” the logical operation AND, “ ” the logical operation OR,
“ ” the NOT operation on a boolean. The notations “.”, “+”, et “ ” will be dedicated to the
operations on .

Furthermore, we have carefully distinguished the function from the boolean, i.e the value taken
at a given time by this function. For instance, u, v, w are three functions element of while u(t),
v(t), w(t) are three booleans.

3.3 Definition of operations on
After having explained our set of definition and precised the notations, we can defined the

following operations on .

the AND operation

 with

the OR operation

 with

the NOT operation

 with

By definition, is closed under these operations and is a boolean algebra [6] [8] [9].

3.4 Taking event into account in this algebra
All the interest of this algebra resides in the fact that we can now strictly define two extra unary

operations to formally express the notion of event.
the RE operation (rising edge)

 with

the FE operation (falling edge)

 with

The images of t under the function (respectively) are thus determined at all moments as
the logical AND between two booleans. The first boolean is the value of the u-function (respectively
the complement of the value) at that moment, whereas the second boolean is the value of a
predicate at the same moment. The truthfulness of the predicate depends on the value taken by
the function u on the interval .

For the function represented on Fig. 2 for instance :
• if and if i.e. or

.
• si and if i.e. or

.

By definition, is closed under these two operations as the functions and are defined in
, with boolean values and verify the property of the elements of developed in paragraph 3.1.

II

II u : IR +* IB→
∧ ∨

¬
II

II

II

II

II 2 II→
u v,() u v⋅()→

t∀ IR +* u v⋅() t(),∈ u t() v t()∧=

II 2 II→
u v,() u v+()→

t∀ IR +* u v+() t(),∈ u t() v t()∨=

II II→

u u→
t∀ IR +* u t(),∈ u t()¬=

II II

II II→
↑u→

t∀ IR +*∈ ↑u t(), u t() ε0∃ 0> : ε∀]0 ε0[,∈ u t ε–()=0,()∧=

II II→
↓u→

t∀ IR +*∈ ↓u t(), u t() ε0∃ 0> : ε∀]0 ε0[,∈ u t ε–()=1,()∧=

↑u ↓u

]t ε0– t[,

↑u t() 1= t [t1 t2[,]t2 t3[, t4{ }∪ ∪∈ t]0 t1],]t3 t4],]t4 ∞[,∪ ∪∈ t t1=
t t4=
↓u t() 1= t]0 t1[, t2{ } [t3 t4[,]t4 ∞[,∪ ∪ ∪∈ t]t1 t2],]t2 t3],∪∈ t t2=
t t3=

II ↑u ↓u
IR +* II

IMACS Symposium on Mathematical Modelling Vienna - Februar, 2-4 1994
1. MATHMOD VIENNA

- 862 -

3.5 FUNDAMENTAL PROPERTIES
The following properties ((4) to (17)) have been demonstrated on the set (these proofs as well

as an example have been developed in [12] :

4. CONCLUSION
In this paper we have presented the results of a theoretical work that aims at making up for the

lack of a formal definition of the notion of event as it is practiced in Grafcet. We have therefore
built up an algebra on a set of functions defined in with boolean values. In this algebra,
two operations have been defined for the formal definition of events : the rising edge operation and
the falling edge operation. Fourteen properties have then been gived in relation with the edge
operations and their combinations. This work, though it has an inner finality, is actually part of a
global project that aims at the analysis of the coherence and of the dynamic behavior of complex
systems. The Boole’s algebra that we have presented has actually allowed us to design a module of
formal calculation and of simplification of combinatory expressions. This module of formal
calculation is itself used for the analysis of the dynamics of grafcets and the automatic generation
of the equivalent automaton (AGGLAE Project of the LURPA [13]).

5. REFERENCES
[1] French AFCET working group, Pour une représentation normalisée du cahier des charges

d’un automatisme logique. AII, 61 (1977) 27-32 & 62 (1977) 36-40, Dunod (Ed.) France.
[2] Blanchard M., Comprendre maîtriser et appliquer le GRAFCET. Cépaduès (Ed.), Toulouse-

France, 1979.
[3] Bouteille N. & al., Le GRAFCET. Cépaduès (Ed.), Toulouse-France, 1992.
[4] David R. & Alla H., Petri Nets and Grafcet tools for modelling discrete event systems.

Prentice Hall (Ed.), London, 1992.
[5] Frachet J.P. & Colombari G., Elements for a semantics of the time in GRAFCET and

dynamic systems using non-standard analysis. APII Hermès (Ed.), 27-1 (1993), 107-125.
[6] Garding L. & Tambour T., Algebra for Computer Science. Springer Verlag (Ed.) New-York,

1988.
[7] GREPA, Le GRAFCET de nouveaux concepts. Cépaduès (Ed.), Toulouse-France, 1985.
[8] Halmos P., Lectures on Boolean Algebras. Van Nostrand Mathematical Studies (Ed.), New-

York, 1967.
[9] MacLane S. & Birkhoff G., Algebra. The MacMillan Compagny (Ed.), London, 1967.
[10] Moalla M. & al., Synchronized Petri Nets : A model for the description of non-autonomous

systems. Mathematical Foundations of Computer Sciences, Springer Verlag (Ed.), (1978)
374-383.

[11] IEC 848 Standard, Preparation of function charts for control systems. 1988.
[12] Roussel J.M. & Lesage J.J., Une algèbre de Boole pour l’approche événementielle des

systèmes logiques. To appear in : APII Hermès (Ed.), 27-5 (1993).
[13] Roussel J.M., Analyse de grafcets par génération logique de l’automate équivalent. PhD

thesis of E.N.S. de Cachan-France , To appear, 1994.
[14] Sayat B. & Ladet P., Control specification of a production system using GRAFCET and Petri

nets. APII Hermès (Ed.), 27-1 (1993) 53-64.
[15] Zahnd J., Machines séquentielles. Dunod (Ed.), Paris, 1987.

(4) (5) (6)

(7) (8) (9)

(10) (11) (12) (13)

(14) (15)

(16) (17)

II

u ↑u+ u= u ↑u⋅ ↑u= ↑u ↓u=

u ↓u+ u= u ↓u⋅ ↓u= ↓u ↑u=

↑ ↑u() ↑u= ↑ ↓u() ↓u= ↓ ↑u() 0*= ↓ ↓u() 0*=

↑ ui

i 1=

n

∏

↑ui uj

j 1=() j i≠(),

n

∏⋅

i 1=

n

∑= ↓ ui

i 1=

n

∏

↓ui ↓uj uj ↑uj⋅()+

j 1=() j i≠(),

n

∏⋅

i 1=

n

∑=

↓ ui

i 1=

n

∑

↓ui uj

j 1=() j i≠(),

n

∏⋅

i 1=

n

∑= ↑ ui

i 1=

n

∑

↑ui ↑uj uj ↓uj⋅()+

j 1=() j i≠(),

n

∏⋅

i 1=

n

∑=

II IR +*

