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ABSTRACT

In deep metric learning, the training procedure relies on sampling
informative tuples. However, as the training procedure progresses, it
becomes nearly impossible to sample relevant hard negative exam-
ples without proper mining strategies or generation-based methods.
Recent work on hard negative generation have shown great promises
to solve the mining problem. However, this generation process is
difficult to tune and often leads to incorrectly labeled examples. To
tackle this issue, we introduce MIRAGE, a generation-based method
that relies on virtual classes entirely composed of generated exam-
ples that act as buffer areas between the training classes. We empir-
ically show that virtual classes significantly improve the results on
popular datasets (Cub-200-2011 and Cars-196) compared to other
generation methods. Index Terms— image retrieval; metric learn-

ing; example mining; virtual classes; example generation

1. INTRODUCTION

Deep metric learning (DML) is an important, yet challenging task
in the Computer Vision community, with numerous applications
such as multi-modal retrieval [1], face verification [19] or person
re-identification [11]. DML methods intend to learn an embedding
space, where visually-related images (e.g., two different birds from
the same breed) have similar representations, while unrelated im-
ages (e.g., two different breeds of crows from North America and
Europe) have dissimilar representations. To learn this embedding
space, recent contributions focus on three main points: (1) loss
functions to improve generalization [26], (2) ensemble methods to
tackle the embedding space diversity [15] and (3) hard example
mining strategies to resume the training when randomly sampling
informative tuples becomes nearly impossible [27].

Example generation has recently been proposed as a hard nega-
tive mining strategy. In this case, a generator and the metric learn-
ing network are trained together to provide informative tuples us-
ing either VAEs [10] or GANs [4, 31, 32]. In the case of VAEs, a
large amount of examples is generated by sampling with respect to
the training sample distribution estimated from the data. Usually,
this leads to sampling inside the class manifolds and rarely produces
hard negative examples. Such variational approaches are interesting
in the case of few training samples per class but they are not well
suited for mining informative examples at later training stages. On
the opposite, GAN-based approaches generate discriminative exam-
ples. However, adversarial generators are difficult to tune due to the
contrary objectives of the DML network and the adversarial learning
of the generator. On the one hand, if the adversarial loss is much
lower than the DML loss, the generated examples tend to be at the
center of the class manifold and the method faces the same problems
as VAE generators. On the other hand, if the adversarial loss is much
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Fig. 1: Hard negative generation. The standard hard negative genera-
tion on Figure 1a can lead to incorrect label if the generated example
is sampled beyond the boundary of the class manifold. By adding a
virtual class between the training classes on Figure 1b, hard negative
examples generated beyond the boundary of the class manifold are
still within the correct classes with respect to training classes.

higher than the DML loss, some examples can be generated beyond
the boundary of the class manifolds and lead to label ambiguity as il-
lustrated on Figure 1a. The mining strategy then produces examples
with incorrect labels with respect to the training classes.

As the main contribution of this paper, we propose MIRAGE,
a method that leverages virtual classes composed solely of gener-
ated examples to tackle the problem of label ambiguity arising from
hard negative generation. Virtual classes play the role of buffer ar-
eas as shown on Figure 1b. Hard negative examples that lie between
the training class manifolds are generated inside these buffer areas,
without any label ambiguity, by sampling the virtual classes. In addi-
tion to solving the problem of label ambiguity, virtual classes exam-
ple generation leads to better generalization capabilities: The metric
learning network has better results on unseen classes than other ad-
versarial approaches [4, 31, 32].

The paper is organized as follow: in section 2, we present the re-
lated work in deep metric learning, the recent contributions in exam-
ple generation and motivate the need for our method. In section 3, we
expose the core aspects of MIRAGE and its simple implementation.
In section section 4, we experimentally show that MIRAGE indeed
produces buffer areas between the training classes and we perform
an ablation study of the different aspects of the method. Finally,
in section 5, we show that our method improves over other sample
generation methods on two DML datasets (Cub-200-2011 and Cars-
196), and obtains results comparable to the state-of-the-art.

2. RELATED WORK

In DML, we train a deep network to provide representations and a
corresponding metric to measure similarities. Training procedure



GAP

Shared
w

eights

Embedding with real
and generated examples

Backbone network
Discriminator

Encoder

Sets of prototypes 

Generator

Real example from
a training class

Generated example
from a training class

Generated example
from a virtual class

Prototype from
a training class

Prototype from
a virtual class

or     ?

,    ,    ,    ,     or     ? 

Fig. 2: Architecture overview. Feature vector is extracted from an image using the backbone network and a global average pooling (GAP).
Then, it is projected into an embedding space where a metric is learned. The framework relies on sets of prototypes (stars) for the training
classes (plain lines) or the virtual classes (dashed lines). A generator produces a new feature vector from a sampled prototype and a Gaussian
noise. It is then projected into the same embedding space as the training images. To train this generator, we use a conditional discriminator to
determine whether the sample is real or generated and the class to which it belongs.

relies on a loss function, a sampling strategy and optionally, an en-
semble method. For loss function, original methods consider pairs
[3] or triplets [19] of examples. These approaches have been ex-
tended to larger tuples [2, 14, 20, 22] or by improving loss function
properties [18, 24, 25, 29]. Sampling strategies based on scalable
mining strategies [5, 19] or proxy-based approximations [12, 13, 18]
can be used to accelerate training and improve generalization. Fi-
nally, ensemble methods are a popular way to increase performances
[8, 15, 16, 28, 30]. Our proposed MIRAGE is a complementary ap-
proach to loss functions and ensemble methods.

MIRAGE differs from other hard negative example generation
methods, such as DAML [4], HTG [31], HDML [32] and DVML
[10]. Both DAML and HTG generate hard examples through ad-
versarial training but they suffer from label ambiguity illustrated in
Figure 1. HDML [32] tries to alleviate this effect by generating first
an intermediate example that may be outside its class manifold; then
a generator projects this example into the class manifold. However,
they tend to discard the hardest examples which limits its generation
capability. DVML gets rid of the triplet constraints for the generator
by leveraging variational approach to generate examples. Because
there is no adversarial training, examples are mostly sampled at the
center of the distribution and slightly contribute to the DML loss.

To solve the problem of label ambiguity while generating hard
examples, we propose to insert virtual classes as buffer areas be-
tween the training classes. Sampling examples from the virtual
classes allows us to use a generative sampling process similar to
DVML [10] which is simpler than the triplet based adversarial
methods. At the same time, it also removes the need to take into
account the possible incorrectness of the labels since these generated
examples do not correspond to existing classes.

3. PROPOSED METHOD

3.1. Method Overview

MIRAGE improves DML by using the following core aspects:
DML training. Like any other DML method, MIRAGE uses

a deep network to embed feature vectors into a latent representa-

tion space where visually-related images have similar representa-
tions and where unrelated images have dissimilar representations.
We use standard metric learning approach which extracts deep local
features using a backbone network, computes a feature vector and
projects it into an embedding space where the metric is learned.

Training class sample generation. MIRAGE generates arti-
ficial examples from training classes similarly to variational ap-
proaches. By doing so, class manifolds are filled with synthetic
examples. These examples are added to the mini-batch along with
real examples to have larger batches with informative tuples. These
additional tuples are then used to train the DML model.

Virtual class hard negative sample generation. MIRAGE also
generates hard examples using adversarial learning. To tackle la-
bel ambiguity illustrated in Figure 1a, we add virtual classes be-
tween training classes that play the role of buffer areas (see Fig-
ure 1b). Hard negative examples are consequently generated inside
these buffer areas by sampling within these virtual class manifolds.
Similarly to training class generation, these examples are added to
the mini-batch. We experimentally show that it leads to better per-
formances than other generation-based methods.

3.2. Deep metric learning

The first part is to extract local features and to aggregate them into
a global feature ft. Then, we want to learn a Mahalanobis distance
dM so that the distance between two feature vectors fti and ftj is:

d2M (fti ,ftj ) = ∥W⊤fti −W⊤ftj∥
2
2 (1)

with M = WW⊤ a low-rank approximation. The feature vectors
are projected into the embedding space with W where their corre-
sponding examples are denoted xt. In practice, all examples xt are
also ℓ2-normalized to ease the optimization. We note E the function
which transforms a feature vector ft into an example xt The net-
work is trained using a metric learning loss LDML. Following [12],
classes are represented by prototypes pt to accelerate the training.
E and pt are trained together using LDML.



(a) Cub-200-2011 (b) MNIST

Fig. 3: Visualization of the training and virtual prototypes on MNIST and Cub-200-2011 datasets. For the Cub-200-2011 dataset (left), a
t-SNE on the prototypes is run to visualize the high-dimensional embedding space. Virtual classes are in gray while training classes are in
green. For the MNIST dataset (right), a 2D embedding space is learned without the ℓ2-norm. Training examples are represented by the
numbers, and the prototypes are represented by the crosses. Virtual examples are in pale color.

3.3. Training class example generation

A conditional generator G produce examples from the training
classes x̃t from the prototype pt of class t and a Gaussian noise
ϵ ∼ N (0;Σ), as follows:

x̃t = E

(
G

(
pt + ϵ

∥pt + ϵ∥2

))
(2)

x̃t is then used as a training example to optimize the loss function
described in the previous section. To train G, we use a reconstruction
loss by computing the ElasticNet loss between a feature vector ft

extracted from a real image and a feature vector generated by feeding
G with E(ft), as follows:

Lrec = ∥ft −G(E(ft))∥1 + ∥ft −G(E(ft))∥22 (3)

3.4. Virtual class example generation

To generate examples from virtual classes, each virtual class v is as-
sociated with a prototype pv . Examples are generated from these
prototypes exactly like if they where training classes. To produce
hard samples, we encourage prototypes and the generator to output
realistic samples between the training classes. To that end, we use a
discriminator D. D is trained using binary cross-entropy to distin-
guish between real and generated samples (with output Dg). D is
also trained using categorical cross-entropy to predict classes (with
output Dc). The combined loss Ladv for training D is a two head
classification loss based on cross-entropy:

Ladv =− logDg(E(ft))− log

(
1−Dg · E ·G

(
pv + ϵ

∥pv + ϵ∥2

))
︸ ︷︷ ︸

binary cross-entropy on real/generated samples

−yt logDc(E(ft))− yv log

(
Dc · E ·G

(
pv + ϵ

∥pv + ϵ∥2

))
︸ ︷︷ ︸

categorical cross-entropy on the classes

where yt and yv are the class labels of the prototypes pt and pv

respectively. To encourage the generator to output realistic samples
that are between the training classes, G is trained to maximize Ladv,
with D being fixed. By optimizing over Dg , the generator is encour-
aged to output generated samples that are indistinguishable from real

samples. By optimizing over Dc, the generator is encouraged to out-
put samples at the boundaries of the classes (i.e., in the buffer area
described in Figure 1b). Just like the training class sample gener-
ation, virtual class sample generation is used to populate the mini-
batches used for training using LDML.

3.5. MIRAGE architecture

MIRAGE architecture follows Figure 2. A set of deep local fea-
tures is first extracted from the image using a backbone network
such as GoogleNet [21] or BN-Inception [6]. These local features
are then aggregated into global feature vectors using average pool-
ing. They are followed by the encoder E which is composed of
a single fully-connected layer without bias followed by a ℓ2 nor-
malization. The generator G is composed of two fully-connected
layers with ReLU activation. The discriminator D is composed of
a fully-connected layer with ReLU activation which is followed by
two fully-connected layers: One with sigmoid activation for the bi-
nary classification of real or virtual feature vectors and one with soft-
max activation for the class prediction.

To train MIRAGE, we generate mini-batches composed of train-
ing examples xt, generated examples from the training class x̃t and
generated examples from virtual classes x̃v . The ratio of training
examples and generated examples in the mini-batch corresponds to
how much each aspect of MIRAGE is used. This ratio is investigated
in the ablation studies. The backbone network, the encoder E and
the prototypes are trained together using the entire mini-batch min-
imizing LDML from subsection 3.2. The generator G is trained on
x̃t minimizing Lrec from subsection 3.3 and on x̃v maximizing Ladv

from subsection 3.4. Finally, the discriminator D is trained on the
entire batch minimizing Ladv from subsection 3.4.

4. ABLATION STUDY

We provide different ablation studies that include (1) a visualization
of the learned embedding and the virtual classes as well as some rel-
evant statistics, (2) the impact of the number of generated example
in the mini-batches, and (3) the impact of the virtual class genera-
tion. In this section, we train a GoogleNet with a 512 dimensional
embedding using contrastive loss on the Cub-200-2011 dataset us-
ing a fixed batch size of real examples |B| = 40 for all experiments
(referred as the Baseline).



Training class examples ratio Virtual class ratio
r (%) 0 10 50 100 200 400 0 10 50 100 200 400
R@1 57.0 57.8 58.8 58.5 58.7 58.7 57.0 58.2 59.0 59.3 58.6 58.9

Table 1: Impact of the number of training class generated examples
and of the number of virtual class in the mini-batches.

4.1. Prototype visualization

The first ablation consists in an empirical analysis of the learned
embedding space with the virtual classes. The objective is to verify
that our architecture encourages the virtual classes to settle between
training classes. We perform a t-SNE visualization (Figure 3a) of
the training and virtual prototypes of the model trained on Cub-200-
2011. Virtual prototypes (in gray) are indeed in the middle of the
training class prototypes. Quantitatively, we found that more than
80% of the training class prototypes have a virtual class prototype as
nearest neighbor in the 512 dimensional latent space. This numeri-
cally shows that our architecture is able to produce virtual class as
buffer areas between training classes.

To avoid the bias introduced by the 2D embedding performed
by t-SNE, we also train a model on the popular MNIST dataset with
a latent space of dimension 2 and show the resulting prototypes as
well as real and generated examples in Figure 3b. As we can see, the
virtual prototypes (denoted F and in pale colors) are indeed acting
as buffer between the training classes, even with the high constraints
of having such a low dimensional latent space.

4.2. Sample generation

First, we evaluate the impact of the number of generated training
class examples. For that purpose, we do not use virtual class pro-
totypes. We vary the size of the generated example set B̃ with re-
spect to a ratio r of the real example set B, such that: |B̃| = r |B|.
We report Recall@1 on the Cub-200-2011 dataset in Table 1 for
r ∈ {0, 10%, 50%, 100%, 200%, 400%}.

The reported value for r = 0% means that no examples have
been generated and obtains a strong Baseline of 57.0% Recall@1.
One can note that even a small amount of generated example greatly
increases the performances by around 1%, which confirms the ben-
efit of a generation-based mining strategy to improve DML. With
even more generated examples, performances are improved up to
58.8% Recall@1, a significant increase of nearly 2%.

Next, we evaluate the impact of the number of virtual classes.
We fix both batch |B̃| and |B| to 40. Then, we vary the number
of the virtual class prototype Nv as a ratio of the number of the
training class Nt, such that Nv = r Nt. We only generate exam-
ples from these virtual classes and not from the training classes.
We report Recall@1 on the Cub-200-2011 dataset in Table 1 for
r ∈ {0, 10%, 50%, 100%, 200%, 400%}. Interestingly, even a
small number of additional classes already improves the Baseline by
a significant increase of more than 1.0% in Recall@1. Increasing
the number of virtual classes improves even more the performances,
and leads to the best results for Recall@1 with 59.3% - a significant
increase of more than 2% over the Baseline.

5. COMPARISON TO THE STATE-OF-THE-ART

In this section, we present the benefits of MIRAGE on two deep met-
ric learning datasets named Cub-200-2011 [23] and Cars-196 [9].

Backbone Method CUB-200-2011 Cars-196
R@1 R@2 R@4 R@1 R@2 R@4

GoogleNet

DAMLRMM [27] 55.1 66.5 76.8 73.5 82.6 89.1
DAML [4] 52.7 65.4 75.5 75.1 83.8 89.7
DVML [10] 52.7 65.1 75.5 82.0 88.4 93.3
HDML [32] 53.7 65.7 76.7 79.1 87.1 92.1

MIRAGE (Ours) 59.7 71.1 80.4 82.1 89.1 93.6

BN-Inception

MS loss [26] 65.7 77.0 86.3 84.1 90.4 94.0
SoftTriplet [17] 65.4 76.4 84.5 84.5 90.7 94.5

HORDE [7] 66.8 77.4 85.1 86.2 91.9 95.1
MIRAGE (Ours) 66.4 78.9 84.6 83.9 90.3 94.4

Table 2: Comparison to the state-of-the-art on Cub-200-2011 and
Cars-196 datasets. Results are reported using GoogleNet as back-
bone network for fair comparison with generation-based methods.
Results are also reported with BN-Inception backbone for compari-
son with other recent methods.

We follow the standard splits from [16] and Recall@K are reported
for each dataset in Table 2.

We first compare our architecture with recent sample generation
approaches from the literature using the now standard GoogleNet
Backbone to ensure all results are fairly comparable. As we can see,
MIRAGE obtains very strong results on Cub-200-2011 and Cars-196.
This shows the importance of combining in class sample generation,
like in [10] with hard sample generation like [32], which MIRAGE
achieves with a simple architecture.

In order to compare MIRAGE with recent methods, we also
report Recall@K using BN-Inception [6] with the same hyper-
parameters as the ones used for GoogleNet. MIRAGE obtains
strong performances when compared to very recent state-of-the-art
methods. On Cub-200-2011, we obtain second best performances,
being only 0.4% behind HORDE [7]. On Cars-196, we obtain
performances comparable to that of Multi-Similarity loss [26] and
SoftTriplet [17]. We want to emphasize that the reported results
were obtained using the constrastive loss function, and yet bring
improvements to the baseline comparable to that of using a much
more advance loss function such as [26], [17] or [7]. We believe this
demonstrates the soundness of our approach.

6. CONCLUSION

In this paper, we introduce MIRAGE, a generation-based strategy
that naturally solves the generation of hard examples. MIRAGE nat-
urally solves the problem of generating incorrectly labeled hard neg-
ative examples by relying on a set of virtual class prototypes solely
composed of generated examples. Even when the generator pro-
duces examples beyond their class manifolds, the presence of virtual
classes ensures that the examples are still generated with the correct
labels regarding the training classes. We empirically show that MI-
RAGE outperforms the state-of-the-art mining strategies and leads to
competitive results when compared to complementary approaches.
This is validated on two deep metric learning datasets named Cub-
200-2011 and Cars-196.
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