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Abstract 

Cell culture under medium flow has been shown to favor human brain microvascular 

endothelial cells function and maturation. Here a three-dimensional in vitro model of the 
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human brain microvasculature, comprising brain microvascular endothelial cells but also 

astrocytes, pericytes and a collagen type I microfiber – fibrin based matrix, was cultured 

under continuous medium flow in a pressure driven microphysiological system (10 kPa, in 

60-30 s cycles). The cells self-organized in micro-vessels perpendicular to the shear flow. 

Comparison with static culture showed that the resulting interstitial flow enhanced a more 

defined micro-vasculature network, with slightly more numerous lumens, and a higher 

expression of transporters, carriers and tight junction genes and proteins, essential to the 

blood-brain barrier functions. 
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Abbreviations 1 

ECM: extracellular matrix 2 

HBEC: human brain microvascular endothelial cells 3 

HA: human astrocytes 4 

HP: human brain pericytes 5 

CMF: collagen microfibers 6 

Cld5: Claudin 5 7 

ZO1: Zonula occludens-1 8 

Glut1: Glucose transporter 1  9 

TfR: Transferrin receptor  10 

BRCP: Breast cancer resistant protein  11 

PgP: P-glycoprotein 12 
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1. Introduction 1 

The structural organization of the human brain microvasculature enables functional 2 

specificities and ensures the protection of the human nervous system thanks to the highly 3 

selective blood-brain barrier. The brain microenvironment regulates the phenotypes of the 4 

main cell types constituting the brain micro-vessels: the brain microvascular endothelial cells, 5 

the astrocytes and the pericytes. The continual shear stress generated by the flow of blood 6 

across the microvasculature especially affects the cell morphology and functions. It has 7 

indeed been reported to upregulate some junctional proteins, transporters, ions channels and 8 

limit the permeability of brain microvascular endothelial [1–4]. However, other studies 9 

showed that none or only part of the key blood–brain barrier markers were significantly over-10 

expressed (Claudin 5, Zonula occludens-1, Occludin, CD31, Glucose transporter 1, P-11 

glycoprotein, and others) [5,6], although the mechanical stress from the medium did promote 12 

differentiation or maturation of the endothelial cells specific to the brain microvasculature. 13 

Differences in culture and flow parameters such as applied pressure and time of treatment 14 

may partly explain those inconsistencies, especially as too high or disturb shear stress may 15 

reverse its beneficial impacts [3,7]. The range of assessed biochemical signals are also 16 

susceptible to be affected by the types of cells used in the model. The use of astrocyte 17 

conditioned medium has been shown to be as important as the shear stress to upregulate 18 

Zonula occludens-1 and decrease brain endothelial permeability [1]. Few studies introduced 19 

astrocytes [2,4], pericytes [8] or both [9] to the flow cultured brain microvasculature models, 20 

though they seemed to increase the differences observed compared to static conditions. Fewer 21 

studies considered the importance of the extracellular matrix (ECM) and its combined 22 

influence with flow on the cell culture. Systems of coculture and perfused vessels adjacent to 23 

a collagen-I gel were engineered [10]. However, no direct contact were possible between the 24 
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endothelial cells seeded in the perfused channel and the astrocytes and pericytes seeded on the 1 

other side of the gel ; and the vessels diameter had to remain over 150 µm to avoid for the 2 

system to collapse [4,7]. Cells self-organization in a collagen or fibrin based gel is a state-of-3 

the-art technique to develop brain microvasculature like network. Two teams have proposed 4 

such models with a coculture of brain microvascular endothelial cells, astrocytes and pericytes 5 

in microfluidic chips [11,12].  However, if the micro-vessels were perfusable for a few hours 6 

(< 20 h) after a maturation of 7 days, no data are yet available for a full culture under flow. 7 

We have also previously developed such a self-organized three-dimensional (3D) in vitro 8 

model of the brain microvasculature that was cultured in static condition [13]. Here we 9 

focused on the impacts of the mechanical stimuli exerted during the 7 days of culture by 10 

medium flow through the ECM, on the morphology, gene and protein expression of a scale-up 11 

version of this human cerebro-vasculature model.  12 

2. Materials and Methods 13 

2.1.Cell culture 14 

The cell lines have been developed in previous studies: human brain microvascular 15 

endothelial cells/conditionally immortalized clone 18 (HBEC) [14], human 16 

astrocyte/conditionally immortalized clone 35 (HA) [15], and human brain pericyte/ 17 

conditionally immortalized clone 37 (HP) [16]. All cells were cultured on collagen coated 18 

dishes (100 mm, collagen type I, Iwaki, Shizuoka, Japan) and incubated at 33°C (to maintain 19 

growth activity), 5% CO2, in humidified environment. All culture media were supplemented 20 

with 4 µg.mL-1 Blasticidin S HCl (Invitrogen, Waltham, USA) to maintain selective pressure 21 

for routine culture. HBEC were cultured in Vasculife (VEGF-Mv, LifeLine) 500 mL 22 

supplemented with 0.5 mL rh FGF-b, 0.5 mL ascorbic acid, 0.5 mL hydrocortisone 23 
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hemisuccinate, 25 mL L-glutamine, 0.5 mL rh IGF-1, 0.5 mL rh EGF, 0.5 mL rh VEGF, 0.5 1 

mL heparin sulfate, 25 mL fetal bovine serum (kit, LifeFactor VEGF-Mv, LifeLine, 2 

Frederick, USA), 25 mL supplementary fetal bovine serum (FBS, Gibco ThermoFisher, 3 

Waltham, USA), and 1% penicillin-streptomycin (10,000 U.mL-1 - 10,000 µg.mL-1, Nacalai 4 

tesque, Kyoto, Japan). HA were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 5 

Nacalai tesque, Kyoto, Japan) 500 mL, complemented with 10% FBS, 1% penicillin-6 

streptomycin, 5 mL N2 supplement x100 (Gibco ThermoFisher, Waltham, USA). HP were 7 

cultured in Pericyte Medium (ScienCell Research Laboratories, Carlsbad, USA) 500 mL, 8 

supplemented by 5 mL Pericyte Growth Supplement 100x, 10 mL fetal bovine serum, and 5 9 

mL penicillin-streptomycin. HA and HP were pre-differentiated at 37°C 3 days before 10 

seeding of the 3D model. 11 

2.2.Collagen type I microfibers and fibrin based ECM model 12 

The ECM of our 3D in vitro model of brain vasculature is composed of collagen type I 13 

microfibers (CMF) and fibrin. CMF were processed from freeze-dried porcine collagen type I 14 

sponge, donated from Nippon Ham Foods Ltd. (Osaka, Japan). 50 mg of collagen sponge 15 

were homogenized 6 min (Violamo VH-10 homogenizer, S10N-10G 10 mm diameter, 115 16 

mm length probe) in 5 mL of ultrapure water (Milli-Q water purification system, Merck, 17 

Kenilworth, USA), then centrifuged 10 min at ambient temperature at 12100 g. The pellet was 18 

then sonicated (Ultrasonic processor VC50, 50W, 3.2 mm probe, Sonics, Newtown, USA) in 19 

5 mL with fresh ultrapure water in an ice bath for 100 cycles of 20 s ultrasonication and 10 s 20 

cooling. The sonicated collagen was filtrated (40 µm filter, microsyringe 25 mm filter holder, 21 

Merck, Kenilworth, USA), and the filtrate freeze-dried for at least 40 h (Freeze dryer FDU-22 

2200, Eyela Co., Shanghai, China). The resulting CMF were stored in a desiccator at room 23 

temperature prior use.  24 
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For 70 µL hydrogels, 0.7 mg CMF and 0.4 mg Fibrinogen were dispersed in 40 µL non-1 

complemented DMEMwhile 200,000 HBEC, 400,000 HA, 100,000 HP, and 0.3 U Thrombin 2 

were dispersed in 30 µL complemented Vasculife. Both solutions were mixed just before 3 

dropping in cell culture inserts (3470 transwell, for 24 well plates, polyester membrane with 4 

0.4 µm pore, Corning Life Sciences, Tewksbury, USA) preliminarily coated with 100 µL 5 

Fibronectin at 0.04% (Fibronectin from human plasma, F2006-5G, Sigma-Aldrich, St Louis, 6 

USA). 60 min incubation at 37°C allowed for the mixtures to gel. For static cultures, the 7 

inserts were placed on top of 6 well culture plate thanks to a specifically design 24 to 6 well 8 

plate adaptor (Figure 1), and 12 mL of 1:1:1 complemented mixed media were added (6 mL 9 

of Vasculife, 6 mL DMEM-N2, and 6 mL of Pericyte Medium, all without Blasticidine). The 10 

gels were incubated 7 days at 37°C, 5% CO2, humidified atmosphere, with a medium change 11 

at day 4. 12 

2.3.Flow system 13 

For flow culture, parts of the upper parts of the inserts were cut off, which allowed their 14 

introduction after gelation in the Pressure driven microphysiological system  (Figure 1 and 15 

Figure S1) [system derived from 16,17]. The system was composed of 4 devices, each 16 

accommodating 2 samples chambers and 2 medium chambers. A total of 8 samples could thus 17 

be cultured in parallel. Each unit - sample and medium chamber - contained a total of 1.4 mL 18 

medium (1:1:1 mixed media as for static culture). This medium continuously flowed from one 19 

chamber to the other following cycles of 60 s (sample chamber to medium chamber) and 30 s 20 

(medium chamber to sample chamber). A pressure of 10 kPa was applied to induce and 21 

maintain this perfusion process. The system was optimized so that the samples were always 22 

immerged, and perfused with a vertical flow. Medium changes were conducted every day 23 

except at day 6.  24 
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2.4.Fluorescence imaging and protein expression 1 

Fluorescent cell tracking dyes were used to identify HA and HP (CellTracker
TM

 CMFDA and 2 

red, ThermoFisher Scientific, Waltham, USA). After dilution of the dyes at 10 mM in 3 

dimethyl sulfoxide (DMSO, Fujifilm Wako, Osaka, Japan), they were further diluted in non-4 

complemented medium at 1:1000 (v:v). 1 day prior to the experiment, the cells were rinsed 5 

with PBS, and exposed to the diluted dyes for 40 min at 37°C. After 3 additional washings 6 

with PBS, the cells were covered with their usual complemented medium and put back at 7 

37°C for 24 h before seeding into the gel. Precautions were taken to minimize exposure to 8 

light of those gels. 9 

After 7 days of culture, the gels (with stained or unstained HA and HP) were rinsed in PBS 3 10 

times, and fixed in 4% paraformaldehyde (Fujifilm Wako, Osaka, Japan) at 4°C for at least 6 11 

h. The gels were then detached from there inserts and a 15 min incubation in 0.05% Triton X-12 

100 (Sigma-Aldrich, St Louis, USA) in PBS was carried out for permeabilization. After 13 

additional washing, a 1 h incubation with 1% bovine serum albumin (BSA, Sigma, St Louis, 14 

USA) in PBS was used to minimize non-specific staining. Samples were incubated at 4°C 15 

with primary antibodies diluted at 1% in BSA for at least 40 h: mouse anti-CD31 antibody 16 

(NCL-CD31-1A10, Leica, Wetzlar, Germany) alone; mouse anti-ZO-1 antibody (61-7300, 17 

Invitrogen, Waltham, USA) alone; or mouse anti-CD31 antibody and rabbit anti- tight 18 

junction proteins, carriers or transporters (anti-Aquaporine 4, A5971, Sigma-Aldrich, St 19 

Louis, USA ; anti-Claudin 5, ab131259, Abcam, Cambridge, UK; anti-PgP, ab170904, 20 

Abcam, Cambridge, UK; anti-Glut-1, ab115730, Abcam, Cambridge, UK; anti-BCRP, 4477, 21 

Cell Signaling, Danvers, USA). Samples were exposed to secondary antibodies diluted at 1% 22 

in BSA for 2 h at room temperature in the dark (goat anti-mouse, Alexa Fluor® 647, A21235, 23 

ThermoFisher Scientific, Waltham, USA, or goat anti-rabbit, Alexa Fluor® 488, ab150077, 24 

Abcam, Cambridge, UK). For TfR and ZO1, a second staining was then carried out with 25 
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conjugated antibodies (first mouse anti-CD31, then FITC-conjugated mouse anti-TfR, 1 

NB500-493, NovusBio, Centennial, USA; or first mouse anti-ZO1, then Alexa Fluor 594 2 

conjugated mouse anti-CD31, FAB3628T, R&D Systems, Minneapolis, USA). Nuclei were 3 

counterstained with Hoechst (Thermo Fisher Scientific, Waltham, USA). For samples only 4 

stained for CD31, a treatment with RapiClear (1.47, SUNJin Lab, Hsinchu, Taiwan) eased 5 

deeper observations by making the ECM more transparent. 6 

Samples were observed using epifluorescence microscopes (Confocal Laser Scanning 7 

Microscope Fluoview FV3000, Olympus, Tokyo, Japan, for x20 and x60 magnifications). 3D 8 

renderings were obtained with Imaris software (Oxford Instruments, Abingdon, UK). For 9 

comparative protein expression assessment, the same exposition time and excitation power for 10 

each correlated set of static and flow samples. Maximum and minimum z were chosen to 11 

include all visible signals. Z-stack projections using maximum intensity projection were 12 

analyzed using Fiji software [19].  The expression of tight junction proteins, transporters or 13 

carriers were assessed by measuring the fluorescent intensity of the specific protein staining 14 

divided by the fluorescent intensity of CD31 staining.  15 

2.5.Histology 16 

After 7 days culture, the hydrogels were rinsed and fixed in 4% Paraformaldehyde as 17 

previously described, and sent to the Applied Medical Research Company for paraffin wax 18 

embedding, sections mounting CD31 and Toluidine immuno-histostaining, or hematoxylin 19 

eosin staining. The sections were then observed using the FL Evos Auto microscope (Thermo 20 

Fisher, Waltham, USA). Lumen diameters, numbers, and sample thickness were measured on 21 

the Fiji software. 22 
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2.6.Gene expression  1 

After 7 days culture, the hydrogels were rinsed in PBS, and a RNA extraction with a DNase 2 

step was carried out following the PureLink RNA Micro Kit instructions (Invitrogen, 3 

Waltham, USA). RNA content was assessed with the NanodropTM spectrometer (N1000, 4 

Thermo Fisher Scientific, Waltham, USA). A reverse transcription of the RNA samples into 5 

cDNA using iSCRIPT cDNA synthesis kit (Bio-Rad, Hercules, USA) was undertaken. A real-6 

time quantitative polymerase chain reaction (RT-qPCR) was then conducted on 2 µL of each 7 

cDNA samples using Taqman Fast Advanced Mix (Taqman gene expression assays, Thermo 8 

Fisher Scientific, Waltham, USA, see Supplementary data (Table S1) for references) in the 9 

StepOnePlus Real-Time PCR System (Thermo Fisher Scientific, Waltham, USA). A 10 

preliminary study determined PPIA as the most stable housekeeping gene. Results were 11 

moreover standardized by CD31 expression.  12 

2.7.Statistics 13 

Three independent experiments were carried out for each outcome in duplicate. Error bars 14 

represent standard deviations. Two by two comparisons of results (static and flow groups) 15 

were performed. Student’s t-test firstly assessed the variance similarity of the two groups. p 16 

values were then calculated using two-tailed Fisher test. A difference was considered 17 

significantly different if * p <0.05, or ** p <0.01.  18 

 19 

3. Results and discussion 20 

With optimized seeding parameters and after 7 days of culture, the cells self-organized into 21 

capillary-like network whether the culture was carried out in static condition or under flow in 22 

the pressure driven microphysiological system (measured flow rate of 379 ± 37 µL.min
-1

). 23 
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This was especially visible with CD31 immunostaining of the HBEC (Figure 2). Unlike 1 

expected, the micro-vessels mainly grew horizontally in the gel, perpendicular to the flow 2 

direction. It is thus not thought that the micro-vessels were perfused through the lumen, but 3 

more likely that interstitial shear flow impacted the cells from the basal side. Such mechanical 4 

stress affected however greatly the vessel formation and maturation. Flow culture seemed to 5 

induce indeed a more defined network. Flow cultured cells self-organized in more tubular 6 

shapes, less thick, with fewer connections, and slightly deeper in the hydrogels. It resembled 7 

more to micro-vessels than in static culture. Our results were consistent with the often-8 

detected enhancement of the cells functions and maturation by flow although the experimental 9 

set-up differed largely. Other studies on interstitial flow impact on non-brain micro-vessel 10 

development have shown that the angiogenic activity was suppressed in the direction of the 11 

flow, and favored in the opposite direction [20,21]. The interstitial flow could thus be used to 12 

regulate and spatially guide angiogenesis. 13 

Both static and flow conditions induced capillary-like tubules that displayed lumen, as seen in 14 

histological sections (Figure 3, and Figure S2 for full gel picture). Interestingly, no significant 15 

change in the lumen dimensions was found when comparing static and flow culture. However, 16 

the microvasculature cultured under flow had a tendency to exhibit a higher lumen number 17 

than when cultured in static condition. This is consistent with our observations of a more 18 

defined network.  19 

Gene expression of tight junction proteins, transporters and carriers essential to the blood-20 

brain barrier functions were analyzed by RT-qPCR. Flow culture seemed to boost such gene 21 

expressions compared to static condition (Figure 4.A). All assessed genes: Claudin 5 (Cld5), 22 

Zonula occludens-1 (ZO-1), Glucose transporter 1 (Glut1), Transferrin receptor (TfR), Breast 23 

cancer resistant protein (BCRP), and P-glycoprotein (PgP), tended to be over expressed in 24 

samples that undergone culture under flow compared to samples that were culture in static 25 
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condition. The increase was significant for Glut1, TfR and BCRP, not for the other genes 1 

however. This may partly result from the high standard deviations, consequence from the 2 

differences between collagen lots, and small differences in flow pressure (9% deviation in 3 

average) that could results from limited shrinkage of the gels or bubbles, although those latter 4 

have been widely reduced with method improvements. Despite some inconsistency in the 5 

literature, similarly showing the importance of culture parameters, we have shown in the 6 

introduction that the consensus was also tending to an improvement of tight junction proteins, 7 

transporters and carriers expression by a shear stress.  8 

Confirmation of this tendency was obtained by the assessment of the protein expression of 9 

those same tight junction proteins, transporters and carriers. Comparison of 10 

immunofluorescence staining intensity showed a similar tendency to an improvement of the 11 

expression of Cld5, ZO1, Glut1, TfR, BCRP and PGP when the sample were cultured under 12 

flow (Figure 4.B and C). This increase was significant for TfR and PgP. Differences between 13 

gene and protein expressions are expected due to transcriptional and post-transcriptional 14 

regulation processes [22]. This and the high standard deviations could explain that significant 15 

increases in Glut1 and BCRP genes were not linked to higher protein expression, and that PgP 16 

protein expression was on the other side much more enhanced by flow culture than its gene 17 

expression lead to believe. The proteins seemed mostly expressed by the endothelial cells as 18 

the colocalization between the red CD31 staining and the green staining prevailed. However, 19 

some green staining could also be found in area not-specifically stained by CD31, which 20 

might mean that astrocytes and pericytes could expressed those proteins too but at lower 21 

levels It is known for example that Glut1 is overexpressed in endothelial cells but can also be 22 

expressed in pericytes [23]. High shear stress can also modify the localization of those 23 

proteins. Low shear stress supports ZO1 expression in the cell junctions for example, while 24 

high shear stress induces ZO1 translocalization [3].  25 
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 1 

4. Conclusion 2 

Overall, this study showed that culture under continuous flow for 7 days lead to the self-3 

organization of endothelial cells, astrocytes and pericytes in a brain micro-vessel network 4 

with increased definition compared to static culture. Although the lumen dimensions were not 5 

modified, a slight increase in lumen number was observed. Similarly, the gene and protein 6 

expression of tight junction proteins, transporters and carriers seemed to be increased by the 7 

interstitial flow. This model shows the significant impact of flow to regulate 3D in vitro brain 8 

micro-vessel models. Using the mechanical stress from the continuous flow to guide the 9 

micro-vessels orientation is a foreseen next step. The long-term goal is to aim for micro-10 

vessels stable under long-term flow culture and perfusable to mimic even more closely the in 11 

vivo conditions.  12 

 13 
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Figure/Table Legends 28 

Figure 1: Schematic overview of the protocol for the 3D in vitro brain microvasculature 29 

model, top: culture in static condition with a picture of a gel in a transwell and of this 30 

transwell in a 6 well plate with an adaptor; bottom: culture in flow condition with a picture of 31 

2 samples in the pressure driven microphysiological system. 32 

 33 

Figure 2: Confocal images of human brain endothelial cells (in red, immunostained for 34 

CD31) organized as a network after 7 days culture in static or flow culture. (A) z-stack 35 

projections of x20 magnification, (B) samples after RapiClear treatment, xz and yz projection 36 

on the sides, (C) 3D rendering of x20 and x60 magnification, (D) Sections of x60 37 
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magnification with astrocytes (in green, stained with CellTracker Green), and pericytes (in 1 

blue, stained with CellTracker Red). 2 

 3 

Figure 3: (A) Histological observation of a cross-sectioned gel, lumen surrounded by HBEC 4 

(stained for CD31 in brown, Toluidine staining for nuclei) were easily visible. (B) 5 

Distribution of lumen diameters. (C) Comparison of lumen number between static and flow 6 

condition. 7 

 8 

Figure 4: Gene and protein expression of tight junction proteins, transporters and carriers 9 

essential to the blood-brain barrier functions, assessed after 7 days culture under static or flow 10 

conditions. (A) RT-qPCR results. (B) Immunostaining fluorescence intensity comparison. (C) 11 

Immunostainings observed by confocal microscopy.  12 
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