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First do not fall: learning to exploit a wall
with a damaged humanoid robot

Timothée Anne1, Eloı̈se Dalin1, Ivan Bergonzani1, Serena Ivaldi1, and Jean-Baptiste Mouret1

Abstract—Humanoid robots could replace humans in haz-
ardous situations but most of such situations are equally dan-
gerous for them, which means that they have a high chance of
being damaged and falling. We hypothesize that humanoid robots
would be mostly used in buildings, which makes them likely to
be close to a wall. To avoid a fall, they can therefore lean on the
closest wall, as a human would do, provided that they find in a
few milliseconds where to put the hand(s). This article introduces
a method, called D-Reflex, that learns a neural network that
chooses this contact position given the wall orientation, the wall
distance, and the posture of the robot. This contact position is
then used by a whole-body controller to reach a stable posture.
We show that D-Reflex allows a simulated TALOS robot (1.75m,
100kg, 30 degrees of freedom) to avoid more than 75% of the
avoidable falls and can work on the real robot.

Index Terms—Machine Learning for Robot Control, Hu-
manoid Robot Systems

I. INTRODUCTION

HUMANOID robots are some of the most versatile ma-
chines ever designed [1]. They can grasp, pull, push,

hold, and reach for both low or high places, but they can
also walk, climb stairs, or crawl in a tunnel. Thanks to their
small footprint, they can navigate in narrow spaces, and, more
generally in all the environments designed for humans.

This versatility makes humanoids ideal machines to be de-
ployed in risky and complex situations, like industrial disasters
or space operations, during which more versatility means
a higher probability of having the right set of capabilities
to solve the problem at hand [1], [2]. This contrasts with
industrial robots, which are designed to perform the same set
of tasks continuously in a well-defined environment.

Nevertheless, the versatility of humanoid robots comes at
the cost of an increased fragility: they have more joints
than most robots and a single joint failure often results in
a fall [2]. This fragility is especially concerning because
humanoid robots would be the most useful in situations that
are too dangerous for humans, which are likely to be equally
dangerous for a robot. A deployed humanoid robot is therefore
likely to be damaged during some of its missions.
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Without reflex the robot falls

By putting its hand on the wall the robot avoids the fall
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Fig. 1: (top) A humanoid robot detects a fault on one of its
legs. If it does nothing, it falls; but it can recover its stability
by putting its “hand” on the wall at the appropriate location
(depending on its posture, the wall distance, and the wall
orientation). (bottom) The percentage of avoidable falls (see
Sec. V-C for the definition of “avoidable”) decreases when the
delay taken between damage and reflex increases; the robot has
only a few milliseconds to react with a high success rate.

The traditional approach for robot damage recovery is to
identify the damage, update the model, then use the updated
model to perform the tasks [3]. Unfortunately, a falling hu-
manoid robot has only a few milliseconds to make a decision
(Fig. 1), whereas identifying the dynamical model of such a
highly redundant robot requires extensive data and specific
trajectories [3], [4]. A few learning-based damage recovery
algorithms for 2-legged [5], 4-legged [6], [7] or 6-legged
robots [8]–[10] were recently published, but they all assume
that the robot can try a behavior, fall, and try again until it finds
a compensatory behavior. Humanoids usually cannot afford to
fall, and trial-and-error would require an ability to stand up
without a perfect knowledge of the robot model, which is very
challenging.

Given the envisioned missions, humanoid robots are more
likely to be used in indoor environments, for instance in
damaged buildings, than in open fields. As a result, these
robots are likely to have walls or furniture within reach: taking
inspiration from human reflexes, a promising strategy in case
of leg damage is, therefore, to lean on the nearest wall to avoid
the fall.
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In this article, our main contribution is a method that allows
damaged humanoid robots to avoid many falls by leaning
on a nearby wall (Fig. 1). Once the robot is stable, another
algorithm could update the model and activate compensatory
behaviors (e.g., walking on one leg using the wall). Our main
assumptions are that (1) we can detect the occurrence of a
fault in the leg, but we do not know its origin (missing parts,
disconnected from power, or locked); meaning that we do not
know the exact model of the damaged robot and (2) we know
the distance and the angle to the nearest wall (for instance with
a dedicated sensor on the shoulder). With these assumptions,
our method, called D-Reflex (for “Damage-Reflex”), finds in
a few milliseconds where to put the hand on the wall, and
reaches a stable state using a whole-body controller [11], [12].

The main idea of D-reflex is to learn a neural network that
predicts the success chance of each potential contact location
on the wall given a posture and a wall configuration. This neu-
ral network is learned with supervised learning using a dataset
created by simulating many situations and many potential
contact positions. Splitting the process into these two steps—
creating a dataset in simulation, then learning a predictor—
makes it possible to exploit the mature and well-understood
supervised learning algorithms while separating the learning
process from the simulation process. Once learned, the neural
network can be queried in a few milliseconds, which is ideal
for a fast emergency reflex while the robot is falling.

We report experiments with both a simulated and a real
TALOS humanoid robot (1.75m, 100kg, 30 degrees of free-
dom) [13] with a leg damaged in several ways.

II. RELATED WORK

A. Multi-contact planning and damage identification
Multi-contact planning, for instance choosing to put a hand

on a wall, has been a long-lasting research topic in the
humanoid robotics community (e.g., [14], [15]). However,
planning algorithms tend to require more than the few mil-
liseconds that a falling humanoid robot can afford (e.g. about
100ms for a known target point [16]). In addition, all planning
algorithms assume a known model of the dynamics, which is
not the case when the robot is damaged, whereas the dynamics
of the fall are typically very different with a damaged robot.

A preliminary step to any planning algorithm is therefore to
identify the model of the damaged robot [3]. Unfortunately,
identifying the dynamical model of a humanoid requires at
least several minutes of data collection and specific “exciting”
trajectories. For example, to identify the TALOS robot’s
[13] elbow joint, Ramuzat et al. [4] required 230s of data
collection and a well-chosen exciting trajectory. It seems
highly optimistic to be able to identify a new model with a
few milliseconds of sensor data. Overall, we see the present
contribution as a preliminary step to a system identification
step: the robot takes an emergency decision, then, once stable,
it can get data to identify the new model and rely on model-
based planning or control algorithms with an updated model.

B. Fall and damage mitigation
Inspired by how humans react when falling in front of a

wall, Cui et al. [17] recently proposed to move the robot arms

in a way that maximizes the ellipsoid stiffness, thus increasing
stability and shock absorption. Compared to the present work,
Cui et al. only worked on collisions with a frontal wall and,
more importantly, with an intact robot whose model is known.

When the fall is inevitable, several methods have been
demonstrated on different humanoids to mitigate the damage.
During the “pre-impact” phase, the robot adapts its posture
by avoiding hand-designed “fall singularities” postures that
increase the impact [18], by seeking to take a safe posture
when falling on the back [19], or, by performing a rollover
strategy [20]. During the “impact-time” phase, the PD-gains
are automatically adapted by incorporating them in the QP-
controller to prevent the actuators from reaching their torque
limits while still reaching the desired posture [21]. During
the “post-impact”, a force distribution quadratic program dis-
tributes the exceeding linear momentum gathered during fall
into the different body parts [22]. These methods do not try
to avoid the fall but mitigate the damage induced by the fall.
Overall, this line of work is complementary to ours: while
many falls can be avoided by adding a contact to the wall,
some falls cannot be avoided in that way and the only behavior
left is to mitigate the damage.

C. Machine learning for damage recovery and mitigation

A promising approach to allow robots to adapt to unforeseen
damage is to learn dynamical models with generic machine
learning methods, like neural networks or Gaussian processes.
To minimize the amount of data required, current methods
leverage a simulation of the intact robot [10] or meta-learning
to train the model for fast adaptation [6], [7], [9]. Successful
experiments with 4-legged [6], [7] and 6-legged [9], [10] have
been reported, but, to our knowledge, not with 2-legged robots.
One important difference between humanoids and other multi-
legged robots is that the latter can afford to fall during learning
because getting up is easy.

Spitz et al. [5] investigated how a damaged humanoid robot
can adapt its behavior by avoiding states that previously led to
a fall. Similarly, Cully et al. [8] designed a learning algorithm
that allows a damaged 6-legged robot to find a new behavior
that does not rely on the damaged parts. In both cases, the
authors used an episodic setup in which the robot can try a
behavior, fall, and try again many times. This setup is not
applicable when the objective is to avoid the fall immediately
after damage.

To our knowledge, the closest work to ours is for a
quadruped robot that performs “cat-like” acrobatics to land on
its feet when falling from several meters [23]. To solve this
problem, the authors used a trajectory optimization algorithm
to generate a dataset of examples in simulation, then trained
a neural network policy that imitates these reflexes but is
fast enough to be used on the robot. Similarly, the D-reflex
approach first solves the problem with extensive simulations,
then uses these results to train a fast neural network that selects
the most appropriate behavior.
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III. PROBLEM

A. Considered Damage Conditions

A robot can be damaged in many ways and we often cannot
determine them precisely. We use three damage conditions:
amputation (missing parts), passive actuators (the actuators do
not deliver any torque, i.e., the joints can turn freely in the
corresponding axis), and locked actuators (the joint position
is fixed). The first two damage conditions are critical for the
stability of the robot and very often result in a fall when
applied to one of the legs, but they cannot be distinguished
by querying the control board of each joint: in both cases, the
control boards do not answer or send an error.

To show that our method is robust to different combinations
of damage conditions, we sample different combinations of
those three damage conditions on the six joints of the leg. We
call J the set of damaged joints.

B. Formulation

A humanoid robot suffers an unexpected damage combi-
nation on one of its legs which would often result in a fall
if nothing is done. The goal is to find a contact position on
the wall that allows the robot to avoid the fall and stay stable
(Fig. 1).

We know:

• that one of the legs is damaged and which one: we assume
that the faulty joints control boards do not answer or
return an error;

• the presence of a plane wall within arm’s reach, its
distance d and its orientation α with regard to the robot
(this position can be easily known with a RGB-D sensor
on the shoulder of the robot and fitting a plane to the
point cloud [24]);

• the current posture q of the robot when the fault is
detected.

We do not know:

• the set of damaged joints J and the nature of the damage
condition: the leg could be fully amputated, but it could
also have lost the power;

• the successful contact positions on the wall (there are
usually several possible successful contact positions).

We want to learn a function f : (q,d,α) → (x∗,y∗) that
returns a successful contact position robust to the nature of the
damage condition. We assume that the robot has a controller
that can make it move to reach this position.

IV. METHOD

A. Whole-body Control

The humanoid robot is controlled with a whole-body con-
troller (WBC) based on quadratic programming [11], [12].
At each time step, the robot searches for the acceleration of
each joint that minimizes a sum of quadratic cost functions
constrained by the dynamical model of the robot (an equality
constraint) and other equality/inequality constraints:

(τ∗, q̈∗) = argmin
τ,q̈

n tasks
∑

k=0
wk‖Ak(q, q̇)q̈−bk(q, q̇)‖2

s.t. Aineq(q, q̇)q̈≤ bineq(q, q̇)
s.t. Aeq(q, q̇)q̈ = beq(q, q̇)
s.t. τ = M(q)q̈+F(q, q̇)

(1)

where τ∗ and q̈∗ are the optimal joint torques and accelera-
tions, wk is the weight of the task k described by Ak(q, q̇) and
bk(q, q̇), M is the joint-space mass matrix and F contains all the
non-linear terms (Coriolis, centrifugal, gravity, and contacts).

In this work, we used the controller described in Dalin et al.
[12]. The main tasks are the Cartesian position and orientation
of the hands and feet, the position of the center of mass, and
a default postural task which is used to ensure the unicity of
the QP problem and bias towards a “neutral” position. The
constraints are the feet contact with the floor and the joint
position, velocity, and acceleration bounds.

Once the optimal torque and joint accelerations are com-
puted, we integrate them using the model of the robot to get
the desired joint positions, which we pass to the low-level joint
controllers. In the real TALOS robot, the joints controllers
are PID controllers implemented on Ethercat boards [13]. In
simulation, we use a Stable-PD controller [25] that leverages
the model of the robot to compute torques given a position
target, which is in our experience a good approximation of
well-tuned PID controllers.

Please note that the model used by the controller is not
updated after the damage because we do not know the extent
of the damage condition. As a result, the solution needs to be
robust to different combinations of damage conditions.

B. Data Collection

The first part of the process consists in generating random
configurations of the wall and postures of the robot, and
collecting the corresponding truth value of contact positions
(Fig. 2, part 1).

1) Sampling random configuration: To randomly sample
plausible random postures of the robot, we first randomly
sample target hands positions in a cuboid facing the robot.
We set these targets in our whole-body controller as Cartesian
tasks and let it run for 4s which makes the robot take a posture
q. Each random hands positions induces a different but feasible
posture, such as knee bending to reach a lower position or
rotated torso with arms raised.

2) Sampling wall positions: We need random wall config-
urations (distance d and orientation α) that are within arm’s
reach but that do not collide during the initial motion to reach
the target posture (because this would make the robot fall
before any damage). To ensure this property, we exclude wall
configurations that collide during the first 4s of motion.

3) Construction of contact maps: Once we have the posture
of the robot q and the wall configuration (distance d and
orientation α), we discretize the wall’s plane and run the
simulation for each considered contact position by (1) reaching
the posture q, (2) damage the robot in the simulation after
4s without waiting for the robot to be stable, i.e. the current
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Fig. 2: Overview of D-Reflex. In the first step (Data Collection), we sample different situations: wall configurations (distance
and orientation), robot postures, and damage combinations, and simulate the behavior of the robot for each possible point on a
21× 21 grid on the wall (441 simulations for each situation). In the second step, we train a neural network classifier to predict
the success (avoiding the fall) for each point of the grid. In the third step, we query the trained neural network for each point
of the grid to select the best contact position, and we set it as a contact constraint in the whole-body controller.

momentum and angular momentum induced by the motion is
kept, (3) add a Cartesian contact constraint in our whole-body
controller to ask the hand to be in contact at the given position,
and (4) let the simulation run for 11s. A contact position is
deemed correct if at the end of this 15s-episode the robot
has not touched the floor with anything else than its feet, or
the wall with anything else than its hand. We only consider
contacts with the hand because it allows clean contacts with
known interaction forces (the wrist has a force-torque sensor)
and can reach the farthest positions to make contact as soon
as possible. This gives us a Boolean matrix M ∈ {0,1}(21,21)

that we call “Contact Map”. Fig. 2.1 shows some examples.

C. Training

Once we have a dataset D of samples (q,d,α,M) split into
a training set (37.5%), a validation set (12.5%), and a test set
(50%), we want to learn the function

f : (q,d,α)→ (x∗,y∗)

where (x∗,y∗) is a successful contact position in the wall
referential. As the contact map M often contains several
successful contact positions, we cannot directly learn f .

Instead, we learn the classification function that predicts the
success of each input point:

C : (q,d,α,x,y)→ c

where c ∈ [0,1] represents the confidence of the contact
position (x,y) to be a successful contact position.

To estimate this classification function C, we train a neural
network Ĉθ parameterized by the set of weights θ using
PyTorch with Cross-Entropy error and the Adam optimizer.
After performing an extensive random search on the hyper-
parameters, we have selected a fully-connected feed-forward

neural network with 2 hidden layers of 1024 units with ReLU
activation function, a dropout of 0.2, and a learning rate of
10−5. We obtained similar results with other combinations of
network architecture, cost function, and optimizer.

To get an estimation of the function f , we query the neural
network with points (x,y) ∈ (X ,Y ) on the wall and select the
point with the highest activation:

f̂ (q,d,α) = argmax
(x,y)∈(X ,Y )

Ĉθ (q,d,α,x,y).

Since the points are 2-dimensional and there is no need for a
millimeter-scale precision, this optimization can be effectively
performed using a straightforward grid search. In that case, it
typically requires a few hundred calls to the neural network
(e.g., 441 calls for a 21× 21 grid), which is easily done in
parallel on modern GPUs (about 4ms for 441 queries on an
Nvidia RTX 2080) and CPUs (about 17ms on the Talos’s
CPU).

In supervised learning, we would periodically evaluate the
prediction score of the neural network on the validation set
to avoid overfitting and select the final set of weights. Here,
the utility of our learned neural network is measured by the
effectiveness of the selected contact position, which we eval-
uate by running a simulation with a damaged robot. In other
words, we evaluate the neural network by looking at f̂ (q,d,α)
on the validation set instead of the traditional Ĉθ (q,d,α,x,y)
because we want to evaluate the “end product” and not the
neural network itself. At the end of the optimization, we select
the set of weights θ that corresponds to the highest success
rate on the validation set (Figure 2.2).

D. Inference

During its mission, the robot performs its tasks and detects
damage in one of its legs by querying the boards periodically.
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We get the last known posture of the robot q, the distance
d, and orientation α to the closest wall. For this preliminary
work, we hypothesize that the robot can evaluate α and d with
a dedicated sensor.

We query the learned model Ĉθ for a grid of points to
estimate the best contact position (x∗,y∗) = f̂ (q,d,α). Fig 3
shows examples of predicted contact maps. We then add a
contact constraint in the whole-body controller so that it puts
its hand on the wall to recover its balance (Fig. 2.3).

E. Implementation

1) Triggering the reflex: We assume that the robot knows
when an actuator is faulty so that we can instantly trigger the
reflex. We put the robot in an “urgent mode” that removes the
non-essential tasks: we only keep the feet contact constraints,
the joints bounds constraints, the position task of the Center of
Mass (CoM), and the postural task. Finally, we add the hand
target contact at the selected location on the wall and let the
whole-body controller generate the trajectory to reach it.

The CoM task requires a Cartesian position. By default,
the target position is between the two feet. In our case, we
hypothesize that a single leg is working, but, since we want a
contact on the wall, the new CoM target should be somewhere
between the remaining foot and the contact point. However,
we do not know the real contact position because the model
is incorrect. After some preliminary experiments, we have
decided to not change the CoM target as it has shown good
results: if we put the CoM target on the remaining foot or
too close to the wall the success rate declined significantly. A
better solution would be to learn the CoM target in addition
to the hand contact position, which we will explore in future
work.

2) Post-contact updates: We empirically found that, due to
the mismatch between the incorrect model and the simulated
damaged robot, the desired contact point is rarely the real
contact point attained by the hand. To take this into account,
we use the force sensor of the wrist to detect the contact
between the hand and the wall. Then, we update the contact
constraint with the current robot state to stop the robot from
moving its hand, which would result in the robot pushing on
the wall, bouncing back, making it more likely to fall.

V. EXPERIMENTS

We control 30 degrees of freedom of the TALOS robot [13]:
7 for each arm, 6 for each leg, 2 for the torso, and 2 for the
head. We replaced the gripper with a ball in our simulation to
be close to the experiments on the real robot (to avoid breaking
the gripper), but similar results are obtained with a simulated
gripper. The robot is simulated using the DART physics library
[26] through the RobotDART simulator1.

The initial posture of the robot is obtained by selecting
random target positions for the hands and letting the whole-
body controller reach this target in 4s. The target positions
are inside the cuboid: [−0.1m,+0.2m] in the sagittal axis,
[−0.4m,+0.4m] on the frontal axis, and [−0.5m,+0.4m] on

1https://github.com/resibots/robot dart

the longitudinal axis. The wall distance is sampled between
0.4m and 1m. The orientation is sampled in [−1,1] rad.

The contact maps of the dataset use 21 positions on the
horizontal and vertical axis, which results in 441 positions.
They range from −0.75m and +0.75m on the horizontal axis
and −0.5m and +0.75m on the vertical axis. Fig. 3 shows
examples of contact maps.

We only perform the experiments on the right side of the
robot (damaging the right leg and seeking contact with the
right hand). The robot being perfectly symmetrical, the data
and the same neural network can be used for the other side
(damaging the left leg and seeking contact with the left hand).
To check this, we trained a D-Reflex using data from the right
side (Sec. IV-C), then used it with a damaged left leg by
symmetrizing the inputs of the classifier. In 98.5% of the cases,
the robot is as successful as with the right side. The resulting
discrepancy is likely to come from simulation artifacts.

We sample 2000 different situations of wall configuration,
robot posture, and damage combination. We let the simulation
run for 4s, after which we trigger the damage combination
and immediately start the reflex. We stop the simulation after
15s or until a fall is detected. For each situation, we create a
discretized contact map. Overall, this dataset requires 882,000
simulations of 15s, which we run in parallel on a multicore
computer in less than 3 days.

The source code and the dataset are available online2.

A. Baselines

We compare against two baselines:
• No Reflex: we do nothing, to highlight the importance of

a reflex strategy;
• Random Reflex: we randomly select the contact position

on the wall, to highlight the difficulty of the problem and
the necessity of learning.

B. Ablations and Additions

To understand the contribution of each part we also compare
against 3 “ablation experiments”:
• Posture Ablation: we remove the posture q from the neu-

ral network inputs and re-train the network (this allows us
to answer the question: “does the contact position depend
on the posture?”);

• Wall Ablation: we remove the wall configuration (dis-
tance d and orientation α) from the neural network
inputs and re-train the network (“does the contact position
depends on the wall configuration?”);

• Both Ablation: the contact point is independent of both
the robot posture and the wall configuration (“is there a
solution that works for any wall configuration and robot
posture?”). In this case, we do not train a neural network
but, instead, we use the training data to select the average
best contact position.

To check that we are not ignoring any useful information,
we compare against 2 “addition experiments”:

2https://github.com/resibots/d-reflex

https://github.com/resibots/robot_dart
https://github.com/resibots/d-reflex
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Fig. 3: Examples of damaged situations and corresponding contact or falling postures using D-Reflex on the TALOS [13]
robot in simulation and on the real robot, the video https://youtu.be/hbuWr-ZNAtg shows different examples. We also show the
contact map estimated by our neural network and the true contact map measured but unknown during training. We distinguished
two kinds of failures: when the predicted contact map is too smooth and optimistic compared to the truth, and when there is
no successful contact point, i.e., the fall is unavoidable by seeking a contact on the wall.

• J Addition: we add the set of faulty joints J to the neural
network inputs and re-train the network (this allows us
to answer the question: “is it useful to know which joints
are damaged?”);

• J+dq Addition: we add to the neural network inputs the
set of faulty joints J and the joints velocities dq and re-
train the network (this allows us to answer the question:
“is it useful to know which joints are damaged and the
joints velocity dq?”).

C. Evaluation
By analyzing the contact maps, we found that for about

31.5% of the situations of the dataset there are no position
of the hand on the wall that prevents the fall. Fig. 3 shows
4 examples of such unavoidable situations. Using a decision

tree classifier, we found that two criteria discriminate most
of the data: the distance of the right hand to the wall and
the wall orientation. If the wall is too far from the right
hand the fall becomes impossible to avoid by putting the
right hand on the wall. Moreover, in many cases, only a few
sparse contact positions of the 21× 21 grid allow the robot
to avoid the fall. We consider that these contact positions are
unlikely to exist with a real robot and are most likely due
to a combination of “chance events” that is very sensitive to
simulation details. Overall, only 37.6% of the simulated falls
are realistically avoidable. As a consequence, we define a fall
as “avoidable” if and only if the corresponding situation of
wall configuration and robot posture leads to at least 9 (one
position and its 8 neighbors on a grid) contiguous successful
contact positions. We focus on these “avoidable situations” as

https://youtu.be/hbuWr-ZNAtg
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Fig. 4: (a) Success rate considering only avoidable situations.
The box plots show the median and quartiles, the bullets being
the values of the evaluations. For each variant, the learning
algorithm was run 20 times on different splits of the dataset.
All methods are significantly different from one another using
a t-test with Bonferroni correction (p-value ≤ 0.001) except
D-Reflex and the J Addition. (b) Percentage of avoidable
situations and situations avoided using D-Reflex, with a model
trained for the friction 1, depending on the wall friction
coefficient, plus examples of contact maps.

it is straightforward to generate an arbitrarily high number of
non-avoidable situations and thus make the avoided fall rates
arbitrarily low.

We randomly split this dataset into training (37.5%), val-
idation (12.5%), and evaluation (50%). To ensure that our
results do not depend on a single, lucky run of the learning
algorithms, we replicated the learning algorithm 20 times using
20 different splits of our dataset and different seeds.

D. Results

Fig. 3 shows many examples of successful balance recover-
ies, as well as examples of typical failures; Fig. 4 shows the
comparison of the success rate for the avoidable conditions
of our method against the different ablations, additions, and
baselines. All methods are significantly different from each
other, except the D-Reflex and the J Addition. The video
(https://youtu.be/hbuWr-ZNAtg) presents more examples.

1) Our method: D-Reflex allows the TALOS robot to
successfully recover from the fall for 76.4%± 2.5% of the
avoidable conditions, Fig. 4. Fig. 3 showcases some examples
of successful recoveries as well as some typical failures.
Failure cases mostly happen when the neural network over-
estimates the size and the smoothness of the possible contact
zone (Fig. 3, fifth row); more tuning of the learning process
or using another regression technique (e.g., random forests)
could lead to successful contact zones that are less smooth
and more accurate, with the same training data. Overall, our
approach significantly (t-test with p-value ≤ 0.001) increases
the likelihood of avoiding the fall and thus prevents the robot
from being more damaged (which could be very costly) and
allows it to finish its mission despite the damage (especially
if the robot has access to a locomotion strategy that can deal
with a damaged leg).

2) Baselines: Doing nothing (without any reflex) results
in a low success rate (26.4%± 1.7% of the avoidable falls).
It is not zero because some situations do not result in a

fall (e.g. a locked ankle). Using a random contact position
results in a lower success rate (19.8%±2.2% of the avoidable
falls) because moving the arm randomly creates unnecessary
motions that decrease the stability of the robot. These two
cases show the need for a reflex.

3) Ablations: When both the wall configuration and the
robot posture are ignored to choose the contact point (“Both
Ablation”), the robot avoids 47.3%±1.9% (versus 76.4% for
D-Reflex) of the avoidable falls. This corresponds to choosing
the best point of the wall on average on the training set, which
is roughly in the middle of the wall. This demonstrates that
the neural network does more than choose the same “average
position”. Both the wall configuration and the robot posture
are necessary information for the classifier; of the two, the
wall configuration is the most important (Fig. 4).

4) Additions: Adding the faulty joints information (“J
Addition”) does not significantly improve the performance
and requires a stronger assumption about our knowledge of
the damage condition. Adding the joints velocities (“J + dq
Addition”) significantly reduces the performance; as the robot
does not perform dynamic motions, adding uninformative
inputs only decreases the neural network performance (which
could be corrected by re-optimizing the hyper-parameters).

5) Friction: DART simulates the contact using the rigid
contact dynamics, taking into account friction, bouncing, and
restitution, which can be parameterized to simulate different
materials. In our cases, the friction has a default coefficient
of 1 and a restitution coefficient of 0. Decreasing the fric-
tion coefficient removes successful contact positions, which
decreases the percentage of avoidable falls. A D-Reflex trained
with a friction of 1 generalizes to lower frictions down to 0.4
(Fig. 4b) without degrading too much its performance, from
85% to 67.5%. The decrease in performance comes from the
large reduction of successful contact points when the friction
is lower than 0.4 (Fig. 4b). During our experiments on the
real robot, we did not notice a significant discrepancy between
simulation and reality regarding friction.

E. Use of the updated model in the whole-body controller

In these experiments, the whole-body controller uses the
model of the intact robot to compute the joint angles of the
damaged one: we assumed that the model of the damaged
robot was not known during the fall avoidance phase and
therefore we could not use an updated model. Nevertheless,
as a baseline, we checked what happens when we use the
model of the damaged robot when generating the dataset; we
replicated the learning 25 times, but we only considered the
amputation of the knee.

The results are statistically equivalent to those obtained
when the controller uses the model of the intact robot (median
fall avoidance rate: 80.7%±2.5% for the intact model versus
82.3%±2.4% with the updated model). This lack of difference
is due to the fact that our method looks at the result of a
simulation to decide on the success of a particular location on
the wall, and not at how well the robot performs an expected
motion. Put differently, a controller with an updated model
is likely to put the robot’s hand closer to the target location,

https://youtu.be/hbuWr-ZNAtg
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whereas it often misses this target when using the model of
the intact robot; but this does not matter because what is
stored is the success (fall avoidance) for a target, regardless
of where this target actually leads on the wall. This means
that the whole-body controller is used to generate a trajectory
and the simulator tells the algorithm whether this trajectory is
successful or not: generating this trajectory differently does
not fundamentally change the result. Similarly, a planning
or model-predictive control algorithm [23], [27] could be
used instead of our whole-body controller to generate these
trajectories: we do not expect any significant change in the
result because an algorithm will still be needed to choose
where to put the hand, which is the problem solved by D-
reflex.

F. Experiments on the real robot

In these experiments, we placed the robot in a known
location with respect to a wall with a mattress (to be able
to repeat falls with and without D-Reflex) and set it in a
known posture. We cut the power of the knee’s actuator. The
loss of power is detected and triggers the D-Reflex. Overall,
in three out of the four situations that we tested, the robot
successfully avoided the fall, whereas it fell when no reflex
was triggered (see the video https://youtu.be/hbuWr-ZNAtg).
These experiments demonstrate that the robot is fast enough
to execute the learned reflex and that the learned solutions are
robust enough to cross the reality gap most of the time. The
onboard CPU computes the contact location using the classifier
on average in 16.7ms [min:14.0ms, max:21.9ms], but a more
recent CPU and/or a GPU can achieve better performance.

VI. CONCLUSION

Given the robot posture and the configuration (distance and
orientation) of a wall within arm’s reach, our method, D-
Reflex, uses a trained neural-network classifier to estimate a
contact position that allows the robot to avoid the fall in more
than 75% of the avoidable cases. Our method is robust to
different combinations of damage conditions (locked actuators,
passive actuators, and amputation) and does not require the
knowledge of the correct damaged model of the robot. It relies
on a whole-body controller [12] and sensory information that
is easy to acquire.

Once stabilized, the robot will need to update its model and
its position so that it can be controlled again. Numerous model
identification methods can be investigated [3]. The robot can
then continue its mission despite being damaged.

The main assumption of this work is that there exists a
wall next to the robot. In future work, we will extend our
method to select target contact positions for the hands in more
complex environments (other walls, furniture, ...). In that case,
we would not be able to cover the possible contact positions
with a simple 2D grid: the main challenge will be to build a
dataset that includes successful contact positions.

D-Reflex is designed to avoid falls in complex, high-
risk/high-gain missions with humanoid robots. In such sit-
uations, one would expect the operator to be careful, avoid
highly-dynamic motion, and keep the robot in static balance.

Future work will extend the training set with more dynamic
motions, like dynamic walking and high-speed movements,
and with single-support motions.
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