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Abstract

The use of optimal transport costs for learning generative models has become popular with
Wasserstein Generative Adversarial Networks (WGANs). Training a WGAN requires the
computation of the differentiation of the optimal transport cost with respect to the pa-
rameters of the generative model. In this work, we provide sufficient conditions for the
existence of a gradient formula in two different frameworks: the case of semi-discrete opti-
mal transport (i.e. with a discrete target distribution) and the case of regularized optimal
transport (i.e. with an entropic penalty). Both cases are based on the dual formulation of
the transport cost, and the gradient formula involves a solution of the dual problem. The
learning problem is addressed with an alternate algorithm, whose behavior is examined for
the problem of MNIST digits generation. In particular, we analyze the impact of entropic
regularization both on visual results and convergence speed.

1 Introduction

Generative modeling is at the heart of various problems in data science, either to approximate the data
distribution in order to draw new samples, or to interpolate the data points. Beyond the purpose of image
synthesis or editing, adopting such a generative model can also be used to reconstruct or restore corrupted
data (Bora et al., 2017; Hand & Joshi, 2019; Hyder & Asif, 2020; Heckel & Soltanolkotabi, 2020; Menon et al.,
2020; Shamshad & Ahmed, 2020; Damara et al., 2021; Leong, 2021) or to propose a geometric structure for
the data that may reveal some interpretable dimensions (Radford et al., 2015; Shen et al., 2020). Supervised
or not, learning generative models on large datasets thus opens new perspectives on the resolution of inverse
problems.

Given the empirical distribution ν of the data supported on a compact set Y ⊂ Rd, estimating a generative
network consists in minimizing

θ 7−→ L(µθ, ν) (1)

where µθ is the distribution of generated samples (parameterized by a θ in an open subset Θ ⊂ Rq) with
support included in a compact set X ⊂ Rd, and where L is a loss function between probability distributions.
The distribution µθ is often considered to be the law of a random variable gθ(Z) where gθ is a neural network
and Z a random variable, and samples of the model can then be obtained by passing new realizations of Z
through the network gθ. These distributions are often built upon features computed from samples and data
points (such as the latent space of a variational auto-encoder (Kingma & Welling, 2014)) which may be
integrated in the loss function (1). In this context, we face the long-standing problem of quantifying the
discrepancy between probability distributions in a relevant and efficient manner.
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1.1 Wasserstein Generative models

In the seminal work of Goodfellow et al. (Goodfellow et al., 2014) on adversarial training of generative
networks, the considered loss is related (in a dual sense) to the Jensen-Shannon divergence between feature
distributions. The major innovation of such a framework is that these features are simultaneously learnt
from the dataset by training a binary classification network which competes against the generative network
to discriminate between data point and generated samples. Arjovsky et al. (2017) later remarked that
the Jensen-Shannon divergence has major flaws that directly impact the learning of GANs such as the
convergence and robustness, and then proposed to use optimal transport (OT) costs instead, leading to new
generative models called Wasserstein GANs (WGANs).

Wasserstein distance The OT cost between probability distributions µθ and ν is defined by

W (µθ, ν) = inf
π∈Π(µθ,ν)

∫
X×Y

c(x, y)dπ(x, y), (2)

where Π(µθ, ν) is the set of probability distributions on X ×Y having marginals µθ and ν, while the ground
cost c : X ×Y → R is a continuous function (c(x, y) represents the elementary cost between locations x ∈ X
and y ∈ Y). A simple and popular choice is the Euclidean distance between points to the power p ≥ 1,

i.e. c(x, y) = ‖x − y‖p =
(∑d

i=1 x
2
i

)p/2
, for which W (., .)

1
p defines the well-known p-Wasserstein distance.

Another possible, but more complex choice, is to define the cost function as a metric in feature space.

As we will recall later, such an OT cost (2) admits a dual formulation (Santambrogio, 2015)

W (µθ, ν) = sup
(ϕ,ψ)∈Kc

∫
ϕdµθ +

∫
ψdν, (3)

where (ϕ,ψ) is a couple of dual variables that belongs to the set

Kc = {(ϕ,ψ) ∈ C (X )× C (Y), subject to ϕ(x) + ψ(y) ≤ c(x, y) µ⊗ ν a.e. } (4)

where C (X ) indicates the set of real continuous functions on X and ⊗ the product of two measures. Opti-
mizing one of the dual variables in (3) amounts to taking the c-transform

ψc(x) = min
y∈Y

c(x, y)− ψ(y), (5)

thus leading to another expression of the OT cost, often called “semi-dual formulation”:

W (µθ, ν) = sup
ψ∈C (Y)

∫
ψcdµθ +

∫
ψdν. (6)

Solving the constrained dual problem (3) is a difficult (and possibly infinite-dimensional) optimization prob-
lem. One possibility to get an unconstrained optimization problem on (ϕ,ψ) is to rely on the entropic
regularization of OT (Chizat, 2017; Peyré & Cuturi, 2019). The entropy-regularized OT admits a similar
semi-dual formulation (6) except that a smoothed version of the minimum (called softmin) is used in the com-
putation of the c-transform (5). In the discrete setting, the regularized OT cost can be computed efficiently
with the Sinkhorn algorithm (Peyré & Cuturi, 2019), that exhibits geometric convergence. When one of the
distribution is continuous (as in equation 1), one has to rely on stochastic algorithms (Genevay et al., 2016),
which are provably convergent, but considerably slower. First attempts of using entropy-regularized OT for
generative modeling have been made in (Genevay et al., 2018; Seguy et al., 2018) and we pursue here this
investigation.

Learning with Wasserstein losses Once chosen the loss function L, the minimization problem (1) can
be solved with a gradient-based algorithm, for example a stochastic gradient descent or the ADAM algorithm.
Hence the main topic of this paper is the computation of the gradients of (1) with respect to θ in the case
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where L is an OT cost of the form (2), with or without entropic regularization. As we will prove later, the
gradient of (1) is directly linked to the dual variable introduced in the dual formulation (3). Indeed, we will
give conditions ensuring that the gradient at a point θ0 can be expressed as

∇θ
(
W (µθ, ν)

)
|θ=θ0

= ∇θ
(∫

ϕ∗dµθ

)
|θ=θ0

(7)

where (ϕ∗, ψ∗) is an optimal dual variable for W (µθ0 , ν), i.e. a solution of the dual problem (3).

Such formula was proved in (Arjovsky et al., 2017) for the 1-Wasserstein cost, with the hypothesis that
both sides of the equality exist. This proof was adapted by the authors of (Sanjabi et al., 2018) to the case
of regularized Wasserstein costs. Both these proofs are based on some version of the so-called “envelope
theorem” (also called Danskin’s theorem in the context of convex optimization), which allows to differentiate
under the maximum. This theorem requires some regularity assumptions that should be carefully checked.
As we will see in Section 2.5, in the discrete setting, there exist some irregular cases where these assumptions
are not sufficient to make formula (7) licit.

To sum up, the main goal of this paper is to provide a new set of hypotheses that validates (7) and to show
how these results apply to generative models parameterized by neural networks.

1.2 Related works

The computation of the gradient in equation 7 involves the optimal dual variable ϕ∗. When learning a
Wasserstein generative model, the performance of the dual solver used for estimating the OT cost (3) is
therefore a key point. Many attempts have already been made in the literature, with several ways to
parameterize the problem (3).

The method of Arjovsky et al. (2017), being based on the 1-Wasserstein distance, only requires one dual
variable that is constrained to be 1-Lipschitz. In practice, this dual variable is parameterized by a neural
network, and the Lipschitz constraint is enforced by weight clipping (WGAN-WC). On a similar formulation,
Gulrajani et al. (2017) suggest to impose Lipschitzness by including a gradient penalty in the dual loss
(WGAN-GP).

In contrast, Seguy et al. (2018) consider regularized OT costs with a generic cost function. This leads to an
unconstrained dual problem, but with two dual variables. In practice, the authors choose to parameterize
both dual variables with neural networks. Closely related, the work by Sanjabi et al. (2018) is based
on the same formulation of WGAN training with regularized OT and also relies on the neural network
parameterization of the dual variables. The authors study the convergence and stability of the training
procedure, the convergence being proved for the case of discrete distributions. In particular, they give the
expression of the gradient of (7) (under a primal form) in the case of discrete regularized OT. This gradient
expression is exploited to perform WGAN training by stochastic gradient descent. Notice also that Liu et al.
(2019) applied a similar regularized OT framework on empirical distributions (i.e. discrete distributions
obtained from samples) to learn a generator, with the particularity that the cost function depends on a set
of simultaneously-learned features.

Closer to the proposed framework, Chen et al. (2019) consider the semi-dual formulation of OT (6). In
their work, the dual variable ψ is optimized with the stochastic algorithm for semi-discrete OT proposed
in (Genevay et al., 2016). Contrary to Seguy et al. (2018), they do not parameterize the dual variable ψ with
a neural network, which hinders the applicability of their method to a very large dataset. Indeed, as shown
in (Leclaire & Rabin, 2021), the convergence speed of the ASGD algorithm used for optimizing ψ decreases
when either the dimension d of samples or the dimension of vector ψ (equal to the number of training points)
increases. In (Chen et al., 2019), the corresponding primal solution π (which, in that case, is supported on a
graph) is then used to perform a gradient step on the generative model using the estimated transportation
cost. As a result, the whole algorithm of Chen et al. (2019) is not expressed as a direct minimization of (1).
Our work, by contrast, shows that the proposed gradient calculation for (7) makes it possible to train the
generator gθ and the dual variable ψ with an alternate min-max procedure on the dual cost (3).
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Closely related to (Chen et al., 2019), Mallasto et al. (2019) propose to parameterize the dual variable ψ by a
neural network and to obtain the second one ϕ with an approximated c-transform computed on mini-batches.
With such an approximated c-transform, the pair of dual variables may not satisfy the constraint (4), which
led the authors to integrate in the loss a penalty on c(x, y) − ϕ(x) − ψ(y). A comparative study on the
different ground costs is also realized. One benefit of this approach is that it scales up to a very large
database, while keeping a relatively precise way to estimate the Wasserstein cost. On batch strategy, let us
also mention the work by Fatras et al. (2020) who consider an alternative Wasserstein cost that is inherently
defined as an expectation over mini-batches; this stochastic approximation introduces an estimation bias
which is shown in practice to regularize the transportation problem.

1.3 Contributions and outline

The main contribution of this paper is to propose a complete set of hypotheses that ensure the validity of
the gradient formula (7) for WGAN learning. Our approach is not restricted to the cost c(x, y) = ‖x − y‖
(inducing the 1-Wasserstein distance) and involves weak regularity hypotheses on the cost and the generator.
Based on this gradient formula, we consider a stochastic algorithm for learning a generative model that can
be understood as an alternate optimization algorithm on the semi-dual cost. On the practical side, we
provide experiments on generative model learning for MNIST digits generation, which illustrate the impact
of the entropic regularization both on numerical results and visual results.

In Section 2 we recall the complete framework for WGAN learning, and in particular we recall well-known
results on the dual formulations of OT costs. We also give in Section 2.5 a counter-example based on discrete
distributions where the formula (7) does not stand. In Section 3, we show the desired gradient formula in
the semi-discrete setting, that is, when ν is a distribution supported on a finite set. In Section 4, we adapt
the proofs to the case of entropy-regularized OT (with no assumption on ν) and we also adapt the result to
the Sinkhorn divergence, introduced in (Genevay et al., 2018) to remove the bias of the regularized OT cost.
Section 5 draws a relation of the obtained formula with derivatives in the sense of distributions. Finally,
Section 6 contains numerical experiments obtained with an alternate optimization algorithm for WGAN
learning.

2 The Wasserstein GAN Problem

In this section, we first introduce the primal, dual and semi-dual formulations of the OT cost and we
recall useful lemmas about c-transforms. OT is presented in the general case of entropic regularization with
parameter λ ≥ 0, thus encompassing the unregularized case λ = 0. Next, we introduce the generative learning
problem as well as the regularity hypothesis on the generator, that will be used in the next sections to show
the existence of gradients of the OT cost with respect to θ. We close this section with a counter-example of
measures µθ and ν for which the desired gradient formula (7) does not hold.

Notations

Let us here recall the notations used throughout the paper. Let X ,Y be compact subsets of Rd, and let
c : X × Y → R be a continuous function.

Definition 1 (x-regularity). We say that c is x-regular if there is L > 0 and an open set U with X ⊂ U ⊂ Rd
such that for any y ∈ Y, c(·, y) can be extended to a L-Lipschitz C 1 function on U .

We say that ϕ : X → R is C 1 on X if it is C 1 (i.e. differentiable with continuous derivatives) on an open
neighborhood of X (the neighborhood will often be the same U used for the assumption on the cost). Finally,
Θ is an open subset of Rq used to parameterize the generator gθ.
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2.1 Optimal Transport, Primal and Dual Problems

Definition 2 (Primal formulation). For λ > 0, the regularized optimal transport cost is defined by

Wλ(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c dπ + λKL(π|µ⊗ ν) (8)

where Π(µ, ν) is the set of probability distributions on X×Y with marginals µ and ν, and where KL(π|µ⊗ν) =∫
log( dπ

dµ⊗ν )dπ if π admits a density dπ
dµ⊗ν w.r.t. µ⊗ ν and +∞ otherwise.

Theorem 1 (Dual formulation (Santambrogio, 2015; Genevay, 2019; Feydy et al., 2019)). Strong duality
holds in the sense that

Wλ(µ, ν) = max
ϕ,ψ

∫
ϕ(x)dµ(x) +

∫
ψ(y)dν(y)−

∫
mλ

(
ϕ(x) + ψ(y)− c(x, y)

)
dµ(x)dν(y) (9)

where, for λ = 0, m0(t) = 0 if t ≥ 0, and +∞ otherwise, and for λ > 0, mλ(t) = λ(e tλ − 1) A solution
(ϕ,ψ) of this dual problem is called a pair of Kantorovich potentials. When λ > 0, the solutions of the dual
problem are uniquely defined almost everywhere up to an additive constant (i.e. if (ϕ,ψ) is a solution, then
any solution can be written (ϕ − k, ψ + k) with k ∈ R). Also, when λ > 0, the primal problem admits a
unique solution

dπ(x, y) = exp
(
ϕ(x) + ψ(y)− c(x, y)

λ

)
dµ(x)dν(y). (10)

If λ = 0 the primal solution π of (8) may not be absolutely continuous w.r.t. µ ⊗ ν anymore. In that
case, under weak assumptions (for example, when µ, ν admits second-order moments and µ is absolutely
continuous), one can show (Santambrogio, 2015) that the support of π is actually supported on the graph of
an optimal transport map T ∗ i.e., the optimal π is the probability distribution of (X,T ∗(X)) where X has
distribution µ (and in particular T ∗(X) has distribution ν).

For ψ ∈ C (Y), let us define the regularized c-transform as in (Feydy et al., 2019)

ψc,λ(x) = softmin
y∈Y

c(x, y)− ψ(y) (11)

where the softmin operation is defined as

softmin
y∈Y

u(y) =


min
y∈Y

u(y) if λ = 0,

−λ log
∫
e−

u(y)
λ dν(y) if λ > 0.

(12)

We also define the analoguous operators for the x-variable (and for simplicity, we use the same notation
for c-transforms of x-functions or y-functions). It must be noted that the regularized c-transform ψc,λ also
depends on ν even if ν is omitted in the notation.

Given a pair of dual variables (ϕ,ψ) ∈ C (X )× C (Y), one can see that taking c-transforms{
ψ̃ = ϕc,λ

ϕ̃ = ψc,λ
, (13)

leads to a new pair (ϕ̃, ψ̃) of dual variables that have a better dual cost (9) than (ϕ,ψ). Therefore, the
dual problem can always be restricted to c-concave functions, that is, functions that can be written as
c-transforms. This is an important point since c-concave functions inherits some regularity from the cost
function (see Lemma 1 below) and can be naturally extrapolated to any x ∈ X .
Theorem 2 (Semi-dual formulation (Genevay, 2019)). The dual problem (9) is equivalent to the following
semi-dual problem

Wλ(µ, ν) = sup
ψ∈C (Y)

∫
ψc,λ(x)dµ(x) +

∫
ψ(y)dν(y). (14)
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A solution ψ of the semi-dual problem is called a Kantorovich potential. In other words, ψ is a Kantorovich
potential if and only if (ψc,λ, ψ) is a pair of Kantorovich potentials. By symmetry, we can also formulate a
semi-dual problem on the dual variable ϕ.

Let us consider the exponential scalings of the dual variables a = e
ϕ
λ , b = e

ψ
λ . With this notation, the

coupled fixed point equations (13) can be reformulated as a single fixed point equation on a (or b). The
corresponding operator for a (or b) can be shown to be a contractive operator on the unit sphere of L∞+
equipped with the Hilbert metric. In the discrete case where X ,Y are both finite, iterating this contractive
operator corresponds exactly to the Sinkhorn algorithm (Cuturi, 2013).

2.2 Continuity of c-transforms

Let us now recall some well-known facts about regularized c-transforms. For that, we need a modulus of
continuity of the cost function, that is, the smallest function ω such that

∀x, x′ ∈ X , ∀y, y′ ∈ Y, |c(x, y)− c(x′, y′)| 6 ω (‖x− x′‖+ ‖y − y′‖) . (15)

Since c is continuous on the compact X × Y, it is uniformly continuous, thus limδ→0 ω(δ) = 0.
Lemma 1 ((Santambrogio, 2015; Feydy et al., 2019)). For λ > 0, any c-transform ψc,λ has a modulus of
continuity that is bounded by the modulus of continuity of the cost function.

Proof. If u 6 v holds pointwise, then softmin u 6 softmin v pointwise. Also, for a constant k ∈ R, softmin(k+
u) = k + softmin(u). But, from the definition of ω, we have

c(x, y)− ψ(y) 6 ω(‖x− x′‖) + c(x′, y)− ψ(y). (16)

By taking the soft-min, we thus obtain

ψc,λ(x) 6 ω(‖x− x′‖) + ψc,λ(x′), (17)

and by symmetry, this leads to
|ψc,λ(x)− ψc,λ(x′)| 6 ω(‖x− x′‖). (18)

Lemma 2. For λ > 0, and any ψ, χ ∈ C (Y), ‖ψc,λ − χc,λ‖∞ 6 ‖ψ − χ‖∞.

In other words, the map ψ 7→ ψc,λ is 1-Lipschitz for the uniform norm.

Proof. Applying again the monotonicity of the softmin operation to the inequality

c(x, y)− ψ(y) 6 ‖ψ − χ‖∞ + c(x, y)− χ(y) (19)

we get ψc,λ(x) 6 ‖ψ − χ‖∞ + χc,λ(x), which gives the desired result by a symmetry argument.

The following lemma states that the optimal dual potentials vary continuously with respect to the input
measure as soon as they are unique up to additive constants.
Lemma 3 ((Feydy et al., 2019)). Assume that X ,Y are compact, and that c is continuous. Let us fix x0 ∈ X .
Assume that ν is fixed, and that µn converges weak-? inM1

+(X ) to a measure µ. Assume furthermore that the
Kantorovich potentials associated with Wλ(µ, ν) are unique up to an additive constant (which is always the
case if λ > 0). For each n, let ϕn be a c-concave Kantorovich potential for Wλ(µn, ν) such that ϕn(x0) = 0
and let ϕ be the (necessarily c-concave) Kantorovich potential for Wλ(µ, ν) such that ϕ(x0) = 0.

Then ϕn → ϕ uniformly on X .
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Proof. By compactness of X × Y, c has a bounded modulus of continuity ω(δ) which tends to zero when
δ → 0. By (18), we obtain that the functions |ϕn| are bounded by supx∈X ω(‖x − x0‖) < ∞. Besides,
Lemma 1 also shows that the functions ϕn are uniformly equicontinuous on X . Therefore, Arzela-Ascoli
theorem ensures that the family {ϕn, n ∈ N} is relatively compact in C (X ).

Now, assume, by contradiction, that (ϕn) does not tend to ϕ in C (X ). Then there would exist ε > 0 and a
subsequence (ϕr(n)) such that

‖ϕr(n) − ϕ‖∞ > ε ∀n. (20)
By relative compactness, one can then extract a subsequence (ϕr(s(n))) which converges in C (X ) to a function
ϕ̃. Using the monotonicity of soft-min, this implies that (ϕc,λr(s(n))) also converges in C (X ) to ϕ̃c,λ. Thus

W (µn, ν) =
∫
ϕndµ+

∫
ϕc,λn dν −−−−→

n→∞

∫
ϕ̃dµ+

∫
ϕ̃c,λdν. (21)

Finally, we also have W (µn, ν)→W (µ, ν) since µn
∗
⇀ µ. Thus

W (µ, ν) =
∫
ϕ̃dµ+

∫
ϕ̃c,λdν (22)

and ϕ̃ is a Kantorovich potential forW (µ, ν) and ϕ̃(x0) = limϕn(x0) = 0. Using the uniqueness assumption,
we get ϕ̃ = ϕ which contradicts (20).

2.3 Learning a Generative Network

With the main OT concepts now defined, we can turn to the problem of learning a Wasserstein generative
adversarial network. Estimating a WGAN from an empirical data distribution ν consists in minimizing

hλ(θ) = Wλ(µθ, ν), (23)

where the generated distribution µθ is assumed to be the distribution of gθ(Z), with Z a random variable.
Denoting ζ the probability distribution of Z on the measurable space Z, we therefore have that µθ is the
image measure of ζ by the generator gθ, also known as the pushforward µθ = gθ]ζ. More precisely, the
notation gθ refers to g(θ, ·) where g : Θ × Z → Rd is a function defined on the product of the open set
Θ ⊂ Rq with Z. In the following, we give different sets of conditions on g that allow to compute the
derivatives of hλ.

All the results of this paper are related to the behavior of the function

I(ϕ, θ) =
∫
X
ϕdµθ, (ϕ ∈ C (X ), θ ∈ Θ). (24)

Indeed, the semi-dual expression of optimal transport gives

hλ(θ) = max
ψ∈C (Y)

I(ψc,λ, θ) +
∫
Y
ψdν. (25)

In order to study the gradient of hλ, we thus define Fλ : C (Y)×Θ→ R with

∀ψ ∈ C (Y),∀θ ∈ Θ, Fλ(ψ, θ) = I(ψc,λ, θ) =
∫
X
ψc,λdµθ = E[ψc,λ(gθ(Z))], (26)

where the expectation is taken with respect to the probability distribution ζ of Z.

Combining all previous definitions, the problem we tackle writes

Wλ(µθ, ν) = hλ(θ) = max
ψ∈C (Y)

Hλ(ψ, θ) (27)

with
Hλ(ψ, θ) = Fλ(ψ, θ) +

∫
Y
ψdν, (28)
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and our objective is to study the relationship between ∇hλ(θ) and ∇θFλ(ψ, θ). In the unregularized case,
we use simpler notations, h, W , H, and F for h0, W0, H0 and F0 respectively, dropping the index λ.

As we will see later, computing the derivatives of hλ boils down to differentiating under the max, which is
allowed by the so-called envelope theorem. This result appears under different forms in the literature (Oyama
& Takenawa, 2018). In Appendix A, we recall the version of the envelope theorem that is used in the proofs
of the following sections.

However, if we temporarily admit the differentiability of all terms, the computation of the gradient is straight-
forward:
Proposition 1. Let θ0 and ψ0 satisfying hλ(θ0) = Hλ(ψ0, θ0).
If hλ and θ 7→ Fλ(ψ0, θ) are both differentiable at θ0, then

∇hλ(θ0) = ∇θFλ(ψ0, θ0). (Grad-OT)

Proof. First, notice that Hλ(ψ0, ·) and Fλ(ψ0, ·) differ by a constant, and thus have same gradients.
Using equation 25, for any θ, hλ(θ) > Hλ(ψ0, θ) with equality if θ = θ0. Therefore, the func-
tion θ 7→ hλ(θ) − Hλ(ψ0, θ) has a minimum at θ = θ0, and its gradient at θ0 vanishes. This gives
∇hλ(θ0) = ∇θHλ(ψ0, θ0) and thus the desired result.

Now, showing the existence of ∇θFλ(ψ0, θ0) consists in differentiating under the expectation in (26). For
that, we need the following technical hypothesis.
Definition 3 (Hypothesis (GΘ)). For θ0 ∈ Θ, we say that g : Θ × Z → X satisfies Hypothesis (Gθ0) if
there exists a neighborhood V of θ0 and K ∈ L1(Z) such that almost surely θ 7→ g(θ, Z) is C 1 on V with
differential θ 7→ Dθg(θ, Z) and

∀θ ∈ V, ζ-a.s. ‖g(θ, Z)− g(θ0, Z)‖ 6 K(Z)‖θ − θ0‖. (29)

We say that g satisfies Hypothesis (GΘ) if g satisfies Hypothesis (Gθ0) for any θ0 ∈ Θ.
Remark 1. A sufficient condition for Hypothesis (GΘ) is that almost surely, θ 7→ g(θ, Z) is C 1 on Θ and
that there exists K ∈ L1(Z) such that

∀θ, θ′ ∈ Θ, ζ-a.s. ‖g(θ′, Z)− g(θ, Z)‖ 6 K(Z)‖θ′ − θ‖. (30)

Notice that Θ is an arbitrary open set, and can thus be reduced to localize the problem in a neighborhood of
a fixed point θ ∈ Θ. The interest of Definition 3 is that it does not impose uniformity in θ0 (for both the
neighborhood V and the upper bound K(Z)).

2.4 Previous results on the differentiability of OT costs

Outside the recent context of WGAN learning, the regularity and gradient of the entropy-regularized OT
cost p 7→ Wλ(p, q) (with λ > 0) were expressed in (Cuturi & Peyré, 2016, Prop. 2.3) in the case of discrete
disributions (p, q). In the same context, the Gâteaux-differentiability of (p, q) 7→ Wλ(p, q) was proved
in (Feydy et al., 2019), which was later extended to continuous differentiability in (Bigot et al., 2019, Prop.
2.3). If (pθ) is a parametric family of distribution supported on the same finite set, applying the chain rule
gives the differentiability of θ 7→Wλ(pθ, q).

The gradient formula (Grad-OT) is given in the seminal paper on WGAN (Arjovsky et al., 2017) with the
assumption that both sides of the equality exist. This formula (extended to more general costs) has been
exploited in several papers related to WGAN learning, for example (Liu et al., 2019). In the context of
discrete regularized OT, one can find in (Sanjabi et al., 2018, Appendix C) a gradient formula expressed
through the primal formulation, with a short proof limited to discrete regularized OT.

2.5 A telling counter-example

We now show that the differentiation with respect to θ under the max in (25) can fail, even for regular
generators g, thus discarding the formula (Grad-OT). To illustrate this point, let us consider a simple
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unregularized OT problem (i.e. λ = 0) between a Dirac δθ located at θ ∈ Rd and a sum of two Diracs
at positions y1 6= y2 ∈ Rd. This setting can be obtained by setting Z = 0 almost surely and defining
gθ(z) = θ − z.
Proposition 2. Let µθ = δθ and ν = 1

2δy1 + 1
2δy2 .

For p ≥ 1, consider the cost c(x, y) = ‖x− y‖p where ‖ · ‖ is the Euclidean norm on Rd.

Then

• h(θ) = W (µθ, ν) is differentiable at any θ /∈ {y1, y2} for p = 1, and at any θ for p > 1,

• for any ψ∗0 ∈ arg maxψH(ψ, θ0), the function θ 7→ F (ψ∗0, θ) is not differentiable at θ0.

Hence relation (Grad-OT) never stands.

Proof. The only distribution on X ×Y having marginals µθ, ν is π = 1
2δ(θ,y1) + 1

2δ(θ,y2). Therefore, recalling
that h(θ) = W (µθ, ν) and from the definition of the primal problem (8), we have

h(θ) = 1
2c(θ, y1) + 1

2c(θ, y2) (31)

which gives the first point.

Next, one can explicitly solve the dual problem, which, from the equivalent semi-dual formulation (14) and
the definition (26) of F , reduces to the following optimization problem with respect to (ψ(y1), ψ(y2)) ∈ R2

max
ψ∈R2

H(ψ, θ) with H(ψ, θ) = ψc(θ) + ψ(y1) + ψ(y2)
2 , (32)

where, for any ψ, the c-transform (12) writes

ψc(θ) =
{
c(θ, y1)− ψ(y1) if c(θ, y1)− ψ(y1) 6 c(θ, y2)− ψ(y2),
c(θ, y2)− ψ(y2) otherwise.

(33)

Therefore,

H(ψ, θ) =
{
c(θ, y1) + 1

2 (ψ(y2)− ψ(y1)) if ψ(y2)− ψ(y1) 6 c(θ, y2)− c(θ, y1),
c(θ, y2)− 1

2 (ψ(y2)− ψ(y1)) otherwise.
(34)

For a fixed θ0, H(·, θ0) is maximal at any ψ∗0 such that

ψ∗0(y2)− ψ∗0(y1) = c(θ0, y2)− c(θ0, y1). (35)

Besides, from (34), one sees that H(ψ, ·) is made of two pieces whose gradients can be computed explicitly
for the cost c(x, y) = ‖x− y‖p:

∀θ 6= yj , ∇θc(θ, yj) = p‖θ − yj‖p−2(θ − yj), (36)

and, when p > 1 we also have ∇θc(θ, yj) = 0 for θ = yj . Therefore, the gradients of the two pieces agree
at no point θ: for any θ, ∇θc(θ, y1) 6= ∇θc(θ, y2). In particular, the function H(ψ, ·) is not differentiable at
the interface I = { θ ∈ Rd | c(θ, y2) − c(θ, y1) = ψ(y2) − ψ(y1) }. As F (ψ, ·) only differs from H(ψ, ·) by
the constant ψ(y1)+ψ(y2)

2 , it is also not differentiable on I But then, for ψ∗0 satisfying (35), θ0 lies on the
interface I, which gives the second point.

We highlight the main pitfall in the previous proof: δθ puts some mass on a thin subset where θ 7→ F (ψ∗0, θ)
is not smooth. In the following section, we adopt an hypothesis on the generator that avoids this objection.
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3 Gradient formula in the unregularized semi-discrete setting

In this section, we prove the formula (Grad-OT) in the semi-discrete case, i.e. when the target measure ν
is supported on a finite set of points. Therefore, in this section, X ⊂ Rd is compact and Y is finite with J
points, so that C (Y) identifies to RJ . We only consider the case λ = 0 since more general results are given
for regularized OT in the next section. We recall the notations W = W0, h = h0, and F = F0 obtained from
the definitions (8), (23) and (26) with λ = 0. Also, for λ = 0, we simply write ψc = ψc,0 the c-transform of
a function ψ.

Since C (Y) identifies to RJ , we study the function F : RJ ×Θ→ R defined by

F (ψ, θ) =
∫
X
ψcdµθ = E[ψc(gθ(Z))]. (37)

In the following results, we provide an hypothesis on the generator gθ that allows to compute the gradient
of h by differentiating under the max in (27). This hypothesis requires the definition of the open Laguerre
cells associated with ψ:

Lψ(y) = { x ∈ X | ∀y′ 6= y, c(x, y)− ψ(y) < c(x, y′)− ψ(y′) }. (38)

It also requires the Laguerre cells boundaries, that is, the set of points for which there is a “tie” in the
minimum:

Aψ = X \
⋃
y∈Y

Lψ(y). (39)

For example, if c(x, y) = ‖x − y‖22 in Rd, Aψ is contained in a union of hyperplanes whose directions are
orthogonal to the segments [y1, y2], y1, y2 ∈ Y. In particular Aψ has zero Lebesgue measure.

By construction, for x ∈ X \Aψ, we can uniquely define the Monge map

Tψ(x) = arg min
y∈Y

c(x, y)− ψ(y). (40)

Lemma 4. The map (ψ, x) 7→ Tψ(x) is locally constant on RJ ×Aψ.

Proof. Let (ψ, x) ∈ RJ ×Aψ and let y = Tψ(x). By definition of Laguerre cells,

c(x, y)− ψ(y)− min
z∈Y\{y}

(c(x, z)− ψ(z)) < 0. (41)

The left-hand side is a function that is jointly continuous in (ψ, x) and is < 0 at (ψ, x). Thus, there is a
neighborhood W of (ψ, x) where it stays negative, that is,

∀(ψ′, x′) ∈W, c(x′, y)− ψ′(y)− min
z∈Y\{y}

(c(x′, z)− ψ′(z)) < 0. (42)

Therefore Tψ′(x′) = y on W.

Lemma 5. Assume that Y is finite with J points and that c is x-regular (see Definition 1). Let ψ ∈ RJ .
Then ψc is C 1 on X \Aψ and

∀x ∈ X \Aψ, ∇ψc(x) = ∇xc(x, Tψ(x)). (43)

Proof. First, one can notice that X \Aψ =
⋃
y∈Y

Lψ(y) is an open subset of X because the Laguerre cells Lψ(y)

are open (thanks to the continuity of c). Besides, if x ∈ X \ Aψ, y = Tψ(x) is well-defined and x ∈ Lψ(y).
Thus Lψ(y) is an open neighborhood of x on which we have

∀u ∈ Lψ(y), ψc(u) = c(u, y)− ψ(y) .

Therefore, on Lψ(y), ψc is as regular as c(·, y) = c(·, Tψ(x)) and has the same gradient.
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Lemma 6. Assume that Y is finite with J points and that c is x-regular. Assume that g satisfies Hypothe-
sis (Gθ0) (Definition 3) at some θ0 ∈ Θ and V the associated neighborhood of θ0. Assume also that for any
ψ ∈ RJ , µθ(Aψ) = 0, i.e. we have g(θ, Z) ∈ X \Aψ almost surely.

Then, for any ψ ∈ RJ , θ 7→ F (ψ, θ) is differentiable at θ0 and

∇θF (ψ, θ0) = E[Dθg(θ0, Z)T∇ψc(g(θ0, Z))] (44)

where Dθg is the partial differential of g with respect to θ.

Proof. For θ ∈ Θ, let us denote
f(ψ, θ, Z) = ψc(g(θ, Z)) (45)

so that we get F (ψ, θ) = E[f(ψ, θ, Z)] from (37). The hypotheses on g and Lemma 5 ensure that f(ψ, ·, Z)
is almost surely differentiable at θ0 and thanks to the chain-rule, we have

∇θf(ψ, θ0, Z) := Dθg(θ0, Z)T∇ψc(g(θ0, Z)). (46)

Besides, since c is x-regular, the c-transforms are L-Lipschitz thanks to Definition 1 and Lemma 1. Therefore,
for any θ ∈ V ,

‖f(ψ, θ, Z)− f(ψ, θ0, Z)‖ 6 L‖g(θ, Z)− g(θ0, Z)‖ 6 LK(Z)‖θ − θ0‖ a.s. (47)

Besides, replacing θ by θ0 + t(θ − θ0) for t ∈ R and letting t→ 0, we also get

‖∇θf(ψ, θ0, Z).(θ − θ0)‖ 6 LK(Z)‖θ − θ0‖ a.s. (48)

In particular, E[∇θf(ψ, θ0, Z)] exists. Therefore, we have for any θ ∈ V ,

‖f(ψ, θ, Z)− f(ψ, θ0, Z)−∇θf(ψ, θ0, Z).(θ − θ0)‖
‖θ − θ0‖

6 2LK(Z) a.s. (49)

When θ → θ0, the left-hand-side tends almost surely to zero, and thus, the dominated convergence theorem
ensures that

E
[
‖f(ψ, θ, Z)− f(ψ, θ0, Z)−∇θf(ψ, θ0, Z).(θ − θ0)‖

‖θ − θ0‖

]
−→ 0 (50)

and in particular,
F (ψ, θ)− F (ψ, θ0)− E[∇θf(ψ, θ0, Z)].(θ − θ0) = o(‖θ − θ0‖). (51)

This proves that F (ψ, ·) is differentiable at θ0 with

∇θF (ψ, θ0) = E[∇θf(ψ, θ0, Z)] = E[Dθg(θ0, Z)T∇ψc(gθ0(Z))]. (52)

Theorem 3. Assume that Y is finite with J points and that c is x-regular.
Assume that

1. for any θ ∈ Θ, the Kantorovich potential ψ∗ for W (µθ, ν) (defined in Theorem 2) is unique up to
additive constants.

2. for any θ ∈ Θ and any ψ ∈ RJ , µθ(Aψ) = 0, i.e. we have g(θ, Z) ∈ X \Aψ a.s.

3. g satisfies Hypothesis (GΘ) in Definition 3.

Then h(θ) = W (µθ, ν) is differentiable at any θ ∈ Θ and

∇h(θ) = ∇θF (ψ∗, θ) = E
[
Dθg(θ, Z)T∇ψc∗(gθ(Z))

]
. (53)

where all terms are well-defined.
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Proof. The proof consists in applying the envelope Theorem 7 (recalled in Appendix A) in order to show
that h is differentiable at a fixed θ0 ∈ Θ. Let us denote by ψ∗0 the corresponding Kantorovich potential for
W (µθ0 , ν).

First, we need to build a selection of Kantorovich potentials that is continuous at θ0. Since we assumed that
for any θ ∈ V , the Kantorovich potential for W (µθ, ν) is unique up to additive constants, there is a unique
ψ∗θ ∈ arg maxF (·, θ) such that ψ∗θ(y1) = 0 (where y1 is an arbitrary point in Y). The continuity of θ 7→ ψ∗θ
then follows from Lemma 3 and the fact that θ 7→ µθ is weak-? continuous at θ0. Indeed, Hypothesis 3
implies that when θ → θ0, E[‖gθ(Z) − gθ0(Z)‖] → 0, which means that gθ(Z) → gθ0(Z) in L1(Z,Rd) and
thus in distribution.

The next step is to show that ∇θF (ψ, θ) exists in the neighborhood of (ψ∗0, θ0), which is guaranteed by
Lemma 6

Finally, we have to demonstrate that (ψ, θ) 7→ ∇θF (ψ, θ) is continuous at (ψ∗0, θ0). For that, we show that
the function f(ψ, θ, Z) introduced in Equation (45) has a simple expression in the neighborhood of (ψ∗0, θ0).
Indeed, for ζ-almost all z, we can define y = Tψ∗0(gθ0(z)). Lemma 4 gives a neighborhood W1 × W2 of
(ψ∗0, gθ0(z)) where Tψ(x) = y. By continuity of g(·, z), U = W1 × (g(·, z)−1(W2)) is a neighborhood of
(ψ∗0, θ0) such that ∀(ψ, θ) ∈ U , Tψ(gθ(z)) = y. Thus,

∀(ψ, θ) ∈ U, ∇θf(ψ, θ, z) = Dθg(θ, z)T∇ψc(gθ(z)) = Dθg(θ, z)T∇xc(gθ(z), y). (54)

In the neighborhood U , the right-hand side does not depend on ψ anymore. It is also continuous in θ thanks
to Hypothesis (GΘ) and the fact that c is x-regular. This proves that almost surely ∇θf(·, ·, Z) is continuous
at (ψ∗0, θ0). Finally, Equation (48) proves that all components of ∇θf(·, ·, Z) are almost surely bounded by
LK(Z) ∈ L1(Z). Therefore, the dominated convergence theorem ensures that ∇F (ψ, θ) = E[∇θf(ψ, θ, Z)]
is continuous at (ψ∗0, θ0).

We can thus apply the envelope Theorem 7 which gives the desired result.

The hypothesis that c is x-regular (see Definition 1) is a quite strong constraint which may not be satisfied
in practice even for very usual costs, like the cost c(x, y) = ‖x− y‖ in Rd for the 1-Wasserstein distance. We
now give a similar result with a relaxed hypothesis that encompasses such non-smooth cost functions.
Theorem 4. Assume that Y is finite with J points. Assume that c : X × Y → R is continuous, and that
there is a constant L > 0, an open set U with X ⊂ U ⊂ Rd and a set B ⊂ X closed in Rd such that for
any y ∈ Y, c(·, y) can be extended to a L-Lipschitz C 1 function on U \ B. Assume that g satisfies the three
assumptions of Theorem 3, and assume also that µθ(B) = 0 for any θ ∈ Θ.

Then h(θ) = W (µθ, ν) is differentiable at any θ ∈ Θ with the gradient expression (53).

Notice that in the case of the Euclidean distance c(x, y) = ‖x− y‖ in Rd, for any y ∈ Y, c(·, y) is C 1 only on
Rd \ {y}. Thus this cost satisfies the condition of the last theorem with B = Y, and the resulting hypothesis
on the generator reads as µθ(Y) = 0 (in addition to the fact that all boundaries Aψ of Laguerre cells are
also µθ-negligible).

Proof. One may check that the main parts of the proof given for Theorem 3 are still true with the relaxed
hypothesis on the cost. We thus only highlight the minor modifications. First, in Lemma 5, one obtains
that the c-transforms ψc are only C 1 on X \ (Aψ ∪B). The proof of Lemma 6 is unchanged because gθ(Z)
almost surely belongs to X \ (Aψ ∪B) where the c-transforms are differentiable. Finally, in the last step of
the proof of Theorem 3, one should appropriately adapt the neighborhood W1 ×W2, which is simply done
by replacing W2 by W2 ∩Bc.

Remark 2. There exist sufficient conditions that ensure the uniqueness of Kantorovich potentials up to
additive constants. Indeed, according to (Santambrogio, 2015, Prop. 7.18), the Kantorovich potential for
W (µθ, ν) is unique up to additive constants as soon as the support of µθ is the closure of a bounded connected
open set. Assuming that µθ = gθ]ζ with ζ being the uniform distribution on the hypercube Q = [−1, 1]s and
gθ : Q → Rd any continuous map, the support of µθ is exactly gθ(Q) (see Proposition 3). If moreover the
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image gθ(Q̊) of the interior of Q is assumed to be open, then gθ(Q) is the closure of gθ(Q̊) which is connected,
and thus the uniqueness of Kantorovich potentials follows. Let us mention however that in the case where gθ
is given by a neural network, gθ(Q̊) is likely not to be open (for example in the expected case where the image
of gθ is included in an hyperplane or a manifold of dimension < d). It may also be that the uniqueness of
Kantorovich potentials is not ensured for every θ ∈ Θ. Then, if one is only interested in the local behavior
of θ 7→W (µθ, ν) around a given θ0 ∈ Θ, one may restrict Θ to be an open neighborhood of θ0. Another way
to ensure uniqueness of Kantorovich potentials is to work with entropic optimal transport, as we do in the
next section.

4 Gradient formula for regularized optimal transport

In this section, we provide differentiability results for hλ in the case of regularized optimal transport. In
this setting, as soon as the cost is regular, the regularized c-transforms are also regular everywhere, while
requiring no assumption of the target measure ν, thus not restricted to the semi-discrete case. This makes
the situation simpler than the unregularized case. Again, we recall the notations Wλ, hλ, and Fλ from (8),
(23) and (26). In order to obtain the gradient of hλ, we follow a similar strategy than in Section 3 and study
the relation between ∇hλ(θ) and ∇θFλ(ψ, θ).

4.1 Gradient of the regularized c-transforms

Lemma 7. Let λ > 0. Assume that c is x-regular (see Definition 1). Let ψ ∈ C (Y).

Then ψc,λ is C 1 on X and

∀x ∈ X , ∇ψc,λ(x) =
∫
Y

exp
(
ψc,λ(x) + ψ(y)− c(x, y)

λ

)
∇xc(x, y)dν(y) (55)

=

∫
Y exp

(
ψ(y)−c(x,y)

λ

)
∇xc(x, y)dν(y)∫

Y exp
(
ψ(y)−c(x,y)

λ

)
dν(y)

. (56)

Proof. By definition of the regularized c-transform (see relations (11) and (12)), we have for any x ∈ X ,

∀x ∈ X , e−
ψc,λ(x)

λ =
∫
Y
e
ψ(y)−c(x,y)

λ dν(y). (57)

Since c is x-regular, then for any y ∈ Y, x 7→ e
ψ(y)−c(x,y)

λ is C 1 on a neighborhood of X , and it is Lipschitz
with Lipschitz constant L

λ exp(‖ψ‖∞+‖c‖∞
λ ). Therefore, we can differentiate under the integral to get

∀x ∈ X , ∇x
(
e−

ψc,λ(x)
λ

)
= − 1

λ

∫
Y
∇xc(x, y)e

ψ(y)−c(x,y)
λ dν(y). (58)

Expanding the left-hand side, this is equivalent to

∀x ∈ X , ∇ψc,λ(x)e−
ψc,λ(x)

λ =
∫
Y
∇xc(x, y)e

ψ(y)−c(x,y)
λ dν(y), (59)

which gives the desired formula (55) for ∇ψc,λ. The second expression (56) follows from using the definition
of ψc,λ again. Finally, using (56), one can see that all integrated functions are continuous with respect to x,
and bounded. The dominated convergence theorem thus ensures that ∇ψc,λ is continuous.

4.2 Regularity of Fλ

We recall that Hypothesis (GΘ) is given in Definition 3.
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Lemma 8. Let λ > 0. Assume that c is x-regular and that g satisfies Hypothesis (GΘ).

Let ψ ∈ C (Y). Then the function θ 7→ Fλ(ψ, θ) is differentiable on Θ and

∀θ0 ∈ Θ, ∇θFλ(ψ, θ0) = E
[
Dθg(θ0, Z)T∇ψc,λ(g(θ0, Z))

]
. (60)

Proof. As in the proof of Lemma 6, let us introduce

fλ(ψ, θ, Z) = ψc,λ(gθ(Z)) (61)

so that Fλ(ψ, θ) = E[fλ(ψ, θ, Z)]. Using Hypothesis (GΘ) and Lemma 7, fλ(ψ, ·, Z) is differentiable on Θ
almost surely, and, thanks to the chain-rule,

∇θfλ(ψ, θ, Z) = Dθg(θ, Z)T∇ψc,λ(gθ(Z)). (62)

Besides, the regularized c-transforms of a x-regular cost being still L-Lipschitz, we have an integrable bound
for the finite differences of fλ. Indeed, for a fixed θ0 ∈ Θ, and for any θ in the neighborhood V of θ0 given
by Hypothesis (Gθ0),

‖fλ(ψ, θ, Z)− fλ(ψ, θ0, Z)‖ 6 L‖g(θ, Z)− g(θ0, Z)‖ 6 LK(Z)‖θ − θ0‖ a.s. (63)

The proof can then be ended exactly as the one of Lemma 6. For further use, notice that the previous bound
implies

|||∇θfλ(ψ, θ, Z)||| =
∣∣∣∣∣∣Dθg(θ0, Z)T∇ψc,λ(g(θ0, Z))

∣∣∣∣∣∣ 6 LK(Z) a.s. (64)
where |||·||| is the dual norm associated with ‖ · ‖.

4.3 Gradient of the regularized loss

Theorem 5. Assume that c is x-regular and that g satisfies Hypothesis (GΘ).

Then hλ is C 1 on Θ and

∀θ ∈ Θ, ∇θhλ(θ) = ∇θFλ(ψ∗, θ) = E
[
Dθg(θ, Z)T∇ψc,λ∗ (g(θ, Z))

]
, (65)

where ψ∗ ∈ arg maxψHλ(ψ, θ), and where ∇ψc,λ∗ is given by (55).

Proof. As in Theorem 3, the proof is based on the envelope Theorem 7 applied on hλ(θ) = Wλ(µθ, ν) =
maxψHλ(ψ, θ) (see (25) and (27)). With the entropic regularization, the uniqueness (up to additive con-
stants) of the solutions of the dual problem directly provides a continuous selection of Kantorovich potentials
(thanks to Lemma 3). Besides, Lemma 8 ensures that ∇θFλ(ψ, θ) exists for any ψ ∈ C (Y) and any θ ∈ Θ.
It remains to show that ∇θFλ is continuous in (ψ, θ). For that, recall that ∇θFλ(ψ, θ) = E[∇θfλ(ψ, θ, Z)]
where fλ is defined in (61), and let us fix θ0 ∈ Θ and ψ∗0 an optimal Kantorovich potential for Wλ(µθ0 , ν),
and let also ψ ∈ C (Y) be arbitrary. Then, for any θ in the neighborhood V of θ0 given by Hypothesis (Gθ0),

‖fλ(ψ, θ, Z)− fλ(ψ, θ0, Z)‖ 6 L‖g(θ, Z)− g(θ0, Z)‖ 6 LK(Z)‖θ − θ0‖ a.s. (66)

which ensures that all components of ∇θfλ(ψ, θ, Z) are almost surely bounded by LK(Z), an integrable
bound which does not depend on (ψ, θ). Since θ 7→ g(θ, Z) is almost surely C 1 on V , using (62), the last
thing to show is that (ψ, θ) 7→ ∇ψc,λ(gθ(Z)) is almost surely continuous.

Let us fix z ∈ Z for which g(·, z) is C 1 on V and for which (29) holds. Thanks to (59), we can write

∇ψc,λ(gθ(z)) = e
ψc,λ(gθ(z))

λ

∫
Y
∇xc(gθ(z), y)e

ψ(y)−c(gθ(z),y)
λ dν(y). (67)

For the first term, if ψ, χ ∈ C (Y) and θ, τ ∈ Θ,

|ψc,λ(gθ(z))− χc,λ(gτ (z))| 6 |ψc,λ(gθ(z))− ψc,λ(gτ (z))|+ |ψc,λ(gτ (z))− χc,λ(gτ (z))| (68)
6 L|gθ(z)− gτ (z)|+ ‖ψc,λ − χc,λ‖∞ (69)
6 LK(z)‖θ − τ‖+ ‖ψ − χ‖∞ , (70)
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by virtue of Lemma 2 and thus (ψ, θ) 7→ e
ψc,λ(gθ(z))

λ is continuous. For the integral term, θ 7→ ∇xc(gθ(z), y)
is continuous on V because c is x-regular and because θ 7→ g(θ, z) is continuous on V . Additionally,
(ψ, θ) 7→ e

ψ(y)−c(gθ(z),y)
λ is a separable product of two terms which are continuous in ψ and θ respectively.

Finally, if ψ is restricted in a neighborhood P0 of ψ∗0 bounded by R > 0, then all terms under the integral are
bounded by Le 1

λ (R+‖c‖∞). Again, the dominated convergence theorem implies that (ψ, θ) 7→ ∇ψc,λ(gθ(z))
is continuous on P0 × V . Finally, using the bound (64) and the dominated convergence theorem give that
(ψ, θ) 7→ ∇θFλ(ψ, θ) is continuous on P0 × V . Therefore, all required conditions are satisfied to apply the
envelope theorem on Fλ, which gives the desired formula.

4.4 Gradient of the Sinkhorn divergence

In this whole paragraph, we assume that X = Y, that (x, y) 7→ c(x, y) is C 1 on X × X and symmetric (i.e.
c(x, y) = c(y, x) for all x, y ∈ X ) and that it is L-Lipschitz with respect to (x, y):

∀(x, y), (x′, y′) ∈ X × X , |c(x, y)− c(x′, y′)| 6 L(‖x− x′‖+ ‖y − y′‖). (71)

The authors of (Genevay et al., 2018) have shown that learning a generative model based on the Wasserstein
costWλ induces a bias. For this reason, they propose to use instead the so-called Sinkhorn divergence defined
as

Sλ(µ, ν) = Wλ(µ, ν)− 1
2

(
Wλ(µ, µ) +Wλ(ν, ν)

)
. (72)

Since we focus here on the regularized WGAN learning problem, we study the function

sλ(θ) = Sλ(µθ, ν) = Wλ(µθ, ν)− 1
2

(
Wλ(µθ, µθ) +Wλ(ν, ν)

)
(73)

and we extend the previous regularity results to this new criterion. The first term of (73) has already been
studied, and the last term does not depend on θ. It thus remains to study the middle term, and for that we
rely on the dual formulation of Wλ(µθ, µθ) given by

Wλ(µθ, µθ) = max
χ,η∈C (X )

Fλ(χ, η, θ) (74)

where Fλ(χ, η, θ) =
∫
X
χdµθ +

∫
X
ηdµθ − λ

∫
X×X

e
χ(x)+η(y)−c(x,y)

λ dµθ(x)dµθ(y) + λ. (75)

Again, the problem (74) can be restricted to functions which are regularized c-transforms with respect to µθ.
Similar to Lemma 8, one can show that such regularized c-transforms are still C 1 on X and that the gradient
can be computed by differentiating under the integral. Besides, because of the symmetry of Wλ(µθ, µθ), one
can show that the couple of optimal potentials (χ∗, η∗) that solve (74) are such that χ∗ and η∗ are equal up
to an additive constant

Based on these observations, we can now state the regularity result for the Sinkhorn divergence. Recall that
notations I, Fλ are defined in (24) and (26).
Theorem 6. Assume that c is x-regular and that g satisfies Hypothesis (GΘ).

Then sλ is C 1 on Θ and

∀θ ∈ Θ, ∇θsλ(θ) = ∇θFλ(ψ∗, θ)−∇θI(χ∗, θ) (76)
= E

[
Dθg(θ, Z)T

(
∇ψc,λ∗ (g(θ, Z))−∇χ∗(g(θ, Z))

)]
, (77)

where ψ∗ ∈ arg maxψ Fλ(ψ, θ) and (χ∗, η∗) ∈ arg max(χ,η) Fλ(χ, η, θ).

Proof. Again, using the result obtained for θ 7→Wλ(µθ, ν) in the last paragraphs, we only have to study the
regularity of Wλ(µθ, µθ). Once again, this follows from the envelope theorem recalled in Appendix A. For
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that we let C the set of C 1 and L-Lipschitz functions on X equipped with the norm ‖χ‖∞ + |||∇χ|||∞ and
we use the dual expression (74) that can be written

Fλ(χ, η, θ) = I(χ, θ) + I(η, θ) + λ− λEλ(χ, η, θ) (78)

where Eλ(χ, η, θ) = E
[
exp

(
Γ(χ, η, θ, Z,W )

λ

)]
(79)

and Γ(χ, η, θ, z, w) = χ(gθ(z)) + η(gθ(w))− c(gθ(z), gθ(w)), (80)

and where W,Z are two independent random variables of distribution ζ. For any χ ∈ C, differentiating
under the integral as in Lemma 8 gives again that I(χ, ·) is differentiable on Θ with gradient

∇θI(χ, θ) = E
[
Dθg(θ, Z)T∇χ(g(θ, Z))

]
. (81)

By the same reasoning, one obtains that Eλ(χ, η, ·) is differentiable on Θ with gradient

∇θEλ(χ, η, θ) = E
[
∇θΓ(χ, η, θ, Z,W )

λ
exp

(
Γλ(χ, η, θ, Z,W )

λ

)]
(82)

with

∇θΓ(χ, η, θ, z, w) =Dθg(θ, z)T
(
∇χ(g(θ, z)) +∇xc(g(θ, z), g(θ, w))

)
(83)

+Dθg(θ, w)T
(
∇η(g(θ, w)) +∇yc(g(θ, z), g(θ, w))

)
. (84)

If P0 is any bounded set of C, using a bound similar to (64) and the dominated convergence theorem
shows that (χ, θ) 7→ I(χ, θ) is continuous on P0 × V . Similarly, one can see that Γ is Lispchitz in θ with a
(Z,W )-integrable bound

|Γ(χ, η, θ, z, w)− Γ(χ, η, τ, z, w)| 6 (|||∇χ|||∞K(z) + |||∇η|||∞K(w) + L)‖θ − τ‖. (85)

Since Γ is also bounded by ‖χ‖∞ + ‖ψ‖∞ + ‖c‖∞ and since the continuity of Γ with respect to (χ, η, θ) can
be deduced from (80), this is enough to show that (χ, η, θ) 7→ ∇Eλ(χ, η, θ) is continuous on P0 × V .

Therefore, we have again all conditions required to apply the envelope theorem: we have a continuous
selection of optimal dual variables (χ, η) and the gradient ∇θFλ(χ, η, θ) exists and is continuous in (χ, η, θ),
and we can differentiate under the max in (74)

∇θWλ(µθ, µθ) = ∇θFλ(χ∗, η∗, θ), (86)

where (χ∗, η∗) is a pair of Kantorovich potentials for Wλ(µθ, µθ). Finally, notice that by symmetry, there
exists k ∈ R such that χ∗ = η∗ + k and by definition Eλ(χ∗, η∗, θ) = 1 so that

Fλ(χ∗, η∗, θ) = 2I(χ∗, θ)− k (87)

and therefore
∇θFλ(χ∗, η∗, θ) = 2∇I(χ, θ) = 2E

[
Dθg(θ, Z)T∇χ∗(g(θ, Z))

]
. (88)

Putting all terms together, we get the desired formula for ∇θsλ(θ).

5 Interpretation with Derivatives in the Sense of Distributions

This section contains a brief discussion on the way to interpret the previously obtained gradient formulae,
by taking derivatives in the sense of distributions of θ 7→ µθ.

In the proofs above, one can notice that a crucial argument is to examine the regularity of the function

I(ϕ, θ) =
∫
X
ϕdµθ. (89)
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In order to better understand the behavior of this function, it is useful to consider the map θ 7→ µθ from Θ
to the space D′(U) of distributions on U , which is the dual of the space D(U) of compactly-supported C∞

functions on U (detailed definitions of these functional spaces can be found in (Hörmander, 2015)). Then,
using the duality product on D′(U), one can rewrite

I(ϕ, θ) = 〈µθ, ϕ〉. (90)

Therefore, the regularity of (89) can be understood as the regularity of θ 7→ µθ, after evaluation against ϕ.
In order to benefit from the framework of distribution derivatives, it is useful to work on the product Θ×U .

It is possible to define T ∈ D′(Θ× U) by setting

∀Φ ∈ D(Θ× U), 〈T,Φ〉 =
∫

Θ

∫
U

Φ(θ, x)µθ(dx)dθ. (91)

For any Φ ∈ D(Θ× U) whose support is included in a compact K × L,

|〈T,Φ〉| 6 ‖Φ‖∞
∫

Θ

∫
U

dµθ(x)dθ 6 ‖Φ‖∞
∫
K

dθ (92)

since µθ is a probability distribution on U . This proves that T defines a 0-th order distribution on Θ × U .
In this context, it is possible to give a meaning to the pointwise evaluation of T at θ, which corresponds to
the probability distribution T (θ, ·) = µθ.

Now, the distributional derivatives of T w.r.t. the variable θi can be written with the limit in the D′ sense:

∂θiT = lim
h→0

τ−htiT − T
h

(93)

where (t1, . . . , tp) is the canonical basis of Rp, and where τvT is the translation of T with vector v, defined
by 〈τvT,Φ〉 = 〈T,Φ(·+ v)〉. In other words,

∀Φ ∈ D(Θ× U), 〈∂θiT,Φ〉 = lim
h→0

∫
Θ

∫
U

Φ(θ, x) d
(
µθ+hti − µθ

h

)
(x)dθ. (94)

Since T is a distribution of order 0, the partial derivative ∂θiT is a distribution of order 6 1. This explains
why the expression of ∂θiT may involve ∇Φ.

In the case where µθ is the output distribution of a generative network g that satisfies Hypothesis (GΘ), then
for a separable test function Φ(θ, x) = α(θ)ϕ(x) with α ∈ D(Θ) and ϕ ∈ D(U), we have∫

Θ

∫
U

α(θ)ϕ(x) d
(
µθ+hti − µθ

h

)
(x)dθ =

∫
Θ
α(θ)E

[
ϕ(g(θ + hti, Z))− ϕ(g(θ, Z))

h

]
dθ. (95)

With arguments similar to the last sections, one can show that this limit is well-defined, which gives

〈∂θiT (θ, x), α(θ)ϕ(x)〉 =
∫

Θ
α(θ)E[Dθig(θ, Z)T∇ϕ(g(θ, Z))]dθ. (96)

In other words, the pointwise evaluation of ∂θiT at θ is identified to the distribution of order 6 1 given by

∀ϕ ∈ D(U), 〈∂θiT (θ, ·), ϕ〉 = E[Dθig(θ, Z)T∇ϕ(g(θ, Z))]. (97)

In conclusion, it is possible to interpret the results of the last sections in terms of distributional derivatives
of θ 7→ µθ and this explains the apparition of ∇ϕ in the gradient formulae found in the last sections.

6 Experiments

In this section, we provide an algorithm that tackles the practical minimization of (23) in the case of generator
learning for handwritten digits, using the MNIST database (LeCun et al., 1998). We do not seek to reach
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state-of-the-art results for generator learning with complex databases, but we focus instead on a practical
analysis of the convergence of the proposed algorithm (in terms of loss values) and examine the impact of
the regularization parameters.

In this setting, Y is a finite set of J data points, so that elements ψ ∈ C (Y) identifies to vectors in RJ as in
Section 3. On the other hand, µθ is the output distribution of the generative network, which can be sampled
on demand. In this section, λ ≥ 0.

6.1 Alternate Algorithm

We aim at solving the optimization problem

min
θ∈Θ

hλ(θ) = min
θ∈Θ

max
ψ∈C (Y)

Hλ(ψ, θ) (98)

where Hλ(ψ, θ) =
∫
X
ψc,λdµθ +

∫
Y
ψdν = Fλ(ψ, θ) +

∑
y∈Y

ψ(y)ν({y}) . (99)

We adopt an algorithm that alternates between updating θ with one gradient step, and updating ψ with
several iterations of a dedicated algorithm.

As we have seen above in (53) and (65), computing the gradient of hλ requires to compute an optimal dual
potential ϕ∗ = ψc,λ∗ , which, in general, cannot be done exactly. Instead, we rely on the stochastic algorithm
for semi-discrete OT proposed in (Genevay et al., 2016) to approximate the optimal potential. In the proofs
of the previous sections, we have written

Fλ(ψ, θ) = E[fλ(ψ, θ, Z)] (100)

where fλ(ψ, θ, z) = ψc,λ(gθ(z)). It has been shown in (Genevay et al., 2016; Houdard et al., 2022) that
Hλ(·, θ) defined in (99) is a concave function whose supergradient D(ψ, θ) = ∂ψHλ(ψ, θ) can be written as

D(ψ, θ) = E[D(ψ, θ, Z)] where D(ψ, θ, z) = ∂ψ

(
fλ(ψ, θ, z)−

∫
ψdν

)
. (101)

This element D(ψ, θ, z) ∈ RJ can be computed with an explicit formula given in (Genevay et al., 2016;
Houdard et al., 2022) (and in practice is implemented by automatic differentiation).

Therefore, for a current θ, we can optimize ψ with a stochastic supergradient ascent{
ψ̃k = ψ̃k−1 + γ

kα

(
1
|Bk|

∑
z∈Bk D(ψ̃k−1, θ, z)

)
ψk = 1

k (ψ̃1 + · · ·+ ψ̃k),
(102)

where γ > 0 is the learning rate, α ∈ (0, 1) a parameter, Bk is a batch containing b independent samples of
the distribution of Z, and the different batches Bk’s are also independent. As recalled in (Genevay et al.,
2016) and (Galerne et al., 2018), for α = 0.5, this algorithm has a convergence guarantee in O( log k√

k
) on the

function values. After K iterations of the inner loop, we obtain an approximation ψ of the optimal dual
potential ψ∗ for Wλ(µθ, ν), and we use it to perform the gradient descent step on θ

∇θhλ(θ) ≈ ∇θHλ(ψ, θ) = ∇θFλ(ψ, θ) = E
[
Dθg(θ0, Z)T∇ψc,λ(g(θ0, Z))

]
(103)

Actually, using ∇θHλ(ψ, θ) as a proxy for ∇θhλ(θ) in the gradient descent step can be simply reinterpreted
as saying that we perform an alternate optimization on Hλ(ψ, θ), with an inner loop on ψ at each iteration.
Again, the expectation in (103) cannot be computed in closed form so that we realize an approximation by
taking another batch B′ on z:

∇θHλ(ψ, θ) ≈ 1
|B′|

∑
z∈B′

Dθg(θ0, z)T∇ψc,λ(g(θ0, z)). (104)
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The overall algorithm is summarized in Algorithm 1. Notice that in the case of unregularized OT λ = 0,
the algorithm is close to the one proposed by Chen et al. (Chen et al., 2019). But all the computations
made in the present paper allow to interpret it as a stochastic alternate optimization algorithm on a fixed
cost Hλ(ψ, θ), thus including naturally the regularized case λ > 0. One benefit of this approach is that
the stochastic gradient steps taken on ψ and θ can be implemented by automatic differentiation on a fixed
cost Hλ, and the corresponding updates can be implemented with predefined optimizers. In particular, this
opens the possibility to adopt other parameterizations of the variable ψ. Indeed, while the usual stochastic
algorithm for semi-discrete OT (Genevay et al., 2016) works on the vector (ψ(yj)) ∈ RJ , it is also possible to
adopt a neural network parameterization ψt of ψ as in (Seguy et al., 2018). The update of ψ then translates
on an update of the neural network parameters t, which can be done by backpropagating the gradient of

t 7→ fλ(ψt, θ, z)−
∫
ψtdν = ψc,λt (gθ(z))−

∑
y∈Y

ψt(y)ν({y}) . (105)

Finally, let us mention that a limitation of this approach is that computing the gradients of Hλ requires the
differentiation of fλ(ψ, θ, z) = ψc,λ(gθ(z)), for a batch of z values. The exact computation of ψc,λ requires
to visit all the dataset Y, which is prohibitive for a very large database.

Algorithm 1
Initialization: ψ0 = 0, random initialization of θ
n = 1 to N

• Approximate ψn ≈ arg maxHλ(·, θ): inner loop with K iterations of ASGD (102) starting from ψn−1, using
batches Bn,1, . . . , Bn,K of size b on z

• Update θ with one step of ADAM algorithm on Hλ(ψn, ·) using gradient (104) computed on a batch B′n of
size b on z

end for
Output: estimated generative model parameter θ

Detailed setting The following paragraph gathers the parameters and network architectures used in the
experiments shown in this section.

• N = 3000 iterations on θ with ADAM algorithm (with learning rate 0.001)

• K = 10 iterations of the inner loop with ASGD algorithm (see learning rates below)

• The cost c(x, y) is the quadratic cost α−1‖x− y‖2 normalized by α = 1
J

∑
y∈Y ‖y‖2

• For the generator gθ we consider two different architectures:

– a multilayer perceptron (MLP) with four fully-connected layers; the number of channels for
the successive hidden layers is 256, 512, 1024.

– a Deep Convolutional Adversarial Network (DCGAN) (Radford et al., 2015) adapted for the
dimension 28×28 of MNIST images, with four deconvolution layers; the number of channels
for the successive hidden layers is 256, 128, 64.

• The input of these generators is a random variable Z following the uniform distribution on [−1, 1]100

(the choice of dimensionality 100 is commonly encountered when fitting a generative network to the
MNIST database). All batches of Z are made of 200 samples.

• The dual variable ψ is either directly modeled by a vector ψ ∈ RJ , or parameterized by a multilayer
perceptron with four fully-connected layers; the number of channels for the successive hidden layers
is 512, 256, 128. These two different settings are respectively referred to as SDOT (for semi-dual
OT) and SDOTNN (for semi-dual OT with neural network).
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Figure 1: Generation of MNIST digits. We compare here several generative networks trained with different
architectures for the generator gθ (MLP or DCGAN) and the dual variable ψ with no parameterization
(SDOT) in the two first rows, or MLP parameterization (SDOTNN) in the two last rows, and varying the
parameter λ of entropic regularization.

• The step size strategy for the ASGD inner loop has been chosen in the following manner: for the
parameterization SDOT, we use γ = 5, α = 0.5 i.e. a step size 5

k0.5 while for the parameterization
SDOTNN, we use γ = 0.1, α = 0.8 i.e. a step size 0.1

k0.8 .

6.2 Impact of the regularization parameter

In this paragraph, we discuss the behavior of the alternate Algorithm 1 and examine the impact of the
regularization parameter λ both on the visual results and the convergence of the loss function. We also
discuss the effect of parameterizing the dual variable ψ by a neural network.

On Fig. 1, we display sampled digits obtained with the generative networks learned with Algorithm 1 run with
different settings. One can see that the generators learned with unregularized OT (λ = 0) produce mostly
convincing samples which are slightly more blurry than the images of the database. Some of samples do not
exactly resemble a digit but some kind of mixing between different digits, which reflects the fact that the
generative network naturally interpolates between the images of the database. The two tested architectures
for the generator produce comparable results, with a slight advantage for DCGAN. DCGAN indeed provides
cleaner samples that better cover the whole database, thanks to its more complex architecture, well adapted
to two-dimensional data.

The visual results deteriorate when the regularization parameter λ grows. For very small λ, the results
are still comparable to the unregularized case. For larger λ, the outputs of the generative network seem
to concentrate on a blurry average of the database. This can be understood by looking at the gradient
formula (65) which involves the gradient of the regularized c-transform given by (55). When λ → +∞,
∇ψc,λ(x) degenerates to a simple average

∫
Y ∇xc(x, y)dν(y). In other words, with the blur created by

entropic regularization on the transport plan, the sampled points are pushed towards all the target points
in a mixed manner. In contrast, with unregularized transport, each sampled point x is pushed towards the
data point Tψ(x) assigned by the current OT map.
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Figure 2: Evolution of the loss Hλ(ψ
θ
, θ) along the iterates of Algorithm 1 to learn a DCGAN for generation

of MNIST digits. For each iterate θ, the loss is computed by using the current estimate ψ
θ
of the dual

variable. For two values of the regularization parameter (λ = 0 on the left and 0.025 on the right), we
compare the OT loss values obtained by parameterizing ψ directly as a vector in RJ (SDOT) or as a neural
network (SDOTNN). See the text for comments.

To better understand these visual results, we now examine the behavior of the loss function depending on
the adopted setting. Fig. 2 shows the evolution of the loss Hλ(ψ

θ
, θ) (for the current dual variable ψ

θ
, with

Hλ defined in (99)) along the iterates of Algorithm 1, when the dual variable ψ is either parameterized as a
vector in RJ (SDOT) or a neural network (SDOTNN). One can see that the loss stabilizes in ≈ 500 iterations,
and that the limit values obtained with both parameterizations (SDOT and SDOTNN) are very similar. It
is interesting to notice that the limit value is even lower with the SDOTNN parameterization: since the
adopted multilayer perceptron has here > 5 · 105 parameters (and is thus much larger than J = 6 · 104), it
is likely that any value (ψ(yj))16j6J ∈ RJ can be attained with such a parameterization for ψ. Notice also
that the loss decreases in a more stable way with the SDOTNN parameterization: this parameterization is
indeed likely to be more robust to the individual changes on ψ(yj) when updating the parameters θ of the
generator.

One can notice that, quite surprisingly, the convergence speed does not improve drastically when using a
larger regularization parameter λ. This is confirmed in Fig. 3 where we display results obtained with various
regularization parameters λ and the four tested combinations of architectures for the generative network
and the dual variable. As expected, increasing the regularization parameter leads to a smoother optimized
functional, which reflects in a more stable evolution of the loss. For very small λ (6 0.025), we observe that
the regularization does not improve the convergence speed with respect to θ. In this slightly regularized
regime, we suggest that the behavior of the loss evolution mostly depends on the chosen architecture.

To further analyze the algorithm, for a fixed generator parameter θ, we display in Fig. 4 the evolution of the
loss ψ 7→ Hλ(ψ, θ) (defined in (99)) during the inner ASGD loop used for optimizing the dual variable ψ. In
order to complete the comparison, we also include the convergence plot obtained with the ADAM algorithm
applied on the same problem. These convergence curves reflect the slow convergence rate (in O( log k√

k
)) of

the ASGD algorithm. In our experiments, we observe that a careful tuning of the learning rate γ in the
ASGD algorithm (102) is necessary to obtain a sufficient decrease of the loss. Next, the convergence plots
obtained with ASGD are similar with both parameterizations SDOT and SDOTNN. One can observe that
for very small regularization, turning to the ADAM algorithm does not improve the convergence speed for
the SDOT parameterization. However, we remark that using the ADAM algorithm with the SDOTNN
parameterization seems beneficial for all tested regularization parameters: the loss value obtained after 100
iterations is lower than with the SDOT parameterization, and the convergence is much faster.
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Figure 3: Evolution of the loss Hλ(ψ
θ
, θ) along the iterates of Algorithm 1, for the four tested combinations

of parameterizations of the generator (MLP or DCGAN) and the dual variable (SDOT or SDOTNN). For
each iterate θ, the loss is computed by using the current estimate ψ

θ
of the dual variable. Let us recall that

the loss function Hλ depends on the regularization parameter λ, which explains why the limit value attained
by the algorithm actually increases when λ→ 0. See the text for additional comments.
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Figure 4: Evolution of the loss ψ 7→ Hλ(ψ, θ) along the iterates of the inner loop of Algorithm 1. Here,
the parameter θ of the DCGAN generator is fixed, i.e. we consider a semi-discrete OT problem between
a fixed µθ and ν. For several values of the regularization parameter, we compare the evolution of the loss
when parameterizing ψ directly as a vector in RJ (SDOT) or as a neural network (SDOTNN). For both
parameterizations, the optimization is done using either ASGD with decreasing step size ( 5√

k
for SDOT and

0.1
k0.8 for SDOTNN) or ADAM (with learning rate 0.001). See the text for comments.
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7 Conclusion

In this paper we gave new insights on the theory and practice for learning generative networks with regularized
Wasserstein distances. On the theoretical side, we proved a gradient formula for the minimized loss in two
different frameworks: in the semi-discrete (i.e. when the target distribution ν has finite support) without
regularization, and in a more general case (with a general ν) with entropic regularization. These results
are based on a regularity hypothesis on the generator, and also, in the semi-discrete case, an assumption
that the generator does not charge the boundary of Laguerre cells. These hypotheses are helpful to better
understand the possible degenerate cases that can be encountered, and we provided such a counterexample.

On the practical side, we showed that an alternate algorithm can approximate the solution of this opti-
mization problem. The inner loop of this algorithm consists in approximating an optimal dual potential
for regularized OT with a stochastic optimization algorithm. The results of the previous sections justify
the existence of the gradients used in this alternate procedure. Experiments on MNIST digits demonstrate
that this algorithm is able to learn a neural network generating relevant images. When approximating the
dual variable, convincing visual results are indeed obtained with zero or small regularization parameter λ.
For such a small regularization, the smoothing of the targeted loss function is not sufficient to drastically
improve the convergence speed of the optimization algorithm for the generator parameters. However, for
which concerns the stochastic optimization used to solve the semi-dual OT problem, we observed that it may
be beneficial in terms of convergence speed to parameterize the dual variable with a neural network, provided
that one uses a well-chosen and carefully tuned algorithm to optimize it. The improvement observed with
such a parameterization remains to be explained with a thorough analysis of the ADAM algorithm applied
on this semi-discrete OT problem.

The main drawback of the considered algorithm is that the inner loop is based on the computation of a
regularized c-transform and thus requires, at each iteration, to visit all data points (in order to find a kind
of biased nearest neighbor). In order to scale up to larger database, it has already been proposed (Mallasto
et al., 2019) to approximate the regularized c-transform with a batch strategy. As a perspective, it would
be interesting to see if the errors made at each iteration by this batch strategy can be controlled in order to
get a globally stable optimization process.
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A Technical Results

We first recall the proof of the envelope theorem (Oyama & Takenawa, 2018, Prop. A.1).
Theorem 7 (Envelope theorem Oyama & Takenawa (2018)). Let X be a topological space. Let A be an
open set of a normed vector space E. Let f : X ×A→ R be a function and let us denote

∀a ∈ A, v(a) = sup
x∈X

f(x, a). (106)

Let s : A→ X be such that for all a ∈ A, v(a) = f(s(a), a). Let α ∈ A be a point such that

• s is continuous at α,

• the partial differential Daf of f with respect to a exists in a neighborhood of (s(α), α), and is
continuous at (s(α), α).
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Then v is differentiable at α and Dav(α) = Daf(s(α), α).

Proof. Let ξ = s(α) and let ε > 0. The second hypothesis gives an open neighborhood U × V of (ξ, α) in
X × A such that for any (x, a) ∈ U × V , f(x, ·) is differentiable at a and such that the partial differential
(x, a) 7→ Daf(x, a) is continuous on U × V . By continuity of s, s−1(U) ∩ V is an open neighborhood of α
and thus it exists η > 0 such that ‖h‖ < η implies α+ h ∈ V and s(α+ h) ∈ U .

By definition of v, we have for any h ∈ E such that ‖h‖ < η,

f(ξ, α+ h)− f(ξ, α) 6 v(α+ h)− v(α) 6 f(s(α+ h), α+ h)− f(s(α+ h), α). (107)

On the one hand, by definition of Daf(ξ, α), there exists η1 ∈ (0, η) such that ‖h‖ < η1 implies

|f(ξ, α+ h)− f(ξ, α)−Daf(ξ, α)h| 6 ε‖h‖. (108)

On the other hand, for ‖h‖ < η, t ∈ [0, 1] 7→ f(s(α+h), α+ th) is differentiable on [0, 1] and therefore, there
exists θh ∈ (0, 1) such that

f(s(α+ h), α+ h)− f(s(α+ h), α) = Daf(s(α+ h), α+ θhh)h. (109)

By continuity of Daf , there is an open neighborhood Ū × V̄ ⊂ U × V such that

∀(x, a) ∈ U × V, |||Daf(x, a)−Daf(ξ, α)||| 6 ε, (110)

where |||·||| denotes the dual norm. Again, by continuity of s, s−1(Ū) ∩ V̄ is an open neighborhood of α and
thus, there exists η2 ∈ (0, η) such that ‖h‖ < η2 implies α + h ∈ s−1(Ū) ∩ V̄ . Therefore, for ‖h‖ < η2,
(s(α+ h), α+ θhh) ∈ Ū × V̄ and thus

|f(s(α+ h), α+ h)− f(s(α+ h), α)−Daf(ξ, α)h| (111)
6 |||Daf(s(α+ h), α+ θhh)−Daf(ξ, α)|||‖h‖ 6 ε‖h‖. (112)

Finally, for ‖h‖ < min(η1, η2) we get

|v(α+ h)− v(α)−Daf(ξ, α)h| 6 ε‖h‖, (113)

which proves that v is differentiable at α and Dav(α) = Daf(ξ, α).

The next proposition gives the support of a push-forward distribution.
Proposition 3. Let Q = [−1, 1]s, and g : Q → Rd continuous. Let Z be a random variable with uniform
distribution ζ on Q and let µ = g]ζ be the distribution of g(Z). Then the support of µ is exactly g(Q).

Proof. Since g is continuous, g(Q) is compact and in particular closed. Thus U = g(Q)c is open, and one
has that

µθ(U) = P(g(Z) ∈ U) = ζ(g−1(U)) = 0, (114)

because g−1(U) does not intersect Q. This proves that Supp(µ) ⊂ gθ(Q). Now, if V is an open set such that
µ(V ) = 0, then P(Z ∈ g−1

θ (V )) = 0, which gives g−1
θ (V ) ∩ Q = ∅ because g−1

θ (V ) is open. It follows that
V ⊂ gθ(Q)c, which proves that Supp(µ) is exactly gθ(Q).

26


	Introduction
	Wasserstein Generative models
	Related works
	Contributions and outline

	The Wasserstein GAN Problem
	Optimal Transport, Primal and Dual Problems
	Continuity of c-transforms
	Learning a Generative Network
	Previous results on the differentiability of OT costs
	A telling counter-example

	Gradient formula in the unregularized semi-discrete setting
	Gradient formula for regularized optimal transport
	Gradient of the regularized c-transforms
	Regularity of F
	Gradient of the regularized loss
	Gradient of the Sinkhorn divergence

	Interpretation with Derivatives in the Sense of Distributions
	Experiments
	Alternate Algorithm
	Impact of the regularization parameter

	Conclusion
	Technical Results

